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We have implemented three approaches to describe the thermodynamic properties of ferrimagnetic �S
=5/2, s=2� spin chains. The application of cumulant expansion has been generalized to the ferrimagnetic chain
in the presence of an external magnetic field. Using cumulants, we have obtained the field-dependent effective
Hamiltonian in terms of the classical variables up to the second order of quantum corrections. Thermodynamic
functions, the internal energy, the specific heat, and the magnetic susceptibility are obtained from the effective
Hamiltonian. We have also examined the modified spin-wave theory to derive the same physical properties.
Finally, we have studied our model using quantum Monte Carlo simulation to obtain accurate results. The
comparison of the above results and also the high temperature series expansion shows that cumulant expansion
gives good results for moderate and high temperature regions while the modified spin wave theory is good for
low temperatures. Moreover, the convergence regions of the cumulant expansion and the modified spin-wave
theory overlap each other which propose these two as a set of complement methods to get the thermodynamic
properties of spin models.
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I. INTRODUCTION

It will become evident that there are numerous highly
interesting experimental systems which are effectively one-
dimensional �1D� models. The 1D models are more interest-
ing from the theoretical point of view. The quantum effects
which are highlighted in the 1D spin models represent alter-
native physical behavior. In this class, quantum ferrimagnets
are mixed spin systems with antiferromagnetic interactions.
Mostly, they are composed of the two type of spins, S�s.
Two families of ferrimagnetic chains are described by
ACu�pba��H2O�3 ·nH2O and ACu�pbaOH��H2O�3 ·nH2O,
where pba=1,3-propylenebis�Oxamato�, pbaOH=2
-hydroxo-1 ,3-propylenebis�Oxamato� and A=Ni, Fe, Co,
and Mn.1–3 Ferrimagnets, which occur rather frequently in
nature, are somehow between the antiferromagnets and the
ferromagnets. Despite the fact that the homogeneous integer
spin chains show the Haldane gap in their low energy spec-
trum and the half-integer ones are gapless,4 1D ferrimagnets
behave differently. The lowest energy band of the 1D ferri-
magnets is gapless which shows a ferromagnetic behavior
while there is a finite gap to the next band above it which has
the antiferromagnetic properties.5–7 It is the acoustical and
optical nature of excitations which is the result of two differ-
ent type of spins in each unit cell. This behavior has been
observed in the low and high temperature regime of quantum
ferrimagnets.6 There are many approaches to study the prop-
erties of the ferrimagnetic chains; The dual features of ferri-
magnetic excitations can be illuminated by using the density-
matrix renormalization group �DMRG�5,8 and quantum
Monte Carlo �QMC� methods.7,9 Numerical diagonalization,
combined with Lanczos algorithm10 and the scaling
technique,11 further have been applied to study the modern
topics such as the phase transition10,12 and the quantized
magnetization plateau.

The discovery of both ferromagnetic gapless and antifer-
romagnetic gapped excitations have led to the investigation
of the thermodynamic properties. It has been predicted that
the specific heat at high temperatures should behave like an
antiferromagnet6 that exhibits a Schottky peak at the inter-
mediate temperatures. The modified spin-wave theory
�MSWT� and QMC can be used to see this behavior; how-
ever, QMC is not able to reach low temperatures sufficiently
to completely demonstrate the ferromagnetic behavior.6

Most of the mentioned techniques such as QMC and
DMRG have been used for ferrimagnets with small spins.
The Hilbert space of large spins are growing exponentially
and make the computations more difficult. In recent years
there have been considerable attempts which have focused
on the properties of new magnetic materials, such as mag-
netic molecules with large effective spins �S ,s�, or interme-
tallic compounds containing magnetic layers or chains. Us-
ing MSWT13 and high temperature series expansion
�HTSE�,14 one can describe the low temperature and high
temperature properties of these systems, respectively. More-
over, the HTSE is not accurate enough, even by taking into
account higher terms �11th and 7th terms for specific heat
and susceptibility, respectively�. In addition the validity re-
gime of HTSE is too far from the low temperature regime of
MSWT to cover the full range of temperature. The midtem-
perature behavior of ferrimagnets with large values of S and
s, has not received sufficient attention. In this respect, we
used the MSWT to describe the thermodynamic behavior of
the ferrimagnetic large spin chains. We have also imple-
mented the QMC simulation15 as an accurate result for com-
parison. At moderate temperatures, i.e, Js�T�JSs �J is the
exchange coupling� the results of MSWT do not coincide
with QMC ones. Therefore, to describe the physical proper-
ties at midtemperatures we have employed the cumulant ex-
pansion �CE�.16,17 Recently, this method has been used to
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study the finite temperature behavior of large spin ferromag-
netic and antiferromagnetic systems.18–21

In this article we have generalized the application of CE
to obtain the magnetization and magnetic susceptibility of
ferrimagnets. Moreover, the QMC simulation for the �S
=5/2, s=2� ferrimagnetic chain has been done to see the
accurate behavior. We have observed good agreement be-
tween the QMC and CE results in the intermediate and high
temperature regions. The outline of this paper is as follows:
In Sec. II we have employed three theoretical approaches:
CE, QMC simulation, and MSWT. The effective Hamil-
tonian and magnetization in the presence of the magnetic
field are obtained using the CE up to the second order of

��J̃ /s�. In Sec. III the results and discussions are demon-
strated. We have compared our approaches with the high
temperature series expansion �HTSE�. It has been observed
that CE and MSWT are two complementary methods to get a
good description of large spin ferrimagnetic chains for the
whole range of temperatures.

II. THEORETICAL APPROACHES

A. Cumulant expansion

Thermodynamic functions of any quantum spin system

with a Hamiltonian Ĥ can be obtained by differentiation of
the quantum partition function �Z� or its logarithm with re-
spect to the appropriate parameters. Using the basis of spin-
coherent states ��ni��,22 the trace of an operator is reduced to
the integral over a set of classical vectors, so the partition
function is reduced to that of an effective classical spin sys-
tem with the Hamilton function H.18–21 The effective Hamil-
tonian H can be expanded in terms of cumulants16,17 of the

powers of Ĥ as follows:

�H = ��Ĥ�c −
�2

2!
�ĤĤ�c +

�3

3!
�ĤĤĤ�c + ¯

= ��H�0� + H�1� + H�2� + ¯ � , �1�

where �=1/T and �O�c represents the cumulant of operator
O.16,17 The function H evidently depends on the temperature,
thus the calculation of the physical quantities should be done
with care.

Let us consider the Hamiltonian �Ĥ� of a ferrimagnetic
chain which is composed of two kinds of spins, S and s �S
�s�, alternatively,

Ĥ = �
i,j

N/2,N/2

J2i−1,2jS2i−1 · s2j − �
i

N/2

H2i−1 · S2i−1 − �
i

N/2

H2i · s2i,

�2�

where Hi’s are the external magnetic field at each sites. Ex-
pressing the spin operator on each site in the coordinate sys-
tem with the z axis along the coherent state vector ni

z=ni

H = H�0� + H�1� + H�2� + Hh
�0� + Hh

�1� + Hh
�2�, �3�

where H�0� is the pure classical contribution, and H�1� and
H�2� are the quantum corrections in the absence of a mag-

netic field �see Refs. 20 and 21�. The field-dependent terms
Hh

�i� will be expressed in the following forms:

Hh
�0� = − ��

i

N/2

h2i−1 · n2i−1 − �
i

N/2

h2i · n2i,

Hh
�1� =

��

2s
�
i,j

N/2,N/2

J̃2i−1,2j	�h2i−1 · n2j� − �h2i−1 · n2i−1�

��n2i−1 · n2j� + �h2j · n2i−1� − �h2j · n2j��n2i−1 · n2j�


−
�

4s
�

i

	��1 − �h2i−1 · n2i−1�2� + 1 − �h2i · n2i�2
 ,

�4�

where �=S /s. In the above expressions J̃=Js2 and h=H�s
are the exchange interaction and the reduced magnetic field,
respectively. Again, Hh

�0� is the classical contribution and the
remaining higher orders are responsible for quantum correc-
tions. The field-dependent terms of order h3, Jh2, and hJ2 in
Hh

�2� can be calculated with the help of cumulants corre-
sponding to the mixed field-exchange terms. These terms are
too lengthy and have been presented in the appendix. Quasi-
classical expansion up to second order of 	O�1/s2�
 for the
internal energy and the specific heat were investigated for
different S, s in Refs. 20 and 21. We will now calculate the
CE of the magnetization and the susceptibility. In order to
get the physical concept we have considered the nearest
neighbor interaction and that the applied fields on each site
are in the same direction, i.e., hi=hn. Thus, the field-
dependent terms of the effective Hamiltonian are reduced to
the following forms:

Hh
�0� = − hn · �

i=1

N/2

�n2i + �n2i−1� ,

Hh
�1� =

�h�J̃

2s
�
i=1

N

�2n · ni − n · ni�ni−1 · ni + ni · ni+1��

−
�h2

4s
�
i=1

N/2

��	1 − �n · n2i−1�2
 + 1 − �n · n2i�2� ,

Hh
�2� =

− �2h3

12s2 �1 +
�2�h2J̃

4s2 �2 −
�2�hJ̃2

4s2 �3 −
�2�2J̃2h

4s2 �4

−
�2�hJ̃2

24s3 �5. �5�

where �i is expressed in terms of the classical vectors n and
ni �see the Appendix�. The partition function is represented
by the effective Hamiltonian defined in the previous equa-
tions,
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Z = �2�s + 1

4�
�N/2�2s + 1

4�
�N/2
 	i=1

N dnie
−�H�0�

� ��1 − �Hh
�0� +

�2

2
	Hh

�0�
2 + ¯ �
� �1 − �Hh

�1� +
�2

2
�Hh

�1��2 − �H�1� + �2Hh
�1�H�1�

+
�2

2
�H�1��2 − ��H�2� + Hh

�2�� + O�1/s3��� . �6�

The reduced magnetic susceptibility is obtained by two times
differentiating from the logarithm of the partition function
with respect to h, i.e.,


 = lim
H→0

�m

�h
. �7�

where H is the magnetic field and m is the scaled magneti-
zation per site and given by

m =
1

N

� ln Z
���h�

. �8�

In the limit of H→0, all of the terms containing h3 or higher
orders of h will vanish in the partition function. So, we will
keep the expansion up to the second order of h in the parti-
tion function Eq. �6�. By the integration on the coherent
states, we find the scaled magnetization in terms of the cou-
pling and the magnetic field. The reduced magnetic suscep-
tibility is as follow:


 =
2��

3
� B

1 − B2� +
��1 + �2�

6
�1 + B2

1 − B2� +
��� + 1�

6s

−
2��1 + ��

3s
� B

1 − B
� −

�2J̃�

3s2 �1 − B −
B

��
� , �9�

where �=�J̃ and B=coth����−1/�� is the Langevin func-
tion.

We have plotted in Fig. 3 the actual magnetic susceptibil-
ity �
a� of the �S=5/2, s=2� ferrimagnetic chain versus tem-
perature. It is related to the susceptibility defined in Eq. �7�
by the following relation,


a = lim
H→0

�ma

�H
= s2
 , �10�

where ma=sm is the actual magnetization. The presented CE
result contains the quantum corrections up to the second or-

der of ��J̃ /s�. We will discuss the quality of our results in
comparison with other results in the next section.

B. Quantum Monte Carlo simulation

We have implemented the quantum Monte Carlo �QMC�
simulation for the ferrimagnetic �S=5/2, s=2� chain of
length N=64. The fairly large attainable length size gives us
the thermodynamic properties as a very good approximate of
the infinite size chain. In doing so, we have considered the

Hamiltonian of Eq. �2� for N=64 and without the magnetic
field. We utilized the QMC algorithm based on the Suzuki-
Trotter decomposition23 of the checkerboard type.24 In this
respect, we begin by breaking the Hamiltonian into four

pieces, Ĥ= Ĥ0 /2+ Ĥa+ Ĥ0 /2+ Ĥb, where Ĥ0 contains the in-

teractions in z direction. Ĥa and Ĥb represent the interaction
in the transverse direction alternatively. The partition func-
tion is expressed by the Suzuki-Trotter formula as follows:

Z = Tr e−�Ĥ = lim
m→�

Zm,

Zm ª Tr�e−�Ĥ0/2me−�Ĥa/me−�Ĥ0/2me−�Ĥb/m�m, �11�

where m is a Trotter number. Performing the trace operation,
we have a two-dimensional classical Hamiltonian rather than
the one-dimensional quantum Hamiltonian. This classical
Hamiltonian has 2mN spins. We have considered the
plaquette flip for the evolution of the Monte Carlo simula-
tion. The reason is related to the huge number of single spin
flips which are not permitted because their Boltzmann
weight is zero. For instance, in the case of a plaquette of four
spins which contains two S=5/2 and two s=2, there exist
900 different configurations. There are only 110 configura-
tions with nonzero Boltzmann weights. All of these nonzero
cases can be obtained by a plaquette flip.15 The quantities
such as internal energy, heat capacity, and magnetic suscep-
tibility depend on the Trotter number �m�. In the limit of m
→�, these quantities tend to their correct values. Therefore,
the QMC should take the biggest possible value of m, espe-
cially at low temperatures. However, when temperature de-
creases the convergence relative to m becomes small. In
other words, using a big value for m makes two kinds of
problems. Firstly, � /m becomes small so the state of the
system �spin configuration� changes hardly �evolves slowly�.
Secondly, when m is large the global flips to change the total
magnetization are hard to accept at low temperatures. Con-
sequently, many Monte Carlo steps are needed to equilibrate
the system at a large m and low temperature. Therefore, for
the mentioned reasons we have performed the calculations
for each temperature with different values of m and utilizing
the least-square extrapolation method 	Eq. �12� to find the
limit of m→�
,

A�m� = A� +
A1

m2 +
A2

m4 + ¯ . �12�

For moderate and low temperature regimes �T�3J� we have
considered three different values for the Trotter number, m
=15,20,30. At higher temperatures, the convergence hap-
pens for the lower m values. To equlibriate the system we
have spent 105 Monte Carlo steps and 106 steps for measure-
ment. Accuracy of the measured quantities depends on the
temperature; for higher temperatures, we got higher accu-
racy. However, the error bar is less than the symbol sizes in
our plots.
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The internal energy, specific heat, and magnetic suscepti-
bility of the ferrimagnetic �S=5/2, s=2� chain have been
plotted in Figs. 1–3 respectively. We will discuss our results
in the next section when we compare our results with those
of others.

C. Modified spin-wave theory

In the modified spin-wave theory, usually it is considered
a single-component bosonic representation of each spin vari-
able at the cost of the rotational symmetry. To simplify in the
incoming calculations, we consider the following form of the
Hamiltonian for the ferrimagnetic chain:

Ĥ = J�
i=1

N

�Si · si−1 + si · Si� . �13�

Using the Holestain-Primakoff and the Bogoliubov transfor-
mation, the Hamiltonian �13� is diagonalized H=−2NJSs
+E1+E0+H1+H0+O�S−1�, where Ei gives the O�Si� quan-
tum corrections to the ground state energy and Hi is ex-
pressed in terms of 
k

† and �k
† and gives the quantum correc-

tions to the dispersion relation �see Ref. 13�. 
k
† and �k

† are
the creation operators of the ferromagnetic and antiferromag-
netic spin waves with momentum k, respectively.

At finite temperatures, we assume that ñk
±

��n−,n+n±Pk�n− ,n+� for the spin-wave distribution functions,
where Pk�n− ,n+� is the probability of n− ferromagnetic
and n+ antiferromagnetic spin waves appearing in the
k-momentum state and satisfies �n−,n+Pk�n− ,n+�=1 for all
k’s.13 The substitutions ñk

−=
k
†
k and ñk

+=�k
†�k in the spin-

wave Hamiltonian gives the zero-field free energy,

F = Eg + �
k

�ñk
−�k

− + ñk
+�k

+� + T�
k

�
n−,n+

Pk�n−,n+�ln Pk�n−,n+� .

�14�

To keep the number of bosons finite, one should apply the
following constraint,

FIG. 1. Temperature dependence of the internal energy per cell
of the ferrimagnetic �S=5/2, s=2� chain. The solid line: cumulant
expansion up to the second order; dashed line: classical part of the
cumulant expansion; dashed-dotted line: perturbational interacting
modified spin-wave theory �PIMSWT�; dotted line: linear modified
spin-wave theory �LMSWT�; and circles: quantum Monte Carlo
simulation with N=64 spins.

FIG. 2. The specific heat per cell of the ferrimagnetic �S=5/2,
s=2� chain. Cumulant expansion up to second order �solid line�,
classical part of the cumulant expansion �dashed line�, perturba-
tional interacting modified spin-wave theory �dashed-dotted line�,
linear modified spin-wave theory �dotted line�, high temperature
series expansion �dashed-dotted-dotted line� and quantum Monte
Carlo simulation �open circles� with N=64 spins.

FIG. 3. Magnetic susceptibility per spin of the ferrimagnetic
�S=5/2, s=2� chain versus temperature. The solid line: cumulant
expansion up to second order; dashed line: classical part of the
cumulant expansion, dashed-dotted line: perturbational interacting
modified spin-wave theory �PIMSWT�; dotted line: linear modified
spin-wave theory �LMSWT�; dashed-dotted-dotted line: High tem-
perature series expansion; and circles: quantum Monte Carlo simu-
lation with N=64 spins.

ABOUIE, GHASEMI, AND LANGARI PHYSICAL REVIEW B 73, 014411 �2006�

014411-4



�:Sz − sz:� = �S + s�N − �S + s��
k

�
�=±

ñk
�

�k
= 0, �15�

where �k= 	�S−s�2+4Ss sin2 k
1/2 and the normal ordering is
taken with respect to 
 and �. By minimization of the free
energy �14� with respect to Pk�n− ,n+�’s under the condition
�15� we can obtain the free energy and the magnetic suscep-
tibility at thermal equilibrium as follows:

F = Eg + ��S + s�N − T�
k

�
�=±

ln�1 + ñk
�� , �16�


 =
1

3T
�

k
�
�=±

ñk
��1 + ñk

�� , �17�

where ñk
±= 	e	J�k

±−��S+s�/�k
/T−1
−1, and � is the Lagrange
multiplier to consider the constraint �15�. This set of equa-
tions has no closed analytic solution. In the case of �S=5/2,
s=2� we have numerically solved Eqs. �15� and �16� in the
thermodynamic limit, and visualized them in Figs. 1–3. In
previous equations we have chosen kB=1. �k

− and �k
+ are the

ferromagnetic and antiferromagnetic excitation gaps, respec-
tively. They have different values in the linear modified spin-
wave theory �LMSWT� and perturbational interacting modi-
fied spin-wave theory �PIMSWT�. In the PIMSWT, the
O�S0� terms have been considered. Because the antiferro-
magnetic excitation gap is significantly improved by the in-
clusion of the O�S0� correlation, the location of the Schottky
peak can be also reproduced very well by the perturbational
interacting modified spin waves.

III. RESULTS AND DISCUSSIONS

We have obtained the effective Hamiltonian of the ferri-
magnetic chains in the presence of an external magnetic field
to second order of cumulant expansion, Eq. �5�. The zeroth
order term shows the classical contribution which simply
represents the coupling energy of the classical spins with the
external magnetic field. Quantum corrections have a non-
Heisenberg form and they are important in the intermediate
temperatures.

In Fig. 1, we have shown the internal energy per unit cell
of spins �2U /N� versus temperature. The big difference be-
tween the zeroth order �classical contribution shown by
dashed line� and the second order cumulant expansion �quan-
tum corrections shown by solid line� shows the importance
of the corrections in the intermediate and higher tempera-
tures. The discrepancy is high, even in the present case of
fairly large spins �S=5/2, s=2� which seems to behave clas-
sically. The reason is related to the dual features of ferrimag-
nets, i.e., the low temperature behavior is like ferromagnets
and the high temperature behavior like antiferromagnets.
There is a spectral gap in the subspace Stot=N /2�S−s�+1,
where the optical magnons play an important role. In the
case of �S=5/2, s=2�, the spectral gap of optical magnons at
k=0 is �0=1.36847J �Ref. 25�. This means that the model
does not behave purely classically. So, to describe the finite
temperature behavior of the system, we should consider the

quantum corrections to the classical part. At low temperature
the second order of CE has a large deviation in comparison
with the other results, because in the low temperature region
classical fluctuations are not strong enough to suppress the
quantum ones. However, the low temperature region has
been excluded from the convergence domain by construction
when CE is expressed as a series in the order of �Js�1.
Obviously, the classical term is dominant at very high tem-
peratures.

To have an impression on the accuracy of our results, we
have plotted the results of the QMC simulation for compari-
son. The second order CE of the internal energy in Fig. 1 fits
very well on the QMC results for T�2J. This is actually the
validity regime of our CE approach, T�Js. We have also
plotted in Fig. 1 the results of two different modified spin-
wave theories which deviate slightly from the QMC ones.
However, the accuracy of the different schemes can be best
visualized in the physical quantities such as the specific heat
and the magnetic susceptibility, which are shown in Figs. 2
and 3.

In Fig. 2, we have plotted the specific heat per unit cell of
spins �2C /N� for a �S=5/2, s=2� ferrimagnetic chain. The
results of CE have been shown as the pure classical contri-
bution and also the whole contribution to the second order.
The big difference between them verifies the significant cor-
rections of the second order CE. We have also plotted the
result of QMC simulation, for comparison. We observe very
good agreement between the CE and the QMC results. Ac-
cording to the results presented in Figs. 1 and 2, the QMC
simulation results confirm that the CE is a very good analyti-
cal approach to describe the thermodynamic properties of a
ferrimagnetic system with large spins at moderate and high
temperatures.

We have also shown in Fig. 2 the results of the MSWT for
the specific heat. We have examined the LMSW and the
PIMSW for our system. As observed from Fig. 2, both the
LMSW and PIMSW can reproduce the high temperature be-
havior of heat capacity close to the QMC simulation results.
Furthermore, they can show the Schottky peak at midtem-
peratures. Although the PIMSW can reproduce the location
of the Schottky peak fairly well, it cannot estimate the peak
value well for large spins in comparison with the CE. The
reason of this discrepancy in the MSWT is as follows. Let us
come back to the spin-wave theory and draw your attention
to the bosonic Hamiltonian, H=−2NJSs+E1+E0+H1+H0
+O�S−1� where

Hi = J�
k

	�i
−�k�
k

†
k + �i
+�k��k

†�k + �i�k��
k�k + 
k
†�k

†�
 ,

�18�

and �i�k�’s have been introduced in Ref. 13. The last two
terms in Hi are the normal-ordered quasiparticle interactions.
In MSWT, whether LMSW or PIMSW, we have eliminated
these interactions, i.e., we choose

�1�k� = 0 → tanh 2�k =
2�Ss cos k

S + s
.

However, in the low and moderate temperatures, the
magnon-magnon interactions play an important role. There-
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fore it is surmised that if we consider at least the first order
of the quasiparticle interaction 	i.e., �1�k��0 and �0�k�=0
,
we can produce the Schottky peak value more precisely. Al-
though the agreement between MSWT �without the quassi-
particle interaction� and the other results is not perfect, it is a
remarkable success for the spin-wave theory in the one-
dimensional large spin ferrimagnet that all relevant features
are quantitatively rather well reproduced over a very large
temperature range.

Finally, we have plotted in Fig. 3 the magnetic suscepti-
bility per total number of spins �
 /N� of the �S=5/2, s=2�
ferrimagnetic chain versus temperature. The result of the sec-
ond order CE is shown by the solid line. The CE result
shows qualitatively the features of the ferrimagnetic chains,
i.e., the quasiclassical 
 shows the divergence for T→0 like
a ferromagnet and a Curie law �1/T� decay at high tempera-
tures. Meanwhile in Fig. 3 we have plotted the result of the
QMC simulation. Our simulation result shows very well the
antiferromagnetic feature of the ferrimagnetic system, but it
cannot produce the ferromagnetic behavior at low tempera-
tures. The reason is as follows. The antiferromagnetic trait of
the model does not depend on the size of system, i.e., all
antiferromagnetic features can be reproduced in a rather
short system size, while the ferromagnetic ones completely
depend on the number of spins. This means that the ferro-
magnetic features emerge only slowly with the growing of
system size. In the QMC approach we have considered 32
cells �64 spins� for simulation. The computation time grows
exponentially by going to larger sizes, and especially hap-
pens in the calculation of magnetic susceptibility to reach the
equilibrium condition. However, our main interests in this
study are the results for intermediate and large temperature
regions where reasonable values exist.

We have also shown in Figs. 2 and 3 the results of HTSE
for the specific heat and the susceptibility of �S=5/2, s=2�
ferrimagnetic chain, respectively. The HTSE is an expansion
in powers of �J. Recently, Fukushima and his collaborators
have implemented a suitable Padé approximation to obtain
the thermodynamic functions of the mixed spin chains. They
have found the specific heat and the susceptibility up to
	O��J�11
 and 	O���7
, respectivly.14 The HTSE results for
the specific heat shown in Fig. 2 converges to the QMC
results at T�4J. However, the deviation from the QMC re-
sult is more pronounced for the magnetic susceptibility
shown in Fig. 3.

It is worth mentioning the two differences between the CE
and HTSE results. Firstly, the convergence region of CE is
larger than the HTSE one, i.e., the CE is valid for T�Js
whereas the validity of the HTSE is for T��S�S+1�J. Sec-
ondly, the HTSE fails to produce the Schottky peak of the
specific heat, while the CE can generate it as well as the
QMC simulation.

Our results state that the combined methods of the cumu-
lant expansion for T�Js and the modified spin-wave theory

for T�Js, give a good approximation for the whole finite
temperature behavior of quantum ferrimagnets. The reason is
related to the overlap of the convergence regions of the men-
tioned method.
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APPENDIX

The expressions of the second term �Hh
�2�� of the field-

dependent effective Hamiltonian are obtained as follows,

�1 = �
i=1

N/2

��n · n2i−1	1 − �n · n2i−1�2
 + n · n2i	1 − �n · n2i�2
� ,

�2 = �
i=1

N

�1 − 2�n · ni�2 + �n · ni��ni · ni+1��ni+1 · n� − ni · ni+1

− �n · ni��n · ni+1� + �ni · ni+1� � 	�n · ni�2 + �n · ni+1�2
� ,

�3 = �
i=1

N

�n · ni���ni−1 · ni�2 + �ni · ni+1�2� + �
i=1

N/2

�2�n · n2i−1�

��n2i−1 · n2i��n2i−1 · n2i−2� + �n · n2i��n2i · n2i−1�

��n2i−1 · n2i−2� + �n · n2i−2��n2i−2 · n2i−1��n2i−1 · n2i�

− �n · n2i−2 + n · n2i−1 + n · n2i� � + �n · n2i−2�

��n2i−2 · n2i−1��n2i−1 · n2i� − �n · n2i−2 + n · n2i−1

+ n · n2i� � �n2i−1 · n2i + n2i−2 · n2i−1� − �n2i · n2i−2�

��n · n2i + n · n2i−2��

�4 = �
i=1

N

�n · ni�	�ni−1 · ni�2 + �ni · ni+1�2
 + �
i=1

N/2

�2�n · n2i�

��n2i · n2i−1��n2i · n2i+1� + �n · n2i−1��n2i−1 · n2i�

��n2i · n2i+1� + �n · n2i+1��n2i+1 · n2i��n2i−1 · n2i�

− �n · n2i−1 + n · n2i+1 + n · n2i� � �n2i−1 · n2i

+ n2i · n2i+1� − �n2i−1 · n2i+1��n · n2i−1 + n · n2i+1��

�5 = �
i=1

N/2

��1 − n2i−1 · n2i�	2n · n2i + 2n · n2i−1 + �1

− 3n2i−1 · n2i��n · n2i−1 + n · n2i�
 + �1 − n2i−1 · n2i−2�

�	2n · n2i−2 + 2n · n2i−1 + �1 − 3n2i−1 · n2i−2��n · n2i−1

+ n · n2i−2�
�
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