Statistical Field Theory

(Spring 2017)



  1. Lectures: Class P103; Sat. & Mon., 9:30-11:00

  2. Tutorials: Class P103; Wed. 11:00-12:30



Lecturer: Ali G. Moghaddam

   

Teaching Assistant: Hadi Khanjani


Course's syllabus:


  1. Introduction to field theory 

  2. Collective modes (symmetries & dimensionality; phase transitions and critical phenomena)

  3. The Landau-Ginzburg theory (Mean-field; critical exponents)

  4. Fluctuations and Goldstone modes (upper and the lower critical dimensions)

  5. Universality & renormalization group (RG) (Self-similarity; the scaling hypothesis; Kadanoff's heuristic RG),

  6. Perturbation Theory (Diagrammatic expansions; Wilson's momentum space RG)

  7. Lattice Models (Ising, potts, etc.; position-space RGs:Cumulant, Migdal-Kadanoff)

  8. Dynamics of statistical fields: Langevin, Fokker-Planck equations; conservation laws)

  9. Random system & fields (a bird’s eye view)


References:


  1. Statistical Physics of Fields: Mehran  Kardar (Cambridge University Press, 2007) [main textbook]

  2. Lectures On Phase Transitions And The Renormalization Group , Nigel Goldenfeld (Addison-Wesley, 1992)

  3. Statistical Field Theory, Giorgio Parisi, (Addison-Wesley, 1988)


Homework Assignments:


         Any problem set should be retuned back with your solutions after two weeks.


Exams:

  1. Midterm exam: 21 Ordibehesht 1396

  2. Final exam: 2 Tir 1396


Course's Evaluation: 

Final grades will be based on: homework assignments (30%) + midterm exam (30%) + final exam (40%)



Return to Teaching main page

Statistical Mechanics II

(Winter 2017)



  1. Lectures: Class P104; Sun. & Thur., 9:30-11:00

  2. Tutorials: Class P104; Mon. 15:30-17:00



Lecturer: Ali G. Moghaddam

   

Teaching Assistant: Hadi Khanjani


Course's syllabus:


  1. Introduction to thermodynamics (thermal equilibrium, the laws of thermodynamics; temperature, energy, entropy)

  2. Probability Theory (random variables, probability cumulants and correlations; central limit theorem, law of large numbers)

  3. Classical Statistical Mechanics (postulates, micro-macro relations: Boltzmann entropy formula, microcanonical ensemble)

  4. Canonical and grand canonical ensembles (Boltzmann weight function, Gibbs theory, non-interacting examples)


References:


  1. Statistical Physics of Particles: Mehran  Kardar (Cambridge University Press, 2007) [main textbook]

  2. Statistical Mechanics, Kerson Huang (2nd ed. Wiley, 1987)

  3. Statistical Mechanics, R. K. Pathria & Paul D. Beale  (3rd edition, Academic Press, 2011)


Homework Assignments:


         Any problem set should be retuned back with your solutions after two weeks.


Exams:

  1. Midterm exam: 14 Bahman 1395

  2. Final exam: 22 Esfand 1395


Course's Evaluation: 

Final grades will be based on: homework assignments (30%) + midterm exam (30%) + final exam (40%)



Return to Teaching main page

Statistical Mechanics I

(Fall 2016)



  1. Lectures: Class P103; Sun. & Thur., 11:00-12:30

  2. Tutorials: Class P103; Wed. 9:30-11:00



Lecturer: Ali G. Moghaddam

   

Teaching Assistant: Hadi Khanjani


Course's syllabus:


  1. Kinetic Theory (phase-space; Liouville's theorem, BBGKY hierarchy)

  2. Boltzmann equation (transport phenomena, hydrodynamic variables & conservation laws)

  3. Interacting Systems (virial and cluster expansions, van der Waals theory, liquid-vapor condensation)

  4. Quantum Statistical Mechanics (quantization effects in molecular gases, phonons, photons)

  5. Density matrix formulation

  6. Identical Particles

  7. Degenerate quantum gases I: Fermi (Fermi-Dirac statistics, Somerfeld expansion, Landau diamagnetism, etc.)

  8. Degenerate quantum gases I: Bose (Bose-Einstein statistics, condensation, superfluidity)


References:


  1. Statistical Physics of Particles: Mehran  Kardar (Cambridge University Press, 2007) [main textbook]

  2. Statistical Mechanics, Kerson Huang (2nd ed. Wiley, 1987)

  3. Statistical Mechanics, R. K. Pathria & Paul D. Beale  (3rd edition, Academic Press, 2011)


Homework Assignments:


         Any problem set should be retuned back with your solutions after two weeks.


Exams:

  1. Midterm exam: 12 Aban 1395

  2. Final exam: 16 Azar 1395


Course's Evaluation: 

Final grades will be based on: homework assignments (30%) + midterm exam (30%) + final exam (40%)



Return to Teaching main page