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focus

Deming, data and

observational studies
A process ouf of control and needing fixing

“Any claim coming from an observational study is most likely to be wrong.” Startling, but true. Coffee causes
pancreatic cancer. Type A personality causes heart attacks. Trans-fat is a killer. Women who eat breakfast cereal give
birth to more boys. All these claims come from observational studies; yet when the studies are carefully examined,
the claimed links appear to be incorrect. What is going wrong? Some have suggested that the scientific method is
failing, that nature itself is playing tricks on us. But it is our way of studying nature that is broken and that urgently
needs mending, say S. Stanley Young and Alan Karr; and they propose a strategy to fix it.
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Figure 1. There is no overall effect of Jelly beans on acne. Bummer. How about subgroups? Often subgroups are explored without alerting the reader to the number of
questions at issue. Courtesy xkcd, http: / /2
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Jorge Luis Borges: El Rigor de la Ciencia (On the
Exactitude in Science)

.. In that Empire, the Art of Cartography attained such Perfection
that the map of a single Province occupied the entirety of a City,
and the map of the Empire, the entirety of a Province. In time,
those Unconscionable Maps no longer satisfied, and the
Cartographers Guilds struck a Map of the Empire whose size was
that of the Empire, and which coincided point for point with it.
The following Generations, who were not so fond of the Study of
Cartography as their Forebears had been, saw that that vast map
was Useless, and not without some Pitilessness was it, that they
delivered it up to the Inclemencies of Sun and Winters. In the
Deserts of the West, still today, there are Tattered Ruins of that
Map, inhabited by Animals and Beggars; in all the Land there is
no other Relic of the Disciplines of Geography.”

purportedly from Suarez Miranda, Travels of Prudent Men, Book
Four, Ch. XLV, Lérida, 1658



Overfitting refers to a model that fits the
training data too well. Overfitting happens
when a model learns the detail and noise in the
training data to the extent that it negatively

Impacts the performance of the model on new
data.
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The overfitting phenomenon tells us that any data set has inside
both general (applicable to an entire class of problems) and
Idyosincratic (specific of the data set) information.

Too precise fitting provokes the model to get stuck into idyosincratic
properties: after a given complexity level we start to model noise.

The observables are not ‘the real thing’, the ‘real thing’ 1s latent.
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As a young physicist, Dyson paid a visit to Enrico Fermi'
(recounted in Ditley, Mayer, and Loew?). Dyson wanted to
tell Fermi about a set of calculations that he was quite excited
about. Fermi asked Dyson how many parameters needed to be
tuned in the theory to match experimental data. When Dyson
replied there were four, Fermi shared with Dyson a favorite
adage of his that he had learned from Von Neumann: “with four
parameters I can fit an elephant, and with five I can make him
wiggle his trunk.” Dejected, Dyson took the next bus back to

Ithaca.
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SCIENCE AND COMPLEXITY

By WARREN WEAVER
Rockefeller Foundation, New York City

"Science and Complexity", American Scientist, 36: 536 (1948).

Organized Disorganized Organized
Simplicity Complexity Complexity



The middle way
R. B. Laughlin*, David Pines™%, Joerg Schmalian", Branko P. Stojkovicl**, and Peter Wolynes't

32-37 | PNAS | January 4, 2000 | wvol.97 | noo

Mesoscopic organization in soft, hard, and biclogical matter is
examined in the context of our present understanding of the
principles responsible for emergent organized behavior (crystal-
linity, ferromagnetism, superconductivity, etc.) at long wave-
lengths inwery large aggregations of particles. Particular attention
is paid to the possibility that as-yet-undiscovered organizing prin-
ciples might be at work at the mesoscopic scale, intermediate
between atomic and macroscopic dimensions, and the implications
of their discowvery for biology and the physical sciences. The search
for the existence and universality of such rules, the proof or
disproof of organizing principles appropriate to the mesoscopic
domain, is called the middle way.




A common (even if often misunderstood) feature of biological
structures in both space and time are the presence of few
‘priviliged’ forms.

1) Around 1000 folds are sufficient to get rid of any protein structure

2) Any metazoan can be built by no more than 250 tissue types (with
a very invariant gene expression profile).

3) Four basic ‘body-plans’ (bauplan) are at the basis of

animal morphologies.
4) Four main rhytmic activities explain heartbeat dynamics.

The presence of few discrete priviliged forms has important consequences
on data analysis strategies..



A shape is kept invariant if the relations between the mutual distances
of a set of landmarks is kept invariant.

Here: 3/5 =6/10 = 9/15...
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The application of principal
component analysis to drug discovery
and biomedical data

Reviews * INFORMATICS

Alessandro Giuliani ®CmssMuk

Environment and Health Department, Istituto Superiore di Sanita, Roma, Italy
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GIII. On Lines and Planes of Closest Fit to Systems of Points
in Space. By KarL Pearson, F.R.S., University College,
London *.

1) IN many physical, statistical, and biological investi-

) gations it is desirable to represent a system of

soints in plane, three, or higher dimensioned space by the

“ pest-fitting 7' straight line or plane.  Analytically this

consists in taking

y=ay+ax, or z=a,+ar+by,
or i=ay+ax +uprg+ ary+ ..+ a2,

Diruig Discovery Today

Laws do not exist as such
Forms do exist

Biology has to do with forms

Variables (gene expressions,
metabolite concentrations, behavioral
tests..) are relevant only if they allow
to describe a form.



Self-Organizing-Criticality (SOC)

Avalanche Behavior

The sand pile builds . .. grain... bygrain . ..

bygrain... bygrain... bygrain...
bygrain... bygrain... bygrain...
Building toward the critical state . . .

Where it avalanches

building building building

AN

avalanche avalanche avalanche

Avalanche- a large mass of snow, ice, etc., detached from a
mountain slope and sliding or falling suddenly downward.

Avalanche- anything like an avalanche in suddenness and
overwhelming quantity: an avalanche of misfortunes; an avalanche
of fan mail.
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Mouse 42 (colon)

Mouse 41 (pituitary)
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] The ‘tissue attractor’ is much stronger
than the organism individuality
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Detecting the optimal scale for the analysis is the most crucial
problem in science.
Environmental Practice 16: 281-286 (2014)
o000 Defining Appropriate Spatial and
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80000 1 ° S, Impact Analysis'
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PHYSICAL REVIEW LETTERS week ending

PEL 94, 128701 {2005)

Cell Fates as High-Dimensional Attractor States of a Complex Gene Regulatory Network

Sui Huang,l'* Gabriel Eichler,l Yaneer Ba_r—Yam,z and Donald E. Ingtufrrl
Wascular Biology Program, Departments of Pathology & Surgery, Children’s Hospital and Harvard Medical School,
Bostan, Massachuserts 02115, USA

*New England Complex Systems Institute, Cambridge, Massachusetts 02138, USA
iReceived 13 September 2004; published | April 2005)
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Journal of Theoretical Biology >

journal homepage: www.elsevier.com/locate/jtb

Ensembles, dynamics, and cell types: Revisiting the statistical )
mechanics perspective on cellular regulation™ Stz |

Stefan Bornholdt®*, Stuart Kauffman®

3nstitute for Theoretical Physics, University of Bremen, 28359 Bremen, Germany
b Institute for Systems Biology, Seattle, WA 98109, USA

There is now, however, good evidence that cell types are high
dimensional attractors. Huang and collaborators (Huang et al,
2005) took HL60, and induced differentiation to polymor-
phoneuterophil, PMN, using vitamin A and another substance. They
followed gene expression of all 23,000 genes using gene arrays at
three time points for both treatments. This shows that the gene ex-
pression pattern diverged for the two treatments at the temporal
midpoint, then converged to the same new expression pattern cor-
responding to being a PMN. So trajectories converged on the same
new pattern of expression from two different directions in high di-
mensional space, demonstrating thart target pattern is an attractor
of the dynamics.



F =
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Pearson correlation coefficient (something we should learn at the introductory statistics courses)

Is the basic metrics for approaching organized complexity

Physica A 380(2010) 3193-3217

Correlations, risk and crisis: From physiology to finance

Alexander N. Gorban®*, Elena V. SmirnovaP®, Tatiana A. Tyukina®

! University of Leicesear, Leicester, LEY 7RH, UK
¥ siherian Federal Universicy, Krasnoyarsk, 650041, Russia

AN. Gorban er al./ Physica A 389(2010) 3193-3217
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A Multi Scale Graph Theoretical Approach To
Gene Regulation Networks: a Case Study In
Atrial Fibrillation

Federica Censi. Alessandro Giuliani, Pietro Bartolini. Giovanni Calcagnini

Atrial fibrillation patients Controls
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Anticipating Critical Transitions

Marten Scheffer,’?* Stephen R. Carpenter,’ Timothy M. Lenton,* Jordi Bascompte,®
William Brock,® Vasilis Dakos,* Johan van de Koppel,”* Ingrid A. van de Leemput,” Simon A. Levin,”
Egbert H. van Nes," Mercedes Pascual,*** John Vandermeer™®

Tipping points in complex systems may imply risks of unwanted collapse, but also opportunities
for positive change. Our capacity to navigate such risks and opportunities can be boosted by
combining emerging insights from two unconnected fields of research. One line of work is
revealing fundamental architectural features that may cause ecological networks, financial

kets, and other complex systems to have tipping points. Another field of research is uncovering
generic empirical indicators of the proximity to such critical thresholds. Although sudden
shifts in complex systems will inevitably continue to surprise us, work at the crossroads of these
emerging fields offers new approaches for anticipating critical transitions.

2 3
& &
Stress Stress
Mod:larity Connictivity
Heterogeneity Homogeneity
Adaptive+capacity Resistanci to change
Local losses Local repairs
+ +
Gradual change Critical transitions

19 OCTOBER 2012 VOL 338 SCIENCE www.sciencemag.org



Predicting the transition from normal aging to Alzheimer's disease: A
statistical mechanistic evaluation of FDG-PET data

Marco Pagani *>*, Alessandro Giuliani ¢, Johanna Oberg ¢, Andrea Chincarini ¢, Silvia Morbelli !,

Andrea Brugnolo £, Dario Arnaldi £, Agnese Picco % Matteo Bauckneht’, Ambra Buschiazzo,
Gianmario Sambuceti, Flavio Nobili

90 1 linear fit
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variance expl. by Ay (%)

40 1

301

T T

NA neMCl eMCI IMCI AD

Fig. 1.Thedynamics of the loss of order along the clinical status. Y-axis: variance explained
by the first component; X-axis: disease severity. NA: normal aging; ncMC: M patients
not converting to AD at 5 years follow up; eMCI: MO patients that converted to AD later
than 2 years; IMC: M patients that converted to AD within 2 years; AD: patients with
mild AD dementia. The point distribution around the center of mass corresponds to
bootstrap simulation.

Recurrence quantification analysis of surface electromyographic signal:
Sensitivity to potentiation and neuromuscular fatigue

Claire Morana, Sofiane Ramdani, Stéphane Perrey, Alain Varray*

EA 2991 Motor Efficiency and Deficiency Laboratory, University of Montpellier 1, Faculty of Sport Sciences, 700 Avenue du Pic Saint Loup, 34090 Montpellier, France
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Recurrence quantification analysis of the logistic equation

with transients Xpvg = ax,(1 — x, ;’!k) -
L.L. Trulla®, A. Giuliani?®, J.P. Zbilut®™! C.L. Webber Jr.2*
A Institute for Research on Senescence, Sigma Taw, Via Ponting Km 30400, 00040 Pomezia, Rome, Ialy a = 2 . 8 IO 4 _0

" Department of Molecular Biophysics and Physiology, Rush Medical College, 1653 W. Congress Pkwy. Chicago. IL 60612, USA
< Department of Physiology, Lavola Universiry Chicago, Stritch School of Medicine, 2160 . First Ave.. Maywood, IL 60153, USA

Physics Letters A 223 (1996) 255-260
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Partner-Specific Prediction of Protein-Dimer Stability from Unbound
Structure of Monomer

Hamid Hadi-Alijanvand® ® and Maryam Rouhani’
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RESEARCH ARTICLE
Cell Fate Decision as High-Dimensional Critical
State Transition

Mitra Mojtahedi", Alexander Skupin®~*, Joseph Zhou?, Ivan G. Castafio'*, Rebecca Y.
¥. Leong-Quong', Hannah Chang®, Kalliopi Trachana?, Alessandro Giuliani®,
Sui Huang'?*

1 Department of Biclogical Sciences, University of Calgary, Calgary, Alberta, Canada, 2 Institute for Systems
Biology, Seattle, Washington, United States of America, 3 Luxembourg Centre for Systems Biomedicine,
Esch-sur Alzette, Luxembourg, 4 Corporacion Parque Explora, Department of innovation and design,
Medeliin, Colombia, 5 5AM Ventures, Menlo Park, California, United States of America, 6 Environment and
Health Department, Istituto Superiore di Sanita, Roma, ltaly




nome

AFFX-Biok
AFFX-Biotk
AFFX-Biot
AFFX-Bio(
AFFX-Bio(
AFFX-Biol
AFFX-Biol
AFFX-Cre’
AFFX-Cre’
AFFX-Dap
AFFX-Dap
AFFX-Dap
AFFX-Lys’
AFFX-Lys’
AFFX-Lys’
AFFX-Phe
AFFX-Phe
AFFX-Phe
AFFX-Thr
AFFX-Thr
AFFX-Thr
AFFX-Trpr
AFFX-Trpr
AFFX-Trpr
AFFX-r2-E
AFFX-r2-E
AFFX-r2-E
AFFX-r2-E
AFFX-r2-E
AFFX-r2-E
AFFX-r2-E

wildOh

1011
188,3
70,8
289,2
190,9
167,8
1295,9
2143,7
3532,9
2,8

9,2

7,1

2,2

2,9
13,2
2,9

8

9,2

16
16,9
35

57

3

12
106,3
237,7
198,1
4234
4141
1042,7
1498,7

wild1h

105,2
185,7
80,4
265,1
220,6
178,8
1243,7
2484
4247.,8
2,8
21,2
15
0,9
10,6
14,7
2,1
19
22,3
4
10,1
8,6
38
55
1,6
126
2338
1634
387,3
4415
965,2
1630,5

wild4h

117
168,4
104,7
321,8

193
186,8

1404
2385,7
4606,1

6,2
134
3

12
4,7
13,3
13
34
9,8
7,8
8.3
6,2
144
2,3
13
128,2
228,1
156,8
3334
385,9
1038,7
1592,9

1153
2234
91,1
293,3
2233
198,2
1276,3
2353,3
4019,1
8,6
16,4
2,9

12

24
12,9
1,7

24

4,9

2,9
19,7
144
55

52

18
116,1
232,6
1559
362,5
430,7
916,2
1575,2

133,7
239,3
105,4
3212
2259
2313
1742,7
2740,8
4995
1,3
145
2,7

1,3

2,7
143
1,7

2,3
187
42
143
116
2,4

2,1

14
173,8
276,9
203,4
4734
515,5
1299,8
2054,2

Myd88ko0 MyD88ko1MyD88ko<

136,2
2348
115,7
344,6
2471
248
18135
3031
6266,2
25
18,4
14

21

2,3
12,7

2

3

7,9

2,3

13

2,7

3,3

2,6

0,6
1795
312
227,3
487,7
554,6
1480,9
2177,2

The attractor-like properties of cell
kind implies (at the stable state) a
near to unity positive Pearson
correlation between expression
profiles.
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On the contrary, gene-gene correlations are relatively low with
both positive and negative values (around 0.20-0.30) but greater than what
expected by chance alone.



In the vicinity of a transition between cells correlation decreases because the
previous order (driving the correlation) starts to fade away with different
rates and trajectories in different cells.

In the vicinity of a transition between genes correlation increases because the
non synchronized changes in gene expression increase variance and thus correlation.
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news and views

The energy landscape in non-biological
and biological molecules

Hans Frauenfelder and Daan Thorn Leeson

The concept of energy landscapes promises to connect aspects of biology, chemistry and physics. A recent paper
highlights the need for continuous exchange of information between fields to maximize the utility of this idea.

om

\ substate

Fig. 1 A very simple and a very complex energy landscape. a, The energy landscape of ammonia,
NH;. The conformational coordinate describes the distance of the nitrogen atom from the plane
of the three hydrogen atoms. b, A highly simplified energy landscape of a protein. In reality a
landscape is a function of 3N coordinates, where N is very large.

Fig. 2 Hierarchical tree represen-
tation of part of the energy
landscape of crambin. Figure
kindly provided by A.E. Garcia.
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Microgravity Www.nature.com /npjmgrav
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ARTICLE OPEN
Phenotypic transitions enacted by simulated microgravity do
not alter coherence in gene transcription profile

Agnese Po (3%, Alesandro Giuliani (577, Maria Grazia Masiello (3, Alessandra Cucina (3%, Angela Catizone (¥, Giulia Ricci ()
Martina Chiacchiarini (3, Marco Tafari (, Elisabetta Femetti(3f and Mariano Bizzari (%"

Cells in simulated microgravity undergo a reversible morphalogy switch, causing the appearance of twa distinct phenotypes.
Despite the dramatic splitting into an adherent-fusiform and a floating-spherical when looking at th

phase space, cell transition ends up in a largely Invariant gene profile by only mild in the
respective Pearson's comelation coefficients. Functional changes amang the different phenotypes emerging in simulated
micrograity using random positioning machine are adaptive modifications—as cells promptly recover their native phenotype
when placed again into nomal gravity—and da not aker ﬂ\e Inwm\ gene coherence. However, biophysical constraints are

required to drive phenotypic commitment in an with given that absence
of gravity foster cells to oscillate between different attractor sms.tms preventing tham to acquire exclusive phenatype. Thisisa
proafofconcept of the adaptive properties of jon networks rting very different ph by

‘profile presening’ modficstions.
npj Microgravity 2019)5:27; httpsy/dol.org/10.1038/541526-019-0088-x
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Fig. 3 Cytoskeleton proteins in cells exposed to microgravity. Paneds 8, b show F-actin a and tubulin b respectively in MCF7 cells on ground

and in RPM.In OG cells the network of cytosolic Factin appears well organized in bundies asociated with the cell plasma membrane. In

RPMAD cells, stress fibers are less evident and F-actin bundles apPeaed mostly localized at the cell bordes. In floating ceil dumps, the actin
oments s

cytosol. About the tubulin organization,

we observed that the mlaonmule-olgantlmg centre MTOQ) near the nucieus In OG caltred ety d.sappean in both RPMAD and RPMCLUM
b. However in RPMAD samples microtubules are still identifiable, while in RPMCLUM samples tubulin meshwork was completely disupted,
and tubulin appeared aimost completely aggregated around the nucleus without any polarization. Panel ¢ shows cofilin distribution. Cofilin
was dispersed in the whole cell body with a visible accumulation in the cytosol of OG and RMPAD cells; instead, in RPMCLUM cells, an
impressive, dense accumulation of cofilin was observed under the cortical ring of the cellular membrane. Vinculin distribution s reported in
pane d.Vinculin decreases in RPMAD group, and especiallyin both the cytosol and the membrane of RPMCLUM celis. Reduction of vineulin is
accompanied by a reduced amount of stress fibers, formation of fewer focal adhesons, and Inhibition of lamelipodia extension. Integrin

ired by €. An intense depostion of f14ntegrin at the call membrane in RPMAD cells is

recorded, while in RPMCLUM cells fl-integrin aimost mmgmey disappears. Scale bars: 30 ym.

9. 1 Morphological changes in cells exposed to different gravity conditions. MCGF7 cells cultured under static 1g-conditions grew as a
ormal 2D monolayer a. MCF7 cells in microgravity resulted partitioned into two phenotypes. The first, represented by floating<lump
IPMCLUM) cdls and the second constituted by adherent cdls (RPMAD) (b, ¢). Both phanotypes revert 1o the native morphology when they
re reseeded in normal gravity, independently from the time they have spent in microgravity. In panel d it is shown how cells growing in
nicrogravity for 24 hours recover their native phenotype when replaced in normal gravity for 6h. When the two cell dusters previoudy
btained during a firsst<course culture in welghtlessness are isolated, and then again reseeded in the same microgravity field, two distinct
henotypes emerge once more from each cell phenotype (¢ f). Scale bar: 50 ym
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fig. 4 Pairwise corrddation between gene-expression profile in cells RPCL2 1 088121 097361
growing at OG and RPMAD at 1 h. The correlation coefficients are 00001 <00001
near 10 unity, pointing to a very strong invariance of gene APCLE ! oasael
expression profiles despite the dramatic phenotypic changes. Vector I o
points correspond 1o gene-expression values and the axes refer to
u* dﬁeml mms mkfogwny amwe aM on W‘u aae' The peirwise betwesn profiles Pearson correlation coefficient are reported together with their statistial significnce values
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Fig. ¢ Eudidean and Angular distances in gene-expression patterns.
The plot reports the Euclidean distance (see also Supplementary
Fig. 3) from the centre computed over the gene-expression values
(concentric circles) and the angle of deviation (the angle between *
0G1 and different profiles having Pearson r with OG1 as cosine)

from baseline (OG1) condition. Data are computed at different times .
for both RMPCLUM and RPMAD (1, 2, 6, 24 h). The overlapping or Bh Oh Time
partially overlapping experimental points are the following: OGS,

0G24, RPMA1, RPMAG, RPMC1, RPMC6, RPMC24




Systematic drug perturbations on cancer cells reveal diverse

exit paths from proliferative state

Joseph X. Zhou'**, Zerrin Isik>**, Caide Xiao?, Irit Rubin?!, Stuart A. Kauffman'?,

Michael Schroeder* and Sui Huang'?

Quasi-potenial U

Proliferative state

‘Differentiated’ state

cell states

We found that MCF7 cells exit proliferation states
in several distinctive trajectories after being stimulated
by different drugs. Among the genes which significantly
changed expression levels, about 10% of them diverged
at first and converge later (Figure 2D). It means that cells
are destabilized by drug stress, then move to different
directions and may fall into the same cell state which
are defined by the gene-gene interactions from gene
regulatory network. The destabilization mechanism also
explains why many nonspecific drugs induced MCF7
cells differentiation in low efficiency (Figure 1F). These
drugs destabilize the cancer cell state but lack of stimulus
to guide the cells to differentiated state. The discovery
mmplied a new direction of cancer drug development:
rather than identifying one drug which cause cell transition
in a well-defined pathway, we can use multiple drugs to
destabilize the proliferation state of cancer and induce
cells to exit in various ways.
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Emergent Self-Organized Criticality in Gene
Expression Dynamics: Temporal
Development of Global Phase Transition
Revealed in a Cancer Cell Line

Masa Tsuchiya'*, Alessandro Giuliani**, Midori Hashimoto®, Jekaterina Erenpreisa®,
Kenichi Yoshikawa®*

1 Systems Biology Program, School of Media and Govemance, Keio University, Fujisawa, Japan,

2 Environment and Health Department, Istituto Superiore di Sanita, Rome, taly, 3 Graduate School of
Frontier Science, The University of Tokyo, Kashiwa, Japan, 4 Latvian Biomedical Research & Study Centre.
Riga, Latvia, 5 Faculty of Lile and Medical Scences, Doshisha University. Kyotanabe, Japan

* tsuchiya.masa@gmail.com (MT); alessandro.giuliani @iss.it (AG); keyoshik @mad.doshisha ac ip (KY)
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Table 2b Loading Pattern (HRG)
LABEL TIME(min)
TO 0
T10 10
T15 15
T20 20
T30 30
T45 45
T60 60
T90 90
T2H 120
T3H 180
T4H 240
T6H 360
T8H 480
T12H 720
T24H 1440
T36H 2160
T48H 2880
T72H 4320

) Cohereat Pertwhation on Genome-Engine

) Erasure of Initial-Sandpile Criticality
.

15 2.0
Log (time)
——PC2 ——PC3

Explained Variance

PC1
0,984
0,983
0,956
0,992
0,989
0,993
0,991
0,994
0,995
0,994
0,992
0,995
0,994
0,994
0,990
0,994
0,994
0,990

(%)
97.95
0.72
0.36
0.22
017

PC2
0,046
0,150
0,280

-0,004
0,018
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0,011
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-0,044
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Cumulative variance
(%)
97.95
98.67
99.04
99.26
99.43

PC3
-0,023
0,034
0,064
-0,089
-0,128
-0,076
-0,106
-0,040
-0,006
0,017
0,050
0,038
0,053
0,040
0,060
0,034
0,039
0,040



When cell kind transition happens, motion does not involve only
‘peripherical’ genes (sand grains) but invades (domino/violin effect)
all the genome expression and provokes the motion of normally invariant

(near the identitiy line) genes...

C)
= r=0.98 g r=094 8
I.l‘_E) 30 § 30 p § 30
w25 h gt w25
S S S
20 I 20 20

10 15 20 25 30 10 15 20 25 30 T 15 20 25 30

In(410min)) In(415min)) In(4(20min))



The independence of the phenomenclegy of the transition from the particular

selected genes, suggests we can grasp the essential of the transition behavior Maxwell's demon is a thought experiment created by James Clerk Maxwell in 1867 in which he
by means of collectve descriptors of the degree of order of gene expression pattemn suggested how the second law of thermodynamics might hypothetically be violated. In the
thought experiment, a demon controls a small door between two chambers of gas. As individual
- gas molecules approach the door, the demon quickly opens and shuts the door so that only fast
BUt we need Somethlng more molecules are passed into one of the chambers, while only slow molecules are passed into the
. ope 5 . . other. Because faster molecules are hotter, the demon’s behaviour causes one chamber to warm
Predl(tablllty Of human d|fferent|a| gene expression up and the other to cool down, thereby decreasing entropy and violating the second law of
Megan Crow”, Nathantel Lim™“*, Sara Ballowr”, Paul Pavikds™. and Jesse Galis* ' thermodynamics
PNAS | March 26,2019 | vol. 116 | no. 13 | 6491-6500
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This mechanism implies the presence of an ‘intelligent agent’ (demon) that alters
the natural fate of the system...the issue is much more serious than a scientific
joke: almost totalityof biological explanations follow a ‘Maxwell’'s demon’ style.
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To Explain or to Predict?

Galit Shmueli

In terms of the data collection instrument, whereas
in explanatory modeling the goal is to obtain a reliable
and valid instrument such that the data obtained rep-
resent the underlying construct adequately (e.g., item
response theory in psychometrics), for predictive pur-
poses it 1s more important to focus on the measurement
quality and its meaning in terms of the variable to be
predicted.
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