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EQUATIONS OF THE MODEL
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Active Neighborhood approach (ANA) as one of the most accurate theoretic approximation frameworks provides a
remarkable analytic theory to predict dynamical features of epidemic spreading especially near critical points. On the
other hand, many real networks are best described with adaptive multiplex networks due to the various nature of
relationships connecting agents and mutual interactions between network structure and individual's state. We study
a disease propagation following susceptible-infected-susceptible (SIS) dynamics on a two-layer adaptive multiplex
network, consisting two types of edges; solid and dashed lines. We offer an extension of ANA and then study the
epidemic threshold, phase transition, and two-parameter bifurcation diagrams of the model. We show that Monte-
Carlo simulations for homogeneous adaptive multiplex networks are in a good agreement with ANA prediction.
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Fig.1 Schematic representation of
different processes which result in
equations (1) and (2). Blue and red
points denote susceptible and infected
vertices, respectively. Each edge might
be of type 1 (solid line) or type 2
(dashed one).

Discontinuous Phase Transition
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Fig.2 Stationary infected fraction p; as a function of
(a) infection with y; =y, = 0.03, (b) rewiring rate
in layer 2 with f; = f, = 0.02. Symbols are related
to the Monte-Carlo simulation, while solid lines
represent ANA prediction. Dashed arrows identify
boundary of the bi-stable region. The initial fraction
of randomly infected vertices is put at 0.1 and 0.99
for green and blue results respectively.
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Fig.3 (a-f) Stationary infected fraction p; as a
function of infection rates in layers 1 and 2 with
initially infected fraction of (first-row panel) 0.1 and
(second-row panel) 0.99. (g-i) Phase diagram in the
plane of f; — [,. Rewiring rates are shown at the
top of each column. Both layers have Poisson degree

distributions with mean degree <k, > =<k, > = 4.
Recovery rate is set a« = 0.003 for all diagrams.
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