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We have found the exact �factorized� ground state of a general class of ferrimagnets in the presence of a
magnetic field which includes the anisotropic and long-range interactions for arbitrary dimensional space. In
particular cases our model represents many spin chains with bond alternation of antiferromagnetic-
ferromagnetic coupling, ferrimagnetic spin ladders, and also homogeneous spin-s models. The factorized
ground state is a product of single-particle kets on a bipartite lattice composed of two different spins �� ,��
which is characterized by two angles, a biangle state. The spin-wave analysis around the exact ground state
shows two branch of excitations which are the origin of two dynamics of the model. The signature of these
dynamics is addressed as a peak and a broaden bump in the specific heat.
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I. INTRODUCTION

Spin models are the building blocks of the theory of quan-
tum magnetism and strongly correlated electron systems. In
addition, they have been considered as an effective model to
describe the behavior of a system in several disciplines. Re-
cently, the implementation of quantum notions in quantum
devices has attracted much attention both in research labora-
tories and demanding applications such as nanotechnology,
quantum computation,1 and particularly optical lattices.2

Quantum spin models are prototype realization of many rel-
evant properties of quantum implementation in such devices.
Therefore, different aspects of a quantum phase are of utmost
importance for scientists and engineers. Quantum phases are
characterized by the ground-state �GS� properties of the cor-
responding many-body system.3 The investigation to find the
GS of a many-body model has been a major subject of the
mentioned fields of research.

In the area of spin models, except of a few particular
cases such as one-dimensional �1D� bond alternating Heisen-
berg spin-1/2 chains,4 anisotropic Heisenberg �XYZ�, XXZ
model in a longitudinal magnetic field and Ising model in
transverse field which are exactly solvable,5 the GS of a gen-
eral spin model is not known. However, at some particular
values of the model parameters the quantum correlations are
vanishing and the GS can be found exactly as a product of
single-particle states. The existence and knowledge of an ex-
act factorized state �FS� have several important features. �i� It
manifests zero entanglement which is necessary to be iden-
tified for reliable manipulating of quantum computing. �ii� A
FS which is associated with an entanglement phase transition
can be also a quantum critical point in certain condition
which is discussed in this Rapid Communication. This infor-
mation is also attractive for the study of quantum phase tran-
sitions. �iii� Moreover, finding an exact ground state even at
particular values of the parameter space of a many-body spin
model leads to the identification of that phase in addition to
more knowledge about the properties of the model close to
the factorized point via implementing an approximate
method.

In a seminal work, Kurmann et al.6 identified the factor-
ized state of a homogeneous spin-s XYZ chain at a magnetic
field of arbitrary direction. Factorized GS has been also ob-
served in the two-dimensional lattice through quantum
Monte Carlo simulation in terms of entanglement
estimators.7 Recently, Giampaolo et al.8,9 introduced a gen-
eral analytic approach to find the factorized ground states in
a homogenous translational invariant spin-s quantum spin
model for arbitrary long-range interaction and any dimen-
sional space. Their study is based on the single-spin unitary
operation and the factorized point is determined at the posi-
tion where the associated entanglement excitation energy be-
comes zero. The factorized GS of the dimerized XYZ spin
chain in a transverse magnetic field has been investigated
and reported that the factorized point in the parameter space
of the Hamiltonian corresponds to an accidental ground-state
degeneracy.10 However, in this Rapid Communication we
will present �i� the FS of an inhomogeneous �ferrimagnetic�
spin model which is composed of two spins �� ,�� in the
presence of a magnetic field on a bipartite lattice with arbi-
trary long-range interaction and dimensional space, �ii� the
Hamiltonian is not necessarily translational invariant, and
�iii� the exchange couplings can be competing antiferromag-
netic and ferromagnetic arbitrarily between different sublat-
tices to build many practical models such as frustrated,
dimerized, and tetramerized materials. Moreover, our results
recover the previous ones for �=� and a particular configu-
ration of the couplings.6–8,10 In addition, we will address on
the existence of two energy scales which lead to a surprising
dynamics of the model close to the factorizing point and its
fingerprint as a double peak in the specific heat versus tem-
perature. As an enclosure, the results have been applied to
the 1D ferrimagnetic XXZ �� ,�� spin chain in the presence
of a transverse magnetic field which is realized as a bimetal-
lic substance.11 We will also address the cases where the
factorizing field coincides the critical point.
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II. FACTORIZED STATE

Let us consider a two sites model which is composed of
two spins �= 1

2 and �=1 with the following Hamiltonian:

H� = Jx�x�x + Jy�y�y + Jz�z�z + h���z + �z� , �1�

where J�, �=x ,y ,z, are the exchange couplings in different
directions and h� is proportional to the magnetic field. We are
looking for a factorized state which is satisfied by H�������
=�������, in which ��� and ��� are the single-particle states. It
is appropriate to choose ��� and ��� to be the eigenstates of
�� · n̂� and �� · n̂� with eigenvalues + 1

2 and +1; respectively,
where n̂��� ,�� and n̂��� ,	� are unit vectors in Bloch sphere.
The solution of H�������=������� gives the factorized state at
h�=hf� and its corresponding energy ���.12 Moreover, we
found that the angles � and � are fixed by the couplings
�J� ,h�; see Eq. �2��, while 	 and � are given by one of these
choices �I� 	=0 and �=0; �II� 	=0 and �=
; �III� 	= 


2 and
�=− 


2 ; and �IV� 	= 

2 and �= 


2 . The spins are located in the
xz plane for choices I and II while they have projections only
in the yz plane for III and IV. Without loss of generality we
can assume the spins are located in the xz plane. In fact, the
spins of yz plane will fall to xz plane by interchange of
Jx↔Jy. Moreover, the coordinates �� ,�=0� and �−� ,�=
�
are representing the same direction, therefore case �I� 	=0,
�=0 is able to describe all possibilities.

The two spin model ��= 1
2 ,�=1� is now generalized to

arbitrary �� ,�� spins.6 To find the factorized state of a gen-
eral two site ferrimagnet we consider a rotation on � and �
spins such that �� and �� point in �� ,�=0� and �� ,	=0� di-
rections, respectively, The rotation operator is D
=D��0,� ,0�D��0,� ,0� where D��0,� ,0�=D�	=0,� ,�=0�
=Dz�	�Dy���Dz��� is defined in terms of Euler angles and a
similar expression is considered for D��0,� ,0�. Then, we
impose the condition to have a factorized �fully polarized�
eigenstate for this Hamiltonian which fixes the following re-
lations for the model parameters:

cos � = −
hf�

2Jy + Jx�Jz2
− Jy2

��� + hf�J
z�Jy� + Jx��

hf�
2Jx + Jy�Jz2

− Jx2
��� + hf�J

z�Jx� + Jy��
,

cos � = −
hf�

2Jy + Jx�Jz2
− Jy2

��� + hf�J
z�Jy� + Jx��

hf�
2Jx + Jy�Jz2

− Jx2
��� + hf�J

z�Jx� + Jy��
,

hf� = �1
2 �2JxJy�� + ��2 + �2�Jz2

+ CJz� ,

C � �4����Jx + �Jy���Jx + �Jy� + ��2 − �2�2Jz2
,

� =
JxJy

Jz �� −
hf�

2

Jz . �2�

Therefore, for arbitrary �� ,�� and at the above value for
h�=hf� we have a fully polarized eigenstate which is a fac-
torized state. The ordering of this state is defined by two
angels �� ,�� which show the orientations of ��� ,���, respec-
tively.

Now, we intend to find the condition for having a factor-
ized state for a ferrimagnetic lattice in a magnetic field. We

consider a general Hamiltonian of ferrimagnets on a bipartite
lattice where sublattice �A�� contains � spins and the other
sublattice �B�� includes � spins. The interaction can be long
ranged between different sublattices but no interaction in the
same sublattice. The ferrimagnetic Hamiltonian for such case
can be written as

H = 	
i,r

��i�̂i+r�Jr
x�i

x�i+r
x + Jr

y�i
y�i+r

y � + Jr
z�i

z�i+r
z � + h	

i

��i
z + �i

z� ,

�3�

where i= �i1 , i2 , i3� and r= �r1 ,r2 ,r3� are representing the

three dimensional index on the lattice and �i, �̂i+r= 1 which
realize both ferromagnetic �F� and antiferromagnetic �AF�
exchange interactions. A remark is in order here, the Hamil-
tonian in Eq. �3� is a sum of two sites Hamiltonian defined in
Eq. �1� where the two spins can be far from each other.
However, the interaction between each couple of ��i ,�i+r�
can depend on distance �r� with different strength and also be

F or AF arbitrarily defined by �i and �̂i+r. A factorized eigen-
state for the Hamiltonian of Eq. �3� can be written as

�FS� = �
i�A�,j�B�

��i���� j�� , �4�

where ��i�� and �� j�� are the eigenstates of �� i · n̂i� and �� j · n̂j�
with largest eigenvalue where n̂i� and n̂j� are unit vectors

pointing in ��i� ,�=0� and ��̂ j� ,	=0�, respectively. How-
ever, the factorized state ��FS�� is an eigenstate of the Hamil-

tonian if the angle �i���̂ j�� be consistent with all pair of
interactions originating from �i��i� on sublattices A��B��.
According to Eq. �2� the former condition is satisfied if the
interaction between each pair ��i ,�i+r� is the same for all
directions while depending on distance �r�, i.e., Jr

�=��r�J�,
�=x ,y ,z, and ��r��0. Under these constraints the factor-
ized state �Eq. �4�� is an eigenstate of H with the character-
istic angles �� ,�� defined in Eq. �2� and the factorizing field
is

hf = hf�	
r=0

Nr

��r� , �5�

where Nr is the number of spins on each sublattice.
To show that �FS� is the ground state of H at hf, let

us first consider the case of ��=1 /2,�=1�. The two
spin Hamiltonian �1� is diagonalized exactly at hf� defined in
Eq. �2�. The ground-state energy is found to be � if
Jz�sgn�−JxJy��min
�Jx� , �Jy��. And the corresponding fac-
torized eigenstate is defined by � and � which are given by
Eq. �2�. Moreover, the many-body Hamiltonian �H� defined
in Eq. �3� can be written as sum of two spin parts, i.e.,
H=	i,jHi,j� . The Hamiltonian can be expressed as
H−Nb�=	i,j�Hi,j� −�� which is a sum of positive definite
terms where Nb is the number of interacting spin
pairs �i , j�. It is now clear that �H−Nb���FS�=0 which
verifies that �FS� is the ground state of H. A similar
calculation for ��=1,�=2� gives the same condition
Jz�sgn�−JxJy��min
�Jx� , �Jy�� such that �FS� be the ground
state. The exact diagonalization of arbitrary �� ,�� pair is not
known, especially for large values of spins. However, the
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condition mentioned above is independent of the spin mag-
nitude which leads us to conclude that it will be the case for
arbitrary �� ,�� case.

To justify our claim we implement a linear spin-wave
approximation. We first implement a rotation on the

Hamiltonian. The rotated Hamiltonian �H̃� is the result of

rotations on all lattice points of H, H̃= D̃†HD̃, and

D̃= � i�A�,j�B�
Di

��0,�i� ,0�Dj
��0, �̂ j� ,0�. In the next

step the rotated Hamiltonian is bosonized using the
Holstein-Primakoff �HP� transformation, �i

+=�2�−ai
†aiai,

�i
z�=�−ai

†ai, � j
+=�2�−bj

†bjbj, and � j
z�=�−bj

†bj where ai�ai
†�

and bj�bj
†� are two types annihilation �creation� boson opera-

tors. The Hamiltonian in the momentum �k� space and in the
linear spin-wave theory �LSWT� is diagonalized via
the rotation, �k=ak cos �k−ei�bk sin �k ; �k=ei�bk cos �k
+ak sin �k, and a shift at k=0 where � is defined by
	re

−ik·rJr
y = �	re

−ik·rJr
y�ei�. The diagonalized Hamiltonian is

H̃ = Egs + 	
k

��−�k��k
†�k + �+�k��k

†�k� , �6�

where Egs is the ground-state energy12 and ��k��0 are
normal modes parallel and perpendicular to the field
direction. The energy modes are positive as far as
Jz�sgn�−JxJy��min
�Jx� , �Jy��.

��k� = D+ 
D− + ���tan�2�k��	re

−ik·rJr
y�

�1 + tan2�2�k�
,

tan�2�k� =
����	re

−ik·rJr
y�

D− , �7�

in which

D �
hf

2

2�z�1

�


1

�
 + hf� �

2�
cos � 

�

2�
cos �

−
�x�y

2�z ��  �� +
hf − h

2
�cos �  cos �� , �8�

where ��=J�	r��r�. The bosonized Hamiltonian �6� is posi-
tive definite, ���k��0�, which states that �FS� is its corre-
sponding ground state. Although the excitation spectrum of
the LSWT is not exact generally it has been shown13 that the
LSWT spectrum is exact at the ordering wave vector for a
homogenous Heisenberg spin model. It is then anticipated
that in our case the spectrum being exact at k=0 which rep-
resents the minimum excitation energy. Thus, the condition

for ��k=0��0 makes H̃−Egs be positive definite. This
condition is again the same as what we obtained for the
special cases of ��=1 /2,�=1� and ��=1,�=2�, i.e.,
Jz�sgn�−JxJy��min
�Jx� , �Jy��.

To visualize the configuration of a factorized ground state
of a general interacting model, we have plotted an example
in Fig. 1 with the assumption Jr

x, Jr
y �0 and Jr

z�0, where �i

and �̂i+r define the sign of interactions. The solid lines rep-
resent antiferromagnetic interaction and the dash-dotted ones
are the ferromagnetic counterparts. As shown in Fig. 1 the
interactions can be long ranged without a translational in-

variance. However, the factorized state is defined by two
angles �� ,�� while each ���� spin is directed in ���� or
−��−�� directions. We call this a biangle ordering. In a spe-
cial case the biangle ordered state can configure a ferromag-
net ��=�� or antiferromagnet ��=−�� factorized state.

III. DISCUSSIONS

In a spin model when the magnetic field is strong enough
all spins will align in the direction of the magnetic field
which characterizes the saturated phase as far as h�hs. In
our notation, the saturated phase appears when all ���� spins
get �=
��=
�. Thus, the saturating field �hs� is a factoriz-
ing one when Jx=Jy. In case of Jx�Jy the saturation can only
appear at infinite value of the magnetic field while a finite
factorizing point �hf� still exists. For Jx=Jy, the lower exci-
tation band becomes gapless ��−�k=0�=0� which confirms
that the factorizing point �hf =hs� is the critical point which
separates the non-saturated phase �h�hs� from the saturated
one �h�hs�. It is worth to mention that at Jx=Jy the rota-
tional symmetry around the magnetic field is restored where
the quantum fluctuations around the field axis are sup-
pressed.

A general feature of our result is that it can simply recover
the previous study of homogenous systems by replacing
�=�=s. In that case the restriction of bipartite lattice is pro-
moted to arbitrary lattice and the interaction between any
pair of spins can exist. In the presence of frustration, the
normal modes in Eq. �6� are not always positive definite.
This constraint thus limits the set of admissible coupling
constants.12 However, our Hamiltonian is not restricted to the
translational invariant symmetry or bond-alternating ones
which is witnessed by the example given in Fig. 1. This can
also be generalized to any dimension. We claim that the gen-
eral Hamiltonian which can possess a nontrivial factorized
ground state should be of the form Eq. �3� with the restric-
tion Jr

�=��r�J�, �=x ,y ,z.
Let us now be more concrete by concentrating on the

one-dimensional nearest-neighbor ��=1 /2,�=1� XXZ ferri-
magnet in the presence of transverse magnetic field. Suppose
that Jx=Jz=J and Jy =J�, where � represents the easy axis
anisotropy. At zero magnetic field the quantum fluctuations
are large and the ground state of the model is strongly en-
tangled. Upon adding the transverse magnetic field the U�1�
symmetry of the XXZ model is lost and the entanglement of
the GS is decreased. In the mapped bosonic system the mag-

FIG. 1. �Color online� The configuration of a factorized state on
a one-dimensional lattice for arbitrary frustration-free combinations
of the couplings. Solid lines �dash-dotted� represent antiferromag-

netic �ferromagnetic� couplings which are defined by �i�̂i+r as de-
picted by  on each site. Each color belongs to equal distance
interaction �same r�.
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netic field is served as a chemical potential, thus the number
of bosons ��a†a� and �b†b�� is dependent on the magnetic
field. An enchantment of the magnetic field causes deducing
of the bosons’ number and the quantum correlations de-
crease. At factorizing field h=hf, the number of bosons is
zero and the quantum fluctuations become completely uncor-
related. Moreover, our calculations show that the factorizing
field in ferrimagnetic model depends on the anisotropy pa-
rameter ��� similar to a homogeneous antiferromagnetic
Heisenberg model. Increasing � from zero suppresses the
effect of magnetic field and try to evoke the rotational sym-
metry to the system. Thus, by increasing � the factorizing
field approaches to the saturation field. At �=1, the rota-
tional symmetry is completely repayed and hf is exactly lied
on hs.

A benefit of identification a factorized state is that we can
work out an approximate method around the factorized point
to get some information on the properties of that phase. This
helps us to calculate the magnetic properties of the ferrimag-
netic XXZ model in the presence of a transverse magnetic
field. We have implemented the linear spin-wave theory
around h=hf for �= 1

2 and �=1. Our results for magnetiza-
tion �Mx ,My� and staggered magnetization �SMx ,SMy� in
both x and y directions are plotted in Fig. 2 where the mag-
netic field is in x direction.

It is also worth to mention that our results are applicable
to the homogenous XXZ Heisenberg spin-1/2 chains in the
presence of a transverse magnetic field �hx�. This model has
been studied intensively in the literature.14–17 The excitation
energies around the factorizing field are ��k�= �1+�� h

hf

+��cos� k
2 �−1�. Thus, we have two branches of magnon

energies as two scales of energy which impose two dynamics
in the system. The most interesting feature is that around the
factorizing field both scales show up. These dynamics corre-
spond to the coexistence of two different features of the
model. The finger print of these features appear in the ther-

modynamic functions such as specific heat and internal en-
ergy. As it is seen from Ref. 17 the second feature can be
seen as a shoulder at the right side of specific-heat curve. By
further increasing of h, the ferromagnetic behavior is seen as
a broaden peak in the curve. This point is almost near the
classical field where the ground state of the system has been
factorized.

Note added. Recently, a preprint on the factorized state of
the frustrated homogenous spin model appeared.18 It has
been shown that the factorized state which has been defined
in Eq. �4� is the ground state of the whole system as far as
the frustration strength is weak, while for strong frustration it
will be an excited state.
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FIG. 2. The magnetization and staggered magnetization of an
anisotropic ferrimagnetic ��=1 /2,�=1� spin chain versus trans-
verse field and for �=0.25.
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