Polarization of light

Linearly polarized

Circularly polarized

C1 SpectrIntrod 971017Mon

Plane polarized light;

Eliptically polarized

Polarization configuration for various phase differences

Normal light: unpolarized

- Plane polarized light is superposition of levo and dextro circularly polarized lights.

$$
\begin{aligned}
& (1) \Theta(1) \Theta \\
& \oplus(1)(1) \\
& 0000
\end{aligned}
$$

Optical rotatory dispersion

Rotation of oscillation plane

Optical active substabce.

- Anisotrope
crystal,
- Solution of an enantiomer

Optical rotatory dispersion

- Plane polarized light is superposition of levo and dextro circularly polarized lights.

Optical rotatory dispersion

For some substances the characteristic optical phenomena depends on polarization.

An optically active substance rotates the plane polaraized light plane.

It result from different propagation rates for levo and dextro component of circularlly polarized light.

$$
\alpha=\frac{180 b}{\lambda}\left(\eta_{l}-\eta_{d}\right)
$$

(a)

(b)

$$
[\alpha]=\frac{\alpha}{b c}
$$

α can be normalized by $\Delta \mathrm{opl}$ and concentration

Spectropolarimetry

A typical polarimeter

Circular dichroism :

Results from different molar absorptivity of levo and dextro component of polarized light, and it produces elipically polarized light

$$
\theta=33\left(A_{l}-A_{d}\right)
$$

$[\theta]=\frac{\theta}{b c}=3300\left(\varepsilon_{l}-\varepsilon_{d}\right)$
Molar Elipticity

Absorbing optically
active

Circular Dichroism

- Plane polarized light is superposition of levo and dextro circularly polarized lights.

What happen both CD and ORD occur?

Two question?

Crcular polarized light;
exomenger
(1)
$\Theta(1)$
Θ

Production of circularly polarized light:

a devise that produces a polarized light from
Normal polarized light is known as polarizer

By means of

1. linear dichroism
2. Reflection
3.Scattering
4.Double refraction

$$
\begin{array}{r}
(1 \odot \odot \odot \\
\odot \Theta \odot \Theta \\
\hline \odot \Theta \odot \Theta
\end{array}
$$

Rhomboid Crystal:

An internale reflection introduces phase difference between to perpendicular component of light and produces polarized light.

Polarized light
1-polarizing by polarizing prism

2-polarizing by reflection

3-polarizing by refraction

4-polarizing by Scattering

Polarization by Use of a Polarizing prism;

Polarization by reflection. Prependicular component of light will not reflect By polaro sheet

Polarization by Reflection;

Polarization by Refraction;

The twro refracted rays passing through the Iceland Spar crystal are polarized with perpendicular orientations.

3. Modulators

- Mechanical (Chopper)
- Electro optic
- Magneto optic
- Acousto optic

Several types of optical devices are used to amplitude modulate radiation Source .modulation mechanical or magneto optic Or electro optic or acousto optic interuption of light beam.

Two mechanical choper

In some aplications it is only necessary to block or unblock a radiation beam at Certain time in experiment(for example to determine dark current)

Electro optic modulator

Electro optic modulator

Magneto optic modulator

3.4 Image and beam direction optics

Imaging optics

- Mirrors
- Lenses
- Focusing elements (Collecting)

Mirrors:
(UV to IR)

- Coating behind glass (Ag), old fashion
- Front surface (Vacuum evaporation of Al
+SiO 2 protection $\rightarrow 99 \%$ reflection)

$$
\begin{aligned}
\begin{aligned}
\frac{1}{S_{1}} & +\frac{1}{S_{2}}=\frac{-2}{R}=\frac{1}{\mathrm{~F}} \\
& + \text { real } \\
& \\
& \\
\text { Sirtual } & (+) \text { convex concave }
\end{aligned} \\
\begin{array}{ll}
\text { S1 } \rightarrow \infty & \rightarrow \mathrm{S} 2 \rightarrow \mathrm{~F} \\
\text { Obj } \rightarrow \mathrm{F} & \rightarrow \text { Image } \rightarrow \infty
\end{array}
\end{aligned}
$$

