# 4-4 Optical Transducers

## Transducers characteristics

X (A)

Response

**Responsivity**:  $R(\lambda) = X_{rms}(A) / \phi_{rms}(w)$ 

Not

proper

region

(at particular  $\lambda$ ,  $\phi$ , temperature and voltage)

**Sensitivity:**  $Q(\lambda) = dX/d\phi$ 

<sub>φ</sub> (W) <u>Degradation</u>: long term change in Q.

<u>Hysteresis:</u> change in Q after a pulse of  $\phi$ 

Chemon

**Dark signal**:  $i_{dark} \pm \sigma_{dark}$ Output signal in absence of

radiation. (Thermal, ...)

# Response Speed

time

time

90%

10%

**Rise time** 

 $\tau = 1/2\pi f$ 

f: max response

frequency

φ

Х

Chemometrics

# Chemon



Analog: Intansity vs time vs frequency

Digital: No of pulses vs time



LASDS Chemometrics Lecs

IA.SB. Chemom

## Noise equivalent power

Sinusoidal input radiation ( $\phi_{\text{NEP}}$ ) with

 $\sigma_{\text{NEP}}$  or  $\phi_{\text{NEP}}$  (  $\propto\sigma_{\text{dark}}$  ( A)

/ **R**(λ) φ<sub>NEP</sub>  $= \sigma_{dark}$ Example: - for PMT  $\phi_{NEP}$ = 1e-5 W - for PT φ<sub>NFP</sub>= 1e-1 W

Detectivity:  $D = 1/\phi_{NEP}$ (similar to LOD)

#### Normalized Detectivity:

 $\mathsf{D}^* = \mathsf{D} \; (\mathsf{A} \; \Delta \mathsf{f})^{1/2}$ 

A: detector area (cm<sup>2</sup>)  $\Delta f$ : noise equivalent bandwidth (Hz)



# Transducers (Detectors)

- Thermal : -Uniform spectral response

   (proportional to total energy, and not to photon energy ),
   -Low response speed
   -Low sensitivity.
- Photonic: Non uniform spectral response (f( $\lambda$ ))
  - High response speed,
  - High sensitivity







# Chemon

1.SBN emom

1.SB?

1.SB: emon



#### LASDS Chemometrics LASBS LASBS Chemometr

## Chemometrics

# 4.SBS

11

#### TABLE 4-5

Thermal detector characteristics

| Туре                    | $D^*$ (cm Hz <sup>1/2</sup> W <sup>-1</sup> ) | $R(\lambda)^{a}$        | Linear range <sup>b</sup>                                  | Spectral range<br>(µm) | Time constent<br>(ms) | Output                         |
|-------------------------|-----------------------------------------------|-------------------------|------------------------------------------------------------|------------------------|-----------------------|--------------------------------|
| Pneumatic               | $2 \times 10^{9}$                             | Not applicable          | 10 <sup>-8</sup> -10 <sup>-6</sup> W (1%)                  | 0.8-1000               | 2-30                  | Displacement or<br>capacitance |
| Thermocouple            | 10 <sup>9</sup>                               | $5-25 \text{ V W}^{-1}$ | $6 \times 10^{-10} - 6 \times 10^{-8} \text{ W}$<br>(0.1%) | 0.8-40                 | 10-20                 | Voltage                        |
| Thermistor<br>bolometer | $1.1 \times 10^9 \sqrt{\tau}$                 | $\sim 10^3 V W^{-1}$    | $10^{-6} - 10^{-1}$ W cm <sup>-2</sup> (5%)                | 0.8-40                 | 1-20                  | Resistance<br>change           |
| Pyroelectric            | $3 \times 10^8$                               | $10-10^4 V W^{-1}$      | $10^{-6}$ - $10^{-1}$ W cm <sup>-2</sup> (5%)              | 0.3-1000               | See footnote c        | Current                        |

<sup>a</sup>Voltage responsivity for thermistor assumes constant current of 10 mA; voltage responsivity for pyroelectric detector assumes load resistance of 10 M $\Omega$  (10 V W<sup>-1</sup>) to 10<sup>4</sup> M $\Omega$  (10<sup>4</sup> V W<sup>-1</sup>).

<sup>b</sup>Percentages refer to maximum deviations from linearity in the range shown.

"Electrical  $\tau$  depends on load resistance; thermal  $\tau$  determines low-frequency response.

## Photon detectors

Chemometrics

Chemon

### Vacuum phototube

-Evacuated glass -Photocathode: Cs<sub>3</sub>Sb

 $\lambda_{\text{threshold}} = hc/E_{\text{work function}}$ 

 $\begin{array}{ll} \text{incident } \lambda \ < \lambda_{\text{threshold}} \\ \quad \textbf{ } \textbf{ } \textbf{ e escapes from cathode} \end{array}$ 





ASB hemon



A.SB.

# Photon detectors

Photo Multiplier Tube

 Gain m=10<sup>7</sup> e in eah anode pulse (10<sup>-12</sup> coulomb in 5 nsec) or 320 mA

#### THODO

I. Average anodic photo current:  $i_{ap} = m \eta i_{cp} = m \eta \int \phi_{\lambda} R(\lambda) d\lambda$ (W) (A/W)  $\eta$ : collection fraction  $R(\lambda) \propto \lambda$ 

II. photon counting (# pulses/sec)  $r_{ap} = \eta r_{cp} = \eta \int \phi_{\lambda} K(\lambda) d\lambda$  $r_{ap:}$  anodic photon pulse rate



 $m = \delta^{k}$ 

 $\delta$ : Stage gain k: # dynodes (5 to 11)

m vs Eb : log-log is linear Fatigue: light intensity↑→ sensitivity loss

Hysteresis: intense intensity change → unpredicted response

# Photon detectors Photo Multiplier Tube

Cathodic responsivity curves

Dark current: ~ 1e-7 A 1. Thermal (removed by cooling) 2. Radiation: (remove by shielding) 3. Eb(opt) (changed by m)







# Photon detectors Photoconductive cells

Semiconductor

No PN junction

light  $\rightarrow$  e- hole pair  $\rightarrow$  conductivity lower Resistance CdS: Photographic light meters

PbSe

PbS (NIR)

Spectral response: not flat

Chemor

LASBS Chemom LASBS Chemom

IAS.

Chemon

100



# Multichannel detectors

- Photographic detectors
- Photodiode arrays
- charge coupled devices (CCD)

## Multichannel detectors Photographic plate

AgX crystals (in emultions)

 $\downarrow$  Photon Ag clusters (Ag and Ag<sup>+</sup> in crystals)

↓ Development (internal amplification) Exposed crystals (All Ag in crystals)

 $\downarrow$  Complexation of Ag<sup>+</sup> Ag+ are removed

 $\downarrow$  Into Densitometer

Chamomatures

# Densitometer Developed film 1. time $\uparrow$ (Camera is less time consuming) 2. linearity $\downarrow$ Advantages: - Sensitivity (< 100 photons) -light intensity -Exposure time (integrity). 21