LASBS hemometrics

Chapter 5

Chemon

Signal to Noise ratio

IA.SB. Chemom

LASBS

LASBS Chemometrics

Noise types

Random Noise (Unpredictable)

Summation of infinite number of changing *sine* waves. (With change in intensity and frequency)

** Fundamental: Particular nature of light and matter. Can never be eliminated. Example: <u>Shot noise</u>

** Excess (Non-fundamental): can be eliminated Example: <u>Flicker noise</u>

Non-Random Noise : (always non-fundamental)
 Example: Impulse noise

(when turning instrument on and off)

White noise

- Random
- Fundamental or excess

LASBS

Gaussian Distribution

Chen SBS

Low frequency sine waves: moderate High frequency sine waves: moderate

> LA.SB. Chemon

> > 6

Pink noise (1/f noise)

Low frequency sine waves: stronger High frequency sine waves: weak

Power decreases as frequency increases

Spectrum of white, pink, and red noise on a log-log scale.

Example: drift

Waveform of pink noise with $\beta=1$.

7

Noise power spectrum

White noise:

- Fundamental: Shot noise
- Nonfundam: Flicker noise independent to f
- 1/f noise (pink noise):
- power \propto 1/f
- Random, nonfundamental

Interference noise: (environmental) Nonfundam descrete frequency

LASBS

Some signals and their power spectra

Frequency response of filters and integrators

Equivalent noise band passes (d), (e) and (f)

Area under each rectangle is equivalent to the area under corresponding curve (square of the amplitude transfer function)

 E_o

|H(f)|

Noise equivalent band pass (Δ f)

Chemon

LASDS LASDS Chemometrics Chemom

TABLE 5-1 Bandpass characteristics of frequency-limiting circuits^a

Circuit	H(f)	Lower cutoff frequency, f_1 (3 dB point)	Upper cutoff frequency, f_2 (3 dB point)	Signal frequency bandpass, $f_2 - f_1$ (Hz)	Noise equivalent bandpass, Δf (Hz)
Low-pass filter	$[1 + (2\pi f\tau)^2]^{-1/2}$	0	$(2\pi\tau)^{-1}$	$(2\pi\tau)^{-1}$	$(4\tau)^{-1}$
Integrator	$\frac{\sin \pi ft}{\pi ft}$	0	$\frac{0.433}{t}$	$\frac{0.433}{t}$	$(2t)^{-1}$
Bandpass filter		f_1	f_2	$rac{f_m}{Q}$	$\frac{\pi f_m}{2Q}$

^a τ , Time constant (*RC*) of low-pass filter (s); *t*, integration time of dc integrator (s); *Q*, quality factor for bandpass filter = $f_m/(f_2 - f_1)$; f_m , central frequency of bandpass filter (Hz).

LASBS

Chemometrics

Poisson distribution probability $\frac{(rt)^n e^{-r}}{n!}$ P(n): Probability of observing P(n) =*n* events (anodic pulses) in time *t*. Quantum noise n_{aver}=rt r: Mean rate of event. StDev(n_{aver)}=(rt)^{0.5} $n_{aver}/StDev(n_{aver})=(rt)^{0.5}=n^{0.5}$ 15

TABLE 5-2

Signal and noise expressions for quantum or shot noise at transformation points*

	Photon counting signal processing			Analog signal processing				
Transformation point	Signal		Noise		Signal		Noise	
Photocathode ^b	$n_c = K(\lambda)\Phi_p = r_c t$ $= K(\lambda)n$	(1)	$(\sigma_n)_q = n_c^{1/2}$ $= [K(\lambda)n]^{1/2}$	(2)	$i_c = \frac{e}{t}n_c = er_c$ $= R(\lambda)\Phi$	(3)	$(\sigma_i)_q = \frac{e}{t} n^{1/2}$ $= \left(\frac{ei_c}{t}\right)^{1/2}$	(4)
Anode ^c	$n_a = n_c$	(5)	$(\sigma_n)_q = n_a^{1/2}$	(6)	$i_a = mi_c = mR(\lambda)\Phi$	(7)	$(\sigma_i)_s$ = $m(1 + \alpha)^{1/2} \left(\frac{ei_c}{t}\right)^{1/2}$	(8)
Readout ^d	$n_r = f_d n_a$	(9)	$(\sigma_n)_q = (n_r)^{1/2}$ = $(f_d n_u)^{1/2}$	(10)	$E = Gi_a = mGR(\lambda)\Phi$	(11)	$= \left\lfloor mei_{\alpha} \frac{(1+\alpha)}{t} \right\rfloor$ $(\sigma_{E})_{s} = G(\sigma_{i})_{s}$ $= \left\lfloor \frac{GmeE(1+\alpha)}{t} \right\rfloor^{1/2}$	(12)
74020			T-ISR	Q E		$(\sigma_E)_s$	$g = [2e \Delta f(1 + \alpha)mG]$	$[E]^{1/2}$
						(σ_E)	$s = (mGKE)^{1/2}$ ¹⁸	

TABLE 5-3

Signal and noise expressions for quantum and shot noise in analytical, background, and dark signals

Turne	Photon counting	signal processing	Analog signal processing		
of signal	Mean	Rms noise	Mean	Rms noise	
Analytical Background Dark	$n_{S} = f_{d}K(\lambda)r_{S}t$ $n_{B} = f_{d}K(\lambda)r_{B}t$ $n_{d} = f_{d}r_{cd}t$	$(\sigma_s)_s = n_s^{1/2}$ $(\sigma_B)_s = n_B^{1/2}$ $(\sigma_d)_s = n_d^{1/2}$	$E_{S} = mGR(\lambda)\Phi_{S}$ $E_{B} = mGR(\lambda)\Phi_{B}$ $E_{d} = mGi_{cd}$	$(\sigma_S)_s = (mGKE_S)^{1/2}$ $(\sigma_B)_s = (mGKE_B)^{1/2}$ $(\sigma_d)_s = (mGKE_d)^{1/2}$	
				19	