

In Proceedings of the second

MEMOMENTS:

Flicker noise

Source flicker noise

- Analytical flicker noise (Related to analyte signal) Analytical flicker factor (ξ, ksi)
- Background flicker noise (Related to background sign.) Background flicker factor (χ, Kai)
- Transmission flicker noise (Cell, Flame)

TABLE 5-4 Analytical and bac	kground flicker noise	Number of pulses per second	
Type of signal	Photon counting		Analog
Analytical Background	$(\sigma_S)_f = \xi n_S$ $(\sigma_B)_f = \chi n_B$		$(\sigma_S)_f = \xi E_S$ $(\sigma_B)_f = \chi E_B$
	Flicker noise ∝ signal →	r if S↑ → r	o change in S/N

Other noise sources

- Excess dark current noise
- Amplifier readout noise
- Quantization noise ? $\sigma_q = \frac{q}{12^{1/2}} = 0.29q$

Johnson Noise

(Thermal; Brownian motion in resistor R)

Nyquist Eqn:

 $\sigma_J = (4kTR \ \Delta f)^{1/2}$

25°C, $\sigma_J = (1.6 \times 10^{-20} R \ \Delta f)^{1/2}$

Thomasmer

5-4 Signal-to-noise expressions for emission and luminescence measurement

 $\sigma_t = (\sigma_1^2 + \sigma_2^2)^{1/2}$ $\sigma_t = (\sigma_1^2 + \sigma_2^2 + 2C\sigma_1\sigma_2)^{1/2}$ Independent sources

E_{Lt} =

Dependent sources

General Expressions

Total Noise Equation (as a function of E_{out} and i_{cath}):

 $\sigma_t = [mGK(E_S + E_B + E_d) + (\xi E_S)^2 + (\chi E_B)^2 + (\sigma_d)^2_{ex} + \sigma_{ar}^2]^{1/2}$

In term of cathodic current (

$$E_{out} = mG i_{cath}$$
)

$$\sigma_{t} = (mG) \left\{ K(i_{S} + i_{B} + i_{d}) + (\xi i_{S})^{2} + (\chi i_{B})^{2} + \left[\frac{(\sigma_{d})_{ex}}{mG}\right]^{2} + \left(\frac{\sigma_{ar}}{mG}\right)^{2} \right\}^{1/2}$$
Shot noise factor
Analytical signal noise factor
$$Background signal noise factor$$

shideog Spect Introd 971127 Sat H2 $\sum_{N}^{15} = \frac{15}{\left[\frac{1}{5} + \frac{1}{8} + \frac{1}{4} + \frac{1}{5} + \frac{$ Blank noise limited Gond. Et= EL Ebye + Es EE Ebye + Es ((ow conc. of an a (y)e) 3. Backy ving $\frac{S}{N} = \frac{i_{S}}{(k_{B} + (x_{B})^{2})^{l_{2}}} \frac{[a_{N} + (x_{B})^{2}]}{i_{S}} \frac{[a_{N} + (x_{B})^{2}]}{i_{S}}$ 9

Blank noise limited S/N expression (Fluor or Emiss, low concn) 1. Shot-noise-limited case (Very high quality instrument)

$$\frac{S}{V} = \frac{i_S}{\{K(i_B + i_d) + (\chi i_B)^2 + [(\sigma_d)_{ex}/mG]^2 + (\sigma_{ar}/mG)^2\}^{1/2}}$$

Shot noise limited case: if background, excess dark current, and amplifier read out noise are negligible this represent the **best S/N obtainable**.to further improvement of this case we must reduce K.

$$\frac{S}{N} = \frac{i_S}{[K(i_B + i_d)]^{1/2}}$$

10

Blank noise limited S/N expression (Fluor or Emiss, low concn)

2. Non-fundamental Noise Limited case (Moderate quality instrument)

 $\frac{\sigma}{N} = \frac{1}{\{K(i_B + i_d) \neq (\chi i_B)^2 + [(\sigma_d)_{ex}/mG]^2 + (\sigma_{ar}/mG)^2\}^{\frac{1}{2}}},$

(Flicker noise limited) if shot noise is negligible then we have :

$$\frac{S}{N} = \frac{i_S}{\{(\chi i_B)^2 + [(\sigma_d)_{\rm ex}/mG]^2 + (\sigma_{ar}/mG)^2\}^{1/2}}$$

The S/N can be improved by selecting higher quality PMT and amplifier readout system.but in general the improvement is less than for shot noise .

Blank noise limited S/N expression (Fluor or Emiss, low concn) 3. Background – Signal-Noise Limited case (high background Fluorescence or emission)

$$\frac{S}{N} = \frac{i_S}{\{K(i_B) + i_d\} + ((\chi i_B)^2) + [(\sigma_d)_{ex}/mG]^2 + (\sigma_{ar}/mG)^2\}^{1/2}}$$

In many emission and luminescence measurments the background noise is significant .S/N enhancement is achived by adjusting experimental variables and reduction of Δf which is most effective when background shot noise dominant.

$$\frac{S}{N} = \frac{i_S}{[Ki_B + (\chi i_B)^2]^{1/2}}$$

12

Blank noise limited S/N expression (Fluor or Emiss, low concn) 4. Detector-Noise-Limited case (Very low background Fluorescence or emission) S $(\chi i_B)^2 + ([(\sigma_d)_{ex}/mG]^2) + (\sigma_{ar}/mG)^2)^{1/2}$ $\{K(i_B)\}$ i_d) if background and amplifier resdout noise are negligible then we have :

$$\frac{S}{N} = \frac{l_S}{\{Ki_d + [(\sigma_d)_{ex}/mG]^2\}^{1/2}}$$

The S/N improved by increasing is or reducing dark current.

Example: PMT

Chemometrics

Limiting: Shot noise in dark current condition

(Low analyte concn, low background, high quality instrument)

NEP is usually defined as $\sigma_d/R(\lambda)$

NEP = $(Ki_d)^{1/2}/R(\lambda)$ $\sigma_d = (Ki_d)^{1/2}$ D = 1/NEP $D = R(\lambda)/(Ki_d)^{1/2}$

L-LODO T

14