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By detailed analytical treatment of the shock dynamics in the Burgers turbulence with large scale forcing we
calculate the velocity structure functions between pairs of points displaced both in time and space. Our
analytical treatment verifies the so-called Taylor’s frozen-flow hypothesis without relying on any closure and
under very general assumptions. We discuss the limitation of the hypothesis and show that it is valid up to time
scales smaller than the correlation time scale of temporal velocity correlation function. We support the ana-
lytical calculation by performing numerical simulation of the periodically kicked Burgers equation.
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In a 1938 paper G. I. Taylor introduced an assumption by
which he deduced the spatial fluctuations of a turbulent ve-
locity from the corresponding measurements of temporal
fluctuations at a single point �1�. This hypothesis, know as
Taylor’s frozen-flow hypothesis, relies on the existence of a
large mean flow which translates the spatial structures past a
stationary probe in a time smaller than the inherent evolution
time of the fluctuations �2,3�. As remarked by Tennekes �4�,
the Eulerian temporal scaling is dominated �5,6� by large
scale energy containing structures which sweep inertial-
range information past an Eulerian observer �7,8�.

The importance of this hypothesis relies on the fact that
most turbulence theories center on the scaling behavior of
spatial structure functions of the velocity field �2,3�. In ex-
perimental assessments of spatial fluctuations in turbulent
flows �6–8� this hypothesis has been a general guideline for
extracting the information from one-point measurements
with hot wires. Original measurements treated by Taylor
were made in turbulence generated behind a stationary grid
in a wind tunnel, and his hypothesis has become a standard
technique employed in similar experiments which build our
current view on turbulence.

Although Taylor’s hypothesis is significantly clear when
there is a large scale average flow, its application in homo-
geneous isotropic flows has been a much more debated issue.
The latter always is meant to reflect the qualitative picture
that larger eddies randomly sweep the smaller eddies with
their root-mean-square velocities.

Apart from a few theoretical attempts in verifying the
hypothesis, a general quantitative framework for deriving it
does not exist �9,10�. Such a quantitative understanding calls
for characterization of the spatiotemporal fluctuations of
small scale eddies responsible for random sweeping �10–13�.

In retrospect the spatiotemporal structure functions are
central objects in providing the required information. Such

structure functions of arbitrary order q are defined as
Sq�x , t�= ���u��x�2 , t2�−u��u�1 , t1�� · x�

x �q�, where the u��x�i , ti� are
Eulerian velocities at two spatially distinct points that are
measured at two different times. In a statistically stationary
state and in the inertial subrange, multiscaling assumption
implies

Sq�x,t� � x�qFq� t

xzq
	 , �1�

where x= �x�2−x�1� and t= �t2− t1� �2,3�. Fq’s are homogeneous
functions of their arguments and zq are dynamic exponents.
Two sets of exponents �q and �q are defined by casting two
asymptotic limits limt→0 Sq�x , t�
�x2−x1��q and
limx→0 Sq�x , t�
�t2− t1��q, respectively.

Theoretical arguments resorting to the multifractal phe-
nomenology support the existence of a hierarchy of dynamic
exponents zq if one compensates the sweeping effects by
choosing a quasi-Lagrangian frame �14�. In an Eulerian
frame for which the sweeping dominates the temporal fluc-
tuations, zq=

�q

�q
=1, at least up to leading order �2,14�.

Here we calculate �q for the one-dimensional Burgers
equation stirred a forcing with large scale correlation in
space and with a Wiener scaling in time. The exponents are
derived from equations of motion without relying on any
closure by which the dynamic exponents zq are inferred. The
crucial role of shocks in establishing the result is spelled out
and the scaling solutions of the dynamic structure functions,
i.e., limx→0 Sq�x , t�, are obtained. Numerical simulations on
the periodically kicked Burgers equation �15� are performed
to support the analytical results for �q.

Our numerical and analytical calculations both indicate
that for incremental time t= t2− t1 less than or at the order of
the correlation time scale, i.e., t� tcorr, the scaling of
limx→0 Sq�x , t� are dominated by the shock dynamics and
saturate, i.e., �q=1 for q�1, while �q=q for q�1. As a
by-product the dynamical exponents are equal to unity, i.e.,
zq=1, consistent with Taylor’s hypothesis. However when t*mohammed.r.rahimi.tabar@uni-oldenburg.de
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� tcorr the dynamics of limx→0 Sq�x , t� are controlled by the
scaling limit of the forcing. Hence we show that the Taylor
frozen hypothesis does not hold for t� tcorr when the forcing
scales as a Wiener process in time. The crossover from
shock-dominated to forcing-dominated regime is also veri-
fied numerically.

We consider the Burgers equation in one dimension, i.e.,

ut + uux = 	uxx + f�x,t� , �2�

where f�x , t� is a zero-mean Gaussian statistically homoge-
neous, and white in time random process with covariance,
�f�x2 , t2�f�x1 , t1��=C�x2−x1�
�t2− t1�. The spatial correlation
C�x2−x1�, as a function of �x2−x1�, is assumed to have a
finite support �
L, where L is the system’s domain
�16–18�.

A convenient way to derive the dynamical evolution of
Sq�x , t� is via the standard generating function method
�17,18�. Defining �=exp�−i1u1− i2u2� the two-point gen-
erating function is given by ���, where �¯� is an average
over the forcing statistics. The Fourier transform of the gen-
erating function is the two point probability density function
�PDF� P�u1 ,u2 ,x1 , t1 ,x2 , t2� defined at the points x1, t1 and
x2, t2 with their related velocities u1 and u2. From Eq. �2� the
dynamical equations of PDF P at distinct times, say t1 and t2,
are sought. Using the following change of variables t= t2

− t1, T=
t1+t2

2 , and transforming u1 and u2 with u=
u1+u2

2 , �
=u2−u1, one obtains the following equation for the PDF of
velocity field difference as

Pt = − uPx −
1

2
� K�u +

�

2
− u�	Px�u −

�

2
,u�	du�

−
1

2
� K�u −

�

2
− u�	Px�u�,u +

�

2
	du� +

1

2
C�0�Pu�

−
1

2
C�x�� 1

4 Puu − P��� +
G2

2
−

G1

2
, �3�

where x=x2−x1, y=
x1+x2

2 . The C�x� is the spatial correlation
function of forcing, K�u�= H�u�−H�−u�

2 , and H�u� is the
Heaviside function. The terms Gi’s are defined as Gi=
−	� /�ui��uixixi

�u1 ,u2 ,x1 ,x2 , t1 , t2�P, where �uixixi
�u1 ,

u2 ,x1 ,x2 , t1 , t2� is the average of uixixi
with the conditions that

the velocity field has the values of ui’s at points xi and in
times ti. Indeed the term Gi is the only term preventing Eq.
�3� to be closed, which can be referred to a sort of dissipative
anomaly �16�.

Multiplying both sides of Eq. �3� with �q and integrating
it over u and � one obtains

�Sq

�t
= −

�Sq,1

�x
+

1

2
q�q − 1�C�x�Sq−2 + ��q�G2 − G1�� . �4�

The first term in the right-hand side of Eq. �4� is of the
type of mixed structure functions of center of mass and in-
cremental velocities Sq,r= ��qur�. The second term is the con-
tribution of forcing and the last term is the combination of
dissipative terms ��q�G2−G1�� in Eq. �4� that are at variance
with the usual anomaly terms in the equations of spatial
structure functions at one time ��q�G2+G1�� �17,18�.

In principle the solutions of the above equation in the
inviscid limit should have scaling forms of the type intro-
duced in Eq. �1�. However, Eq. �4� is not obviously tractable
because the first and last set of terms on the right-hand side
are not expressed in terms of Sq�x , t� and the equation is not
closed. In what follows we show that it is possible to treat
the unclosed terms by means of shock representation and
without resorting to any closure model.

In the inviscid limit both types of the terms are express-
ible in terms of operators localized on shocks when x→0.
Recall the velocity u satisfying the Burgers equation devel-
ops shock solutions in the limit 	→0. One may represent a
shock locally as u�x , t�=u+H�x−x0�t��+u−H�x0�t�−x�, where
H is a Heaviside function. The position x0 is identified by
two quantities, namely the velocity u in positions x0+, x0− �set
it, for example, to 0�. In other words the velocity gradient
�corresponding Burgers velocity� is not continuous at points
x0. At these singular points u� is defined as u��x0 , t�
=u�x0� , t� keeping in mind that u−�u+, while the shock
strength s and the shock velocity ū are defined as s=u+−u−

and ū= 1
2 �u++u−�.

Here we argue that the last term in the right-hand side of
Eq. �4� vanishes in a particular space-time window. Indeed in
the inviscid limit only small intervals around the shocks will
contribute to the Gi terms. Each of Gi’s at space-time �xi , ti�
are nonvanishing only on the shocks �17,18�. As a neat way
of demonstrating the cancellation of Gi terms we return to
the Fourier space and represent the related terms with Gi. The
anomaly terms G2−G1 in this space can then be written as

G2 − G1 = − 2��2��e−u1 − �1�− �eu2� , �5�

where xi is the position of the ith shock and =2−1 is the
conjugate of � and �� ;x , t�=�iF�ūi ,si�
�x−xi�t��. The form
factors F are read F�ū ,s�=−2eū−1�−1 sinh� s

2 � �19�. This
representation shows that the anomaly contribution is gener-
ally very complicated for arbitrary separation distance x and
time difference t. However it is possible to identify a space-
time regime in which the following operator vanishes. In fact
by Taylor expansion one easily sees that for �t2− t1��

�u2

�s �s=t1


−�t2− t1�ū�
�u1

�x �x=xi�s�, given x→0, G2 and G1 cancel out in
the leading order. This condition physically means that the
anomaly due to a shock at point x2 and in time t2 is the same
in statistical sense at a point x1 but with a time delay approxi-
mately equal to �t2− t1�


�x2−x1�
ū , because the shocks move

with their local velocity ū. In this spatiotemporal window the
time variations of velocities are mostly dominated by the
random shocks which sweep the spatial fluctuations past a
point �1,4�.

The other set of terms on the right hand side of Eq. �4�,
Sq,1= ��qu�, are rooted in the uPx term in Eq. �3�. Using
stationarity, i.e., �TP=0, it is easy to reexpress limx→0 Px in
terms of the measures describing the statistics of shocks. In
the spatiotemporal regime where x� ūt it is possible to show

lim
x,t→0

Px�u,�,x,t� = Nx���M�u� = ���s�
1��� + �S��,T��M�u� ,

�6�

where 
1���=d
��� /d�, and Nx���=�limx→0 Px
�u ,� ,x , t�du. Here �=�i
�x−xi�T�� and S�� ,T� are the
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shock number density in space and the PDF of s�x1 , t1� con-
ditioned to x1 being on a shock location, respectively.

To leading order the result is t independent and the aver-
ages on u and � on the shocks separate. The functional
dependence of limx,t→0 Px�u ,� ,x , t� on u appears as an un-
known function M�u�, where �M�u�du=1 �see also �14��.
Although the precise form of M�u� does not enter in later
arguments the separation of u and � is central for obtaining
the later results.

In order to calculate �q we use the representations in Eqs.
�5� and �6� at leading order and substitute them back into Eq.
�4�. Therefore we obtain

�Sq

�t
= − ��ū��sq� +

1

2
q�q − 1�C�x�Sq−2 + o�t� . �7�

Solving the analytical scaling solutions in Eq. �7� we find the
moments q�2 of the velocity increments in time behave as

����q� = �t��− ��ū���s�q� + C�0�
q,2�, q � 2, �8�

where �=limx→0 �u�x1+x , t1+ t�−u�x1 , t1�� and � is the aver-
age density of shocks in time. We remark that the leading
term in S2�t� has a forcing contribution proportional to C�0�.
The higher order moments, i.e., q�2 do not obtain contri-
butions from forcing because they are always subleading in
time.

For the lower order moments the competition of the regu-
lar part of the velocity increment in time dominates the con-
tribution of shocks. One writes �u�x , t1+ t�−u�x , t1��

−�t1

t1+tū��xu�ds+�t1
t1+tdW�s�, where the first integral in the

right-hand side resembles the sweeping of the spatial incre-
ment and hence scales as t. The second integral however
scales as t1/2 because the integral of the forcing is a Wiener
process in time by definition. Consequently in leading order
one may easily write

lim
x→0

Sq�x,t� 
 Aq�t�q/2 + Bq�t� , �9�

where Aq and Bq are unknown amplitudes. Therefore, the
low order moments scale as tq/2 and the saturation should
begin for orders q�2.

To test the predictions of the analytical calculation, we
have carried out numerical simulations of the Burgers turbu-
lence by means of the so-called particle method �15�. The
numerical experiments reported hereafter have been made
with the kicking force and a kicking period tkick=0.001. The
number of collocation points chosen for our simulations is
generally Nx=105. In order to perform temporal averages,
since we need a large sequence of velocity time series to
calculate intermittency in time, we run the algorithm for
about 103tkick. For time integration we adapt a time discreti-
zation of order td=10−5. Between two subsequent kicks we
advance the minimizers in time for 100dt. We then construct
the Eulerian velocity by means of the particles velocities
after reaching to statistically stationary state. The results are
shown in Fig. 1, in which the log-log plot of ��u�x , t1+ t�
−u�x , t1��q� is depicted as a function of the time increment t
for different q’s specified in the inset. The time span t in the
measurements of velocity increments lies in the extended
range of t� �10−5 ,2�10−1�. Therefore, we have the informa-

tion about scaling both above and below the characteristic
correlation time. The typical correlation time is about tcorr

3� tkick.

Although all high order moments q�2 display a slope of
approximately 1 the moments of orders q�2 exhibit a cross-
over in their scaling. For t� tcorr the scaling exponent is read
to be �q=q, while for t� tcorr one observes �q= q

2 . When t
� tcorr the regular part of the velocity increment is dominated
by ureg�t1+ t�−ureg�t1�
��tu�t. Similar to the decaying prob-
lem the latter gives the scaling ��reg

q �� tq. We have plotted
the behavior of �q in terms of order q in Fig. 2. The figure
shows the saturation for time scales t� tkick and t� tkick, re-
spectively.

We also checked the statistical independence of the center
of mass velocity u=2ū=u1+u2 and velocity increments �
=u1−u2. As an instance we numerically measure the quantity
��u1+u2�2 �� ;x , t� for the range of space-time where statisti-
cal convergence are accessible. Indeed Fig. 3 demonstrates
that for the time span of the order t� �10−3 ,10−1� the condi-
tional averages display a regime of independency for u and
�. The measurements shown here are done for a fixed sepa-

t
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q = 0.1
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q = 0.7
q = 0.9
q = 1.2
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q = 1.6
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q = 2.0

FIG. 1. �Color online� The scaling of the time increments of
velocity ��q� verses t2− t1= t is sketched for different moments q
� �0,2�. The kicking time is 10−3 and the measured time span is
showing the scaling both below and above it.

q

ζ q

0 1 2 3 4 5
0

0.5

1

Time spane smaller than kicking

Time spane bigger than kicking

FIG. 2. �Color online� The saturation of �q for different q’s,
where �q is the scaling exponents ����q���t��q. The upper and lower
figures are the saturation of scaling exponents for the time span
smaller and bigger than kicking time, respectively. The correlation
time scale is about tcorr
3� tkick. The results shows that Taylor
frozen hypothesis is preserved just for time scales less than tcorr.
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ration x→0, but at different time windows t. As time incre-
ment t grows the domain of velocity increments � where the
independency is observed extends to larger values.

In summary, scaling exponents �q of the moments of ve-
locity increment in time are derived from randomly forced
Burgers equation. When the incremental time t= t2− t1
� tcorr, they are analytically shown to saturate to unity, i.e.,
�q=1 for q�1, while �q=q for q�1. Our numerical simu-

lations of the Burgers equation stirred by a kicking force
support the results. At large times when t� tcorr, our numeri-
cal results reveal a non-universal scaling regime in which the
higher order moments still saturate �q=1, but for q�2 while
the low order moments display a normal scaling �q=q /2 for
q�2. The later nonuniversal scaling of low order moments
�q=q /2 for q�2 is a direct consequence of the forcing
which is Wiener in time at every point of space.

Although the advective terms in the Navier-Stokes and
the Burgers equations are similar the nonlocal pressure con-
tribution prevents the formation of shocks in the Navier-
Stokes turbulence. Closed analytic forms of the pressure and
dissipative terms can only be accomplished by means of phe-
nomenological closure approximations �10,20�. However, an
analytic treatment of the relevant small-scale singularities in
the Navier-Stokes turbulence is yet an open problem and,
moreover, the closures are typically not based on the geom-
etry of the flow singularities. To conclude, our work high-
lights the importance of a detailed knowledge of singularity
dynamics in deriving Taylor’s hypothesis. Generalizations to
the Navier-Stokes turbulence requires further investigations.

We thank Uriel Frisch and Jeremie Bec for useful com-
ments and discussions. J.D. thanks the ICTP and the Max
Planck Institute for Complex Systems for partial support.
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FIG. 3. �Color online� The conditional moment �u2 ��� as a
function of � at different time spans �t2− t1� below and above the
kicking time. For any given time increment t the conditional aver-
age is normalized by the corresponding �u2�.
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