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Criticality in collective behavior of biogenic single-domain nanomagnetites
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The origin and the functions of more than a billion single-domain magnetic nanoparticles [reported in Proc.
Natl. Acad. Sci. USA 89, 7683 (1992)] adjacent to billions of neurons in the brain neocortex are not known
yet. There is empirical evidence implicating the sensitivity of many living organisms to constant or extremely
low-frequency magnetic fields. Navigation and routing of migratory birds by the Earth’s magnetic field and
certain behaviors of magnetic bacteria are well-known examples. However, it seems that human beings are not
able to sense the Earth’s magnetic field. In this article, we first investigate the criticality of interacting magnetic
superclusters in a mean-field approximation and then discuss the rotational Brownian motion of a single-domain
magnetic dipole. Then, we consider the rotational Brownian motion in the presence of magnetic interactions.
Ignoring the complexity of the dynamics, the anisotropy, and the long-range interaction of nanoparticles, we
investigate numerically their behavior using a finite-size two-dimensional Ising-like model. It is shown that if the
dipole coupling coefficient is fine-tuned to keep the model close to the critical state, then system sensitivity to an
external magnetic field is maximized with an scaling behavior in terms of the number of magnetic superclusters.
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I. INTRODUCTION

There are about 20 billion neurons in the human cerebral
cortex, each of them having tens of thousands synapses [1].
The complexity of the functions of such a highly connected
system, despite extensive research, is not yet fully understood.
Since late 1980s, we also know that there exist several billions
of magnetic nanoparticles in the human cerebral tissue, as
well as in the other parts of central nervous system [2]. As
an example, the number density of the magnetic nanoparticles
in meninges is some 20 times that of the cerebral cortex. In
the absence of conclusive experimental evidence, researchers
have tried various hypotheses regarding the function of these
nanoparticles in the brain [3]. For example, some people have
advanced the idea that the magnetic nanoparticles produce
a magnetic field which may play the role of a contactless
catalyst in certain chemical reactions [4]. There have also
been efforts to look for certain behavioral evidence that human
beings can sense the magnetic field [5].

Empirical evidence indicating that many living organisms
are able to detect the direction or the magnitude of the Earth’s
local magnetic field is rather substantial [5–7]. Depending
on the precision and the sensitivity of mechanisms involved,
living organisms can derive a variety of information from a
magnetic field. The simplest mechanism is the magnetic com-
pass that enables an organism to move in a certain direction,
such as north or south. Organisms with this ability have a
“live magnetic compass.” This is tentatively demonstrated by
behavioral experiments in homing pigeons, migratory birds,
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lobsters, sea turtles, elasmobranch fishes, and honeybees (see
Refs. [5–7], and references cited therein). A more limited
number of organisms are capable to derive “magnetic maps”
of approximate geographical locations based on intensity,
inclination, and declination of local magnetic field [8]. In
some cases, electrophysiological records indicate that the
organism should be able to measure a magnetic field as small
as ∼50 nT, which is enough to detect small quenched fluctua-
tions in the spatial pattern of the local magnetic field intensity.
This is the case with animals like sea turtles and bobolink
birds. They even seem to be able to sense fine variations due
to magnetic rocks in the Earth’s crust [5,6].

Three main mechanisms to sense magnetic fields are rec-
ognized in living organisms: (1) electromagnetic induction,
(2) response of single-domain (SD) biogenic magnetic or
superparamagnetic nanoparticles (i.e., Fe3O4) to a magnetic
field, and (3) magnetic field-dependent chemical reactions
(i.e., radical pair mechanism) [5–7]. A fourth possibility is
by using temporal variations in intensity of the Earth’s dc
magnetic field or extremely low frequency electromagnetic
fields [9–11]. Our prime focus here is the modeling of systems
of interacting SD biogenic magnetic nanoparticles in human
brain tissue. For frequencies larger than the superparam-
agnetic relaxation rate, the superparamagnetic nanoparticles
behave as SDs [12,13]. To make the model simpler we will
not include them in our discussions. All of these mechanisms
are extensively reviewed in the literature (see Refs. [5–7,14]
and references cited therein).

Biogenic SD magnetic nanoparticles, which include mag-
netite (magnetic iron oxide, Fe3O4) and greigite (magnetic
iron sulfide, Fe3S4, for example, see Ref. [15]), are observed
in body tissues of some organisms such as fish, bee, algae,
and the avian as well as in the magnetotactic bacteria (in this
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case as chains of SDs) [16–20]. In the avian it seems that
the controversial issues are finally solved in favor of the role
of nanomagnetite structures in their upper beak [21]. Mag-
netite and greigite, originally found in rocks, display mineral
magnetism. The mineral magnetites usually contain common
impurities such as titanium. Moreover, mineral crystals are
not usually perfect. They contain disorders such as vacancies,
disclinations, and dislocations. Furthermore, their sizes are
random and follow a log-normal distribution function, which
means that some of them are larger than a single domain
[22]. But the SD magnetic nanoparticles in the tissues of
living organisms are pure and have regular crystal lattices.
They are of accurate shape and uniform size (i.e., isometric).
Biomagnetite crystals are also grown along the (111) crystal
axis which maximizes their net magnetic moment. In addition
to all the above specifications, they are small enough to
include only a SD. While in a large mineral multidomain
particle the random orientations of magnetic moments of
different domains reduce the net magnetic moment, in living
organisms a group of SD nanoparticles are aligned dipoles
in a discrete supercluster (or a chain) to produce a large net
magnetic moment [2,14,22]. The function of the magnetic
chains has been studied in some living organisms, and at
least in the case of magnetotactic bacteria this function is
well understood. It is also guessed that SD nanoparticles
are produced via a chemogenetic process controlled by the
genomic magnetosome island in the genomic DNA of the
bacteria [14].

In the human brain, both the existence of 5 million SD
magnetic nanoparticles per gram of brain tissue and their func-
tion are mysteries [2]. Some research workers have guessed
that they are vestigial remnants from an earlier Homo such
as Homo erectus [5]. Others attribute them to airborne pol-
lution [23]. However, the biogenic origin of magnetic parti-
cles seems to be favored [24]. The presence of biomagnetite
nanoparticles in human brain tissues was first reported by
Kirschvink et al. using transmission electron micrographs
and superconducting quantum interference device [2]. In a
destructive approach they froze the brain tissue in the liquid
nitrogen; then they crushed this fragile tissue into very small
fragments, which were then washed with distilled deionized
water. The nanomagnetites were separated from the resulting
solution by a fine magnetic needle. Their method is suitable
for careful study of the structure of the SD nanoparticles
but not for specification of the arrangement and the way the
SD nanoparticles are connected in cells. Their experimen-
tal results for the human cerebral cortex shows that these
nanoparticles are arranged into discrete superclusters (SCs)
which are comprised of almost 100 SD nanoparticles [2].
This arrangement into superclusters is due to attractions and
repulsions of tiny SD nanomagnets as well as elastic forces
applied by the membrane. Nondestructive studies based on the
magnetic behavior of the tissue also show that the nanopar-
ticles inside a supercluster interact with each other [2,25].
However, until more experimental studies are available, the
only way before us is to propose qualitative models based on
the existing evidence.

Following other researchers, we assume that only a frac-
tion of SD magnetic nanoparticles (or chains of SDs) are
connected to the gated ion channels [11,22,26]. We try to

investigate whether the dipole-dipole interactions between
superclusters are strong enough to make the system magneti-
cally critical. In Sec. II, we examine the condition of critical
coupling using the mean-field approximation. If a magnetic
system is close to its critical point, then it is more susceptible
to respond to changes of an applied magnetic field. Then,
in Sec. III, we investigate in detail the rotational Brownian
motion of noninteracting and interacting SD nanoparticles in
an external magnetic field. An Ising-like model is then used to
show the dynamical behavior in the critical state and estimate
the sensitivity of the system to an external factor as compared
to the behavior in the disordered state far from criticality.
Finally, the general conclusions are presented and discussed.

II. MEAN-FIELD THEORY

The magnetic dipole-dipole coupling is a long-range
anisotropic interaction. To study the dynamics of a system
of magnetic dipoles, we should consider their interaction. We
may have a magnetic phase for this system if the density of
dipoles is greater than a certain critical value. We assume that
our magnetic dipoles (the superclusters of SD nanoparticles)
are more or less uniformly distributed over large-enough
patches of the tissue with no frustrations and they are all of
the same magnitude μ = Nscμm where Nsc is the average
number of SD nanoparticles with magnetic moment μm in a
supercluster. We also assume that the statistical fluctuations of
the dipoles are homogeneous.

For two dipoles, 1 and 2, the interaction can be written as

U12(r12) = −μ0[3(μ1 · r̂12)(r̂12 · μ2) − μ1 · μ2]

4π |r12|3 , (1)

where μi (i = 1, 2) is magnetic moment of dipole i and r12

is the relative position of dipoles. To write the equation in a
compact form, we define the dipole-dipole coupling tensor as

↔
J(r) := μ0[3r̂r̂ − 1]

4π |r|3 , (2)

where r̂r̂ represent the dyadic product r̂ and r̂ and 1 is the
rank-2 unit matrix in three dimensions. Thus, Eq. (1) can be
written as

U12(r12) = −μ1 ·
↔
J(r12) · μ2. (3)

The Hamiltonian of a system of N interacting dipoles in a
magnetic field B can then be written as

H ({μi}) = −1

2

N∑
i, j=1
i �=j

μi ·
↔
J(rij ) · μj −

N∑
i=1

μi · B. (4)

A. Two-dimensional case

First, we try to solve the simpler problem of dipoles uni-
formly distributed on the flat two-dimensional plane (arbitrary
uniform lattice). Thus, r is a two-dimensional vector in the
plane but the dipole moments are arbitrary three-dimensional
vectors. In the continuous limit, Hamiltonian [Eq. (4)] can be

032133-2



CRITICALITY IN COLLECTIVE BEHAVIOR OF … PHYSICAL REVIEW E 98, 032133 (2018)

written as

H ({μi}) = −
N∑

i=1

μi ·
[
σc

2

∫ ∞

l/2

∫ 2π

0

↔
J(r) · μ(r)rdϕdr + B

]
,

by an integration over the polar coordinates. Here l is the
average center-to-center distance of clusters and σc = 4/(πl2)
the surface number density of dipoles. The lower limit of the
radial integral means that an additional hard-sphere repulsive
potential is assumed between superclusters which makes sure
that they do not overlap [27]. Now we use a mean-field
approximation by replacing μ(r) with 〈μ〉. The Hamiltonian
is then simplified as

H ({μi}) = −
N∑

i=1

μi · (
↔
Jeff · 〈μ〉 + B), (5)

where
↔
Jeff := (σc/2)

∫ ∞
l/2

∫ 2π

0

↔
J(r)rdϕdr . Now, one can use

Eq. (2) and integrate over the polar coordinates and conclude
that

↔
Jeff =

(
μ0

πl3

)⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠. (6)

The negative value of the (3,3) component of
↔
Jeff indicates

that the transverse component of dipole moments tend to align
and fluctuate antiparallel with each other, i.e., we have a fer-
romagnetic (antiferromagnetic) behavior for tangential (nor-
mal) component of dipole moments. In such circumstances,
lattice calculation is much easier if a kind of nonfrustrated
lattice (like the honeycomb which consists of two sublattices)
is selected. Then, only an effective coupling factor can be
calculated numerically. The two adjacent dipoles from two
sublattices are equivalent to a quadrupole. So, in computation
over a finite lattice we need not to worry for the long-range
effects.

In analytical calculations, we did not select any lattice for
the dipoles and performed the integration over entire space
by assuming that 〈μ〉 is uniform with no sign flip in normal
component. The drawback of this approach is that it cannot
include the case of negative coupling constant. Therefore, here
we consider a case in which B⊥ = 0 and the case with B⊥ �= 0
and B‖ = 0 is discussed in Appendix A. So, the negative

term in the (3,3) component of
↔
Jeff is discarded, which means

the contribution of transverse component is ignored. Now,

defining E(B) :=
↔
Jeff .〈μ〉 + B in the Hamiltonian Eq. (5) and

calculate the partition function,

ZN = 〈e−βH {μi }〉 =
N∏

i=1

〈e−βμi ·E(B)〉, (7)

where β = 1/(kBT ) and kB and T are the Boltzmann constant
and the absolute temperature. Now, without loss of generality,
one can take the z axis along E and integrate over all directions
and obtain

z := 〈e−βμi ·E(B)〉 =
(

4π

βμE

)
sinh(βμE), (8)

where E represents |E(B)| and μ = Nscμm the magnitude of
net magnetic moment |μi | of a supercluster containing Nsc

single-domain nanoparticles. We also assume that all clusters
have the same number Nsc of SD nanoparticles. Substituting
Eq. (8) in Eq. (7) we obtain the Gibbs free energy per cluster
as

g(B) = −kBT lim
N→∞

(
1

N
ln ZN

)
= −kBT ln(z). (9)

The probability of a specific orientation of μ is p(μ) =
z−1 exp(βμ · E). Hence, 〈μ〉 can be written as

〈μ〉 = 1

z

∫ π

0
dϑ ′

∫ 2π

0
dϕ′ sin ϑ ′eβμ·Eμ. (10)

We may write μ = μ[sin ϑ ′(cos ϕ′ î + sin ϕ′ ĵ) + cos ϑ ′k̂],
where k̂ = Ê = E/E. Integrating over all directions and sub-
stituting for z from Eq. (8), we obtain

〈μ〉 =
(

2πμ

z

)
Ê

∫ π

0
cos ϑ ′ exp(βμE cos ϑ ′) sin ϑ ′dϑ ′

= μ[coth(βμE) − (βμE)−1]Ê. (11)

Vectors μ, B, and E(B) can be decomposed into components
normal ⊥ and tangential ‖ to the plane of lattice. Ordered
magnetic phase is to be a nontrivial self-consistent solution of
Eq. (11) in zero external magnetic field. For the longitudinal
component define x := |〈μ‖〉|/μ and 〈μ⊥〉 = 0 then Eq. (11),
yields

x = coth(β̃x) − (β̃x)−1, (12)

where β̃ := βμ2J11. The solution is found from graphical
plot of left- and right-hand side of Eq. (12) in terms of
x. From a Taylor expansion of the derivative of right-hand
side of Eq. (12) around x ≈ 0, while crossing the line y =
x we obtain a critical value β̃c ≈ 3. Defining a dimension-
less dipole coupling constant λ as the ratio of the magnetic
potential to the thermal fluctuation energy

λ := μ0μ
2

4πkBT l3
, (13)

we shall have the estimated critical point at λc ≈ 3/4.
For the numerical solution of the complete problem on

a honeycomb (or any other structure that consists of two
triangular sublattices) see Appendix A. The estimated critical
point is obtained as λc ≈ 0.91.

B. Three-dimensional case

Three-dimensional system of interacting dipoles have been
studied by a variety of approaches, mostly using some mod-
ification of the mean-field theory [27–30]. The problem is
approached both as continuum models using certain orien-
tational distribution, and as discrete lattice models. Back
in 1940s Luttinger and Tisza showed that interacting point
dipoles on cubic lattices order at T = 0 [29]. Later works
indicated that orientational order may be destroyed by lo-
cal fluctuations due to the randomness in positions of point
dipoles, which can be checked by introducing a hard sphere
radius for dipoles to suppress the divergence of interaction at
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very short distance [27,28]. These works have been mainly
related to the ferrofluids and dipole glasses [31].

Ferromagnetic phase transitions in a system of magnetic
dipoles floating in a fluid (ferrofluid) have been studied in
detail in the last decades [32]. Zhang and Widom have shown
that asymmetric interactions between hard-sphere dipoles
leads to zero magnetization in a spherical droplet. A nonzero
total magnetization is only possible for samples with asym-
metric boundary, e.g., a bipolar ellipsoid (prolate or oblate
spheroid) [27]. They have also found that a ferromagnetic
phase is only possible for high volume fraction of magnetic
particles above the threshold value of ∼0.3. They predicted
the coexistence of isotropic and ferromagnetic fluids for
slightly lower volume fraction. Mamiya et al. experimentally
observed the phase transition for spherical iron-nitride parti-
cles covered by surfactant layer (total diameter ∼15 nm) in a
long cylindrical shape sample. They also observed the Debye
relaxation while the system was moved toward the critical
point [33]. A 3D ferrofluid-like model is, however, not appli-
cable to the case we are studying, mainly because the dipoles
in ferrofluids are free to move translationally. In ferrofluid,
λc depends functionally on the volume fraction of particles
(a dimensionless measure of the density) and diverges for the
volume fractions lower than the critical value [28].

In our case no translational motion is assumed for the
dipoles. The dipoles are located in cells which are themselves
fixed in the tissue. Thus, λc only depends on the dimension
and the spatial arrangement of dipoles. Extending the two-
dimensional model of previous section to three dimensions
turns out to be more complicated than it seems at the first
sight. We choose instead a hexagonal lattice model similar to
that of Ih ice and solve the model numerically. For details of
the model see Appendix B. The critical value λc ≈ 0.91 is
obtained. There is some evidence suggesting the existence of
such an arrangement of superclusters in cortex [34]; though to
the best of our knowledge no other investigation is reported.

III. ROTATIONAL BROWNIAN MOTION

As already mentioned, we assume that SD nanoparticles
are located in the membranes of the nerve cells [35]. A frac-
tion of them may be connected to gated ion channels by hair
bundles, usually modeled by tiny springs. We shall discuss this
point briefly later in this section. The SD nanoparticles can
freely rotate around their fixed center-of-mass position. They
can be considered as simple magnetic dipoles, with magnetic
dipole moment μm.

A. Rotational dynamics of noninteracting SD nanoparticles

The stochastic rotational motion of a single SD dipole
under thermal agitation can be studied in the framework of
rotational Brownian motion. In other words, by comparing the
energy of thermal fluctuations kBT and the magnetic energy
of dipole, we can estimate the sensitivity of a single particle
to the external magnetic field. The rotational Brownian motion
of a magnetic dipole in a magnetic field is similar to the rota-
tional Brownian motion of electric dipole in an electrical field.
The approach to the problem and details of the calculations

are given in Ref. [36]. Here, we only give a summary of the
approach.

The coupled dynamical equations for rotational Brownian
motion of spherical SD nanoparticles with a magnetic dipole
moment μm in an external magnetic field B under the in-
fluence of stochastic thermal fluctuations and in a viscous
medium in three dimensions are given by

μ̇m(t ) = ω(t ) × μm, (14a)

Iω̇(t ) + ζω = w(t ) + μm × B. (14b)

Equation (14a) represents the rate of change in μm(t ) due
to the angular rotation (ω is the angular velocity). Equa-
tion (14b) is the Euler-Langevin equation of rotational Brow-
nian motion, where ζω is the damping torque due to the
viscosity, w(t ) is the thermal fluctuation torque, and μm × B
is the torque due to an externally applied magnetic field. I is
the moment of inertia of the nanoparticle and ζ = 8πa3η is
the rotational friction coefficient of a sphere with radius a that
rotates in a fluid with the dynamic viscosity η. If we take the
scalar product of Eq. (14a) with μm(t ), then we find that the
amplitude of the magnetic moment does not change over time.
Thermal fluctuation w(t ) is a random white noise vector with
Gaussian distribution, and zero mean value 〈w〉 = 0, and its
correlation function obeys

〈wi (t1)wj (t2)〉 = 2kBT ζδij δ(t1 − t2), (15)

where 〈· · · 〉 is an ensemble average and indices i, j = 1, 2, 3
represent the Cartesian coordinate axes.

The contribution of moment of inertia in Eq. (14b) is negli-
gible in the low-Reynolds-number regime. Then, substituting
ω in Eq. (14a) and using the triple vector product identity yield
the Langevin description of the dynamics of a single-dipole in
the noninertial limit as

ζ μ̇m(t ) = w(t ) × μm(t ) + μ2
mB(t ) − [μm(t ) · B(t )]μm(t ).

The corresponding probabilistic representation through the
Fokker-Planck equation can be obtained by repeating the
analytical method explained in Ref. [36] as

2τD

∂c(ϑ, t )

∂t

= 1

sin ϑ

∂

∂ϑ

[
sin ϑ

∂c

∂ϑ
+ μmB(t )

kBT
(sin2 ϑc)

]
. (16)

Equation (16) is in fact the Smoluchowski equation in spher-
ical polar coordinates (ϑ , ϕ), and c(ϑ, t ) is the density of
dipole moment orientations on a sphere of unit radius, and
τD = 1/(2D) is the Debye relaxation time defined by the
rotational diffusion coefficient D = kBT /ζ . Note that we have
assumed a uniform external magnetic field B(t ) = B(t )k̂ with
axial symmetry, so that c(ϑ, t ) does not depend on coordinate
ϕ in Eq. (16).

For a uniform magnetic field

B(t ) =
{

B0 : t < 0

0 : t � 0
, (17)

i.e., B(t ) = B0�(−t ), where �(t ) is the Heaviside step
function. The solution of Eq. (16), can be found in linear
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Re
Im

FIG. 1. Real and imaginary susceptibilities versus reduced angu-
lar frequency. The peak of absorption is at the frequency ωR ∼ τ−1

D .

approximation for μmB0  kBT as

c(ϑ, t ) = 1

4π

[
1 +

(
μmB0

kBT

)
e−t/τD cos ϑ

]
. (18)

The mean magnetic dipole moment in an external magnetic
field is obtained as

〈μm · k̂〉 = μm〈cos ϑ〉 =
(

μ2
mB0

3kBT

)
e−t/τD . (19)

If B(t ) = B0e
iω0t is an alternating magnetic field with

angular frequency ω0 (i.e., the alternating magnetic field is
only arisen from the real part of eiω0t ), so we have

〈μm(t ) · k̂〉 =
(

μ2
mB0

3kBT

)
eiω0t

1 + iω0τD

, (20)

where eiω0t is the temporal oscillating phase and (1 +
iω0τD )−1 indicates the phase difference between the external
magnetic field B(t ) and the magnetic moment μm(t ). We can
write Eq. (20) as

〈μm(t ) · k̂〉 =
(

μ2
mB0

3kBT

)(
eiω0t

1 + ω2
0τ

2
D

)
(1 − iω0τD ). (21)

Equation (21) shows that the mean magnetic dipole moment
contains both real and imaginary parts. Multiplying both
sides of Eq. (21) by dipole density n, and using the relation
Mz = χmHz = χmB/μ0, the real and the imaginary parts of
magnetic susceptibility are obtained as

Re[χm(ω0)] = χm(0)

1 + ω2
0τ

2
D

, (22a)

Im[χm(ω0)] = −ω0τD

[
χm(0)

1 + ω2
0τ

2
D

]
, (22b)

where χm(0) = μ2
mμ0n/(3kBT ) and μ0 is the magnetic con-

stant. The imaginary part of the magnetic susceptibility indi-
cates the energy absorption from electromagnetic field by the
magnetic nanoparticles (Fig. 1).

According to the Eq. (22b) the maximum energy absorp-
tion from electromagnetic field occurs at angular frequency
ωR = 1/τD , which is called the resonant frequency. Using the

definition of the Debye relaxation time we obtain

ωR = 2kBT /ζ = kBT

4πηa3
. (23)

The elastic effects mentioned earlier are investigated in
detail in the literature [11,22,26]. The hair bundle (spring)
stiffness k which normally shuts the gated ion channel is
ignored in our calculations. A simple calculation shows that
the corresponding elastic energy is the smallest term. For a
small displacement of hair bundle in a time scale larger than
millisecond the stiffness k is ≈250 μN/m [35]. The gated
ion channel is opened by a displacement of about δ ≈ 4 nm
[11,22]. Thus, the dimensionless number λ′ which represents
the ratio of the elastic potential energy to thermal fluctuation
can be estimated as 1

2f kδ2/(kBT ) ≈ 0.4f , where f  1
shows the fraction of SD nanoparticles which are connected
to the gated ion channels [12]. We should note also that most
of SD nanoparticles are located in the astrocytes rather than
nerve cells [23,24,34,37]. Therefore, the contribution of hair
bundle elasticity is at least an order of magnitude less than
other terms.

All of our calculation in this section is performed for
monodisperse nanoparticles. To extend the results to polydis-
perse nanoparticles, one should take average of Eq. (22b) over
the size distribution:〈∣∣∣∣ Im[χm(ω0)]

χm(0)

∣∣∣∣
〉
a

=
(

ω0

ωR

)〈
(a/ā)3

1 + (ω0/ωR )2(a/ā)6

〉
a

. (24)

B. Rotational dynamics of interacting SD nanoparticles
in a supercluster

We will later discuss that the distance of SD nanoparticles
in a supercluster are about a few micrometers and the energy
of their magnetic interaction and thermal fluctuation are com-
parable. The magnetic field acting on a SD nanoparticle is the
sum of the external magnetic field and the net magnetic field
resulting from other SD nanoparticles in the supercluster. In

mean-field approximation, E(B) = B +
↔
Jeff · 〈μm〉. We con-

sider the situation that B = Bk̂ and the rotation axis remains
unchanged along the z axis. Based on the previous result in
the supercritical state, in a nonzero magnetic field the average
dipole moment 〈μm〉 is along the z axis. Therefore, 〈μm〉 =
μm〈cos ϑ〉k̂ = 〈μm · k̂〉k̂. Thus, for a symmetric

↔
Jeff , as in

Eq. (6), we can write

E(B) = (B + J0〈μm · k̂〉)k̂, (25)

where J0 ∼ μ0/(πl3
m) and lm is the average center-to-center

distance of SD nanoparticle in a supercluster. Our previous
approach is still working. However, we have to realize that our
approach is linear in the μmE/(kBT ) (i.e., far from the critical
state where μmE ∼ kBT ). Assuming a harmonic variation
eiω0t for external magnetic field, we have

E(B, t ) = E0(B0, ω0)eiω0t k̂ = [B0e
iω0t + J0〈μ(t ) · k̂〉]k̂,

(26)

where B0 and E0 are complex values and B0 may not be
in phase with E0. To avoid repeating, we substitute E0e

iω0t

with B0e
iω0t in Eq. (20). Then, the average dipole moment is
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obtained as

〈μm(t ) · k̂〉 =
(

μ2
m

3kBT

)
B0e

iω0t + J0〈μ(t ) · k̂〉
1 + iω0τD

. (27)

Next, with some simplification

〈μm(t ) · k̂〉 = B0e
iω0t

(
μ2

m

3kBT

)/
(1 − λm + iω0τD ), (28)

where λm = J0μ
2
m/(3kBT ). As in the previous section, we can

write Eq. (28) as

〈μm(t ) · k̂〉 = B0λmeiω0t (1 − λm − iω0τD )

J0(1 − λm)2
[
1 + ω2

0τ
2
D

/
(1 − λm)2

] . (29)

Finally, it can be concluded that the resonance frequency ωR

is (1 − λm)/τD . Our calculations have been performed for
μmE0  kBT or equivalently λm  1, but as expected the
interaction causes a shift in the resonance frequency.

Astrocyte cell body spans 10 to 20 μm. Some of them may
contain a supercluster (i.e., Nsc nanoparticles). Assuming a
uniform distribution of SD nanoparticles in cell membrane,
we would have lm = 4 μm and λm ∼ 1.

IV. ISING LIKE MODEL

An old proposal exists that “a neurological array averaging
over large numbers of organelles . . . would be necessary to
explain the sensitivity to weak geomagnetic intensity fluc-
tuations displayed by many animals” [12]. We want to show
how the magnetic critical state of the receptors (i.e., magnetic
superclusters in organelles) may enhance the above sensitivity
beyond the usual neurological array averaging. To do so,
we use the well-known Ising model which is conventionally
utilized in the discussions of phase transitions in the magnetic
materials. Here a dichotomic variable si = ±1 called spin
represents the magnetic moment of site i. Neighboring spins
on the lattice are coupled to each other with a constant
coupling J . We use the model here to investigate the dynamics
of magnetic nanoparticles. So we simplify the complexity of
anisotropic long-range dipole-dipole interaction to an Ising
nearest-neighbor interaction, and the magnetic dipoles are
simplified to have either “up” or “down” direction.

The Ising model in an external magnetic field h is described
by the Hamiltonian

H ({si}) = −J
∑
[i,j ]

sisj − h
∑

i

si , (30)

where the square bracket [i, j ] indicates that the summation is
taken over all nearest-neighbor sites.

The order parameter is magnetization M per particle and is
defined as

m := M

N
= 1

N

N∑
i=1

si . (31)

At the critical point m → 0 for h = 0. Well above the critical
point, the dynamics of the system is governed by thermal
fluctuations, and dipoles are not correlated, i.e., we have a
paramagnetic regime. The system is linearly sensitive to an
applied magnetic field. As the critical point is approached, the

FIG. 2. The minimum external magnetic field, which causes a
symmetry breaking along the external field, in terms of system
size L.

correlations scale with the system size as a power law, and the
susceptibility diverges.

Here we study the dynamics of a two-dimensional Ising
model using a Monte Carlo simulation on a regular 128 × 128
lattice. In the thermodynamic limit, if the temperature of
the system decreases slowly from above the critical point to
below it, then the spins will align in even a tiny external
magnetic field. But at finite size the external magnetic field
should be greater than a threshold hc for the spins to align.
This threshold is strongly dependent on the system size L

(i.e., limL→∞ hc = 0). So, the value of hc is a measure of
sensitivity of finite Ising lattice to an external magnetic field.
Our simulation shows that hc has a power-law behavior with L

when L = 2n varies from 23 to 27 (Fig. 2). For N independent
particles the accuracy of mean value will vary as N−0.5. But
Fig. 2 shows that if the interaction is set at the critical point
value, the accuracy will scale as N−0.8 for an L × L (= N )
lattice. This difference in the exponent is dramatically large
for our model of interacting magnetic superclusters. Here the
total number of superclusters in the human brain is N ∼ 107

and the sensitivity might increase at least 100-fold compared
to that of the noninteracting case.

A. Alternating magnetic field

The previous result presented in Fig. 2 is also valid for
a very low frequency external alternating magnetic field,
h(t ) = h0 cos(ω0t ). The Monte Carlo simulation is used in
the equilibrium state with no temporal variation. But if the
relaxation time scale is much smaller than the time scale of
temporal variation of the external magnetic field, we may
assume that the system is in the equilibrium state at each
time step. A Monte Carlo simulation is used to reach the
equilibrium in each time step [38]. We use this approximation
for an extremely low frequency external magnetic field (i.e.,
frequency � 10 Hz).

Now, we assume the system to be at the critical point and
expose it to an alternating external magnetic field, h(t ) =
h0 cos ω0t (the relaxation time scale τ  2π/ω0). Averaging
over the number of Monte Carlo steps we can estimate m(t )
corresponding to h at time t . If the system is sensitive to h(t ),
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FIG. 3. The temporal variation of magnetization m(t ). Solid
curve shows the magnetic field h(t ).

magnetization m(t ) should follow its changes (Fig. 3), and
we expect a linear relationship between them [m(t ) � χh(t )
as in Fig. 4]. But if h0 < hc, the error (thermal fluctuation)
dominates and the linear relationship between h(t ) and m(t )
will be removed. The simplest way to measure the degree of
linear dependence between m(t ) and h(t ) is by plotting the
Pearson’s regression coefficient [39]

r (m,h) = 〈m(t )h(t )〉t − 〈m(t )〉t 〈h(t )〉t
σ (m)σ (h)

, (32)

as a function of alternating magnetic field (Fig. 5). In
Eq. (32) the symbol 〈· · · 〉t signifies the time average, σ 2(x) =
〈x2(t )〉t − 〈x(t )〉2

t is the variance, and x represents m or h.
If the Pearson’s regression r (m,h) is close to 1, then the
magnetization follows linearly the changes of the external
magnetic field, i.e., the system senses h(t ). The inset in Fig. 5
shows the relative error in χ versus h0. If the relative error
is large, then dependence of the magnetization on external
field is weak. In Fig. 5, r (m,h) reaches the value 1.0 at an
amplitude of about h0 ≈ 10−2 and the relative error in χ

decreases to its minimum value at h0 ≈ 10−2 as shown in the
inset.

FIG. 4. A parametric plot of the magnetization m(t ) versus h(t )
(changing parameter is time). Solid line shows the linear fit to the
plot of the magnetization versus h. Slope of the solid line is χ .

FIG. 5. The Pearson’s regression coefficient for the linear rela-
tion m(t ) � χh(t ) as a function of amplitude of h(t ). (inset) Relative
error of slope χ versus h0.

B. Spectral density

We saw that taking average over an array of receptors
increase the sensitivity of system. For an oscillating signal, the
averaging can be performed over time. Paulin has suggested
that the nervous system can adapt itself with an oscillating
external field which is sensed by all the receptors and act
as a band-pass filter to remove the background noise from
the periodic signals and improve the sensitivity [40]. Here,
we apply fast Fourier transform to m(t ) and find its spectral
density and look for a specific frequency in magnetization
which is induced by the alternating external field (Fig. 6). To
plot the spectral density we use a time series which includes
at most 10 oscillations of the alternating external field (e.g.,
in Fig. 6, a peak at ∼10 Hz frequency is distinguishable in a
time series with length ∼1 s).

The spectral density of the magnetization for an alternating
external magnetic field with amplitude h0 = 5 × 10−5 shows
that its peak is much lower than the threshold in the constant
magnetic field, hc � 9 × 10−4 (Fig. 2). Minimum detectable

FIG. 6. Power spectral density of magnetization for the 64 × 64
Ising model interacts with an external sinusoidal alternating mag-
netic field with the amplitude of h0 = 5 × 10−5 and frequency of
10 Hz.
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FIG. 7. The amplitude of minimum detectable external magnetic
field vs. lattice size L. Solid triangle pointing upward ( ) is the min-
imum constant field influences the transition. Solid triangle pointing
downward ( ) is the minimum amplitude of alternating field that may
be detected by using power spectrum of magnetization.

value by this method is shown by the solid triangles pointing
downward in Fig. 7. In the figure the sensitivity to the constant
and the alternating external magnetic fields are compared.
Implications of this idea of improving sensitivity for nervous
system are discussed by Paulin and we refer the reader to his
work [40].

In summary, if the minimum measurable value of magne-
tization is Mmin, then the minimum detectable magnetic field
hc at critical point (where magnetic susceptibility diverges) is
given by

hc = χ−1Mmin, (33)

where hc follows power-law behavior ∝ N−αh . For a finite
Ising lattice, the susceptibility at the critical point is given
by [41]

χL ∝ Lγ/ν, (34)

where γ is the exponent of zero field susceptibility at critical
point and ν is the exponent of correlation length. Since, N =
L2 then hc ∝ N−γ /(2ν) and αh = γ /(2ν). Using the numerical
values of exponents γ and ν we would then have αh ≈ 0.87
and 0.66 for the Ising model in two and three dimensions,
respectively [41]. These results confirms our numerical esti-
mation αh = 0.8 in two dimension. However, these results,
obtained for an Ising-like model, is not necessarily applicable
to systems with dipole-dipole interaction.

V. DISCUSSIONS AND CONCLUSIONS

We have shown (Sec. II) that a system of magnetic
dipoles interacting via dipole-dipole interaction exhibits a
magnetically ordered phase below a temperature T if the
number density of dipoles is more than a certain value. By
introducing a dimensionless dipole coupling constant λ :=
μ0μ

2/(4πkBT l3), and applying a simple mean-field approxi-
mation, we found that the critical transition point corresponds
to λc ≈ 0.75 for a two-dimensional system and to λc ≈ 0.91
for a three-dimensional one.

Applying the above results to a system of magnetic super-
clusters in brain, the dimensionless dipole coupling constant
is given by

λ = μ0N
2
scμ

2
m

4πkBT l3
sc

,

where lsc is the average distance between clusters and Nsc

is the average number of SD particles in a supercluster. The
numerical estimates of all the parameters based on existing
experimental results are given in Appendix C.

The two tissues of interest here, the neocortex and
meninges, are different from each other regarding the distribu-
tion and density of superclusters. Distribution of magnetic su-
perclusters in meninges is fairly uniform in large scale, while
these superclusters are quite heterogeneously distributed in
the neocortex. Also, the number density of magnetites in the
meninges is an order of magnitude higher than in the neocor-
tex. The density of magnetic nanoparticles in hippocampus is
also found to be high and comparable to that in the meninges
[42]. For meninges, using the estimates of Appendix C, at the
body temperature kBT is ∼4.3 × 10−21 J, we have λ(men) ∼
0.7 ± 0.3, within the ranges of λc. Overall heterogeneity of
distribution of magnetic particles in cortex means that cortical
tissue may attain critical density in large enough patches of
the tissue [2]. In some of these patches the average distance
between superclusters are less than 100 μm. If compared with
our overall estimation in Appendix C, l(cor)

sc ∼ 3 × 102 μm,
the density of superclusters in these patches are an order of
magnitude higher than their average density in the neocortex.
For these patches λ(cor) ∼ λc. In fact, there are some evidence
confirming that the superclusters are more or less uniformly
distributed over these large patches [37]. Also, proximity of
them to meninges tissue may critically couple them together.
Open magnetic hysteresis loops observed at room temperature
for the brain tumor (meningiomas) with high magnetites
number density may have some relevance to our expectation
[43]. Finally, it should be noted again that what we mean
by criticality is different from the criticality observed in the
electrocorticographic records of the cortical avalanches.

As mentioned earlier, SD nanomagnetites are organized in
the groups of almost 100 SD nanoparticles (i.e., superclusters)
but not in solid chains or magnetosomes. So they can rotate
mechanically independent of each other in the supercluster. To
investigate the rotational Brownian motion, it is more realistic
to use average SD nanoparticle size instead of supercluster
size in estimating the resistance due to viscosity. The aver-
age resonance angular frequency is given by Eq. (23) i.e.,
ωR = kBT /(4πηā3). The cell cytoplasm dynamic viscosity
is about 0.1 Pa s. Using ā (as estimated in Appendix C), we
estimate ωR ≈ 30 rad/s for monodisperse particles. To extend
the results to polydisperse SD nanoparticles, one may use
the parameters given by Appendix C in Eq. (24) and find a
broad range of resonance frequencies from 10 to 50 Hz. Also,
for interacting SD nanoparticles in disordered phase far from
equilibrium, we show that the resonance frequency indicates
a shift, ωR = (1 − λm)/τD , but close to the critical point ωR

will be a more complicated function of λm.
It is obvious that above results are obtained by making

many simplifications (such as assuming spherical particles,
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ignoring the elasticity of the involved subcellular structures,
and ignoring the possible effects of the existing superparam-
agnetic particles). Moreover, Tc is generally overestimated in
mean-field approximations. Thus, λc might be underestimated
in our case. What is emerging from our results is that the as-
sumption of near critical dynamics of magnetic nanoparticles
in the brain tissue (or in some regions of it) is a plausible one.
We have estimated the parameters of our model mostly from
the pioneering experimental works of three decades ago. New
and more accurate experimental data are needed to develop
a better understanding of the problems and to devise more
realistic models.

A system of superclusters in critical point is more sensitive
to external factors, than in disordered phase. At critical point
sensitivity scales with the number of superclusters as a power
law ∼N−αh ; 0.5 < αh ∼ 0.8, where αh = 0.5 is the exponent
for independent receptors. Our simple Ising-like calculations
shows that the sensitivity of a system of N superclusters
(as magnetic receptors) increases enormously in critical state
compared to disordered state, if N is sufficiently large. Of
course, we know that the Ising-like model is not a good
substitute for a system of interacting dipoles.
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APPENDIX A: MEAN-FIELD THEORY
OF THE HONEYCOMB LATTICE

Following the calculations in Sec. II B, here we investigate
a more general problem that also allows an antiferromagnetic
phase to occur. The honeycomb lattice consists of two trian-
gular sublattices A and B. We can assume

〈μi〉 =
{〈μ〉 : i ∈ A

Ar〈μ〉 : i ∈ B
, (A1)

where Ar is three-dimensional reflection matrix along the
normal component as

Ar =
⎛
⎝1 0 0

0 1 0
0 0 −1

⎞
⎠. (A2)

Then, we do not ignore the contribution of the normal compo-

nent and
↔
Jeff is calculated as

↔
Jeff ≈

↔
Jeff (ri ) = 1

2

∑
j

↔
J(rj − ri )Aj , (A3)

where ri is an arbitrary location at a center of lattice. Also,

Aj = 1 for j ∈ A and Aj = Ar for j ∈ B. Finally,
↔
Jeff is

numerically obtained from L → ∞ asymptotic behavior. The
critical point is estimated at λc ≈ 0.91 (1.29) for the ferro-
magnetic (antiferromagnetic) phase based on the tangential
(normal) component of 〈μ〉. Therefore, with increase in λ

(i.e., the dipoles density), we expect that the ferromagnetic
phase appears first and the other one is meaningless. However,

the values of these two λc are estimated to be close together.
Thus, more accurate calculations may shift them relative to
each other rather than the mean-field approximation in favor
of antiferromagnetic phase.

APPENDIX B: MEAN-FIELD THEORY
OF THREE-DIMENSIONAL CASE

A model that provides us with the kind of three-
dimensional structure compatible with the dipole-dipole in-
teraction is that of Ih ice. In ice Ih the electric dipoles are
on the vertices of a tetrahedron whose center (oxygen atom)
lies on a hexagonal lattice, so that in each tetrahedron two of
the dipoles are oriented inward and the remaining ones are
oriented outward. Hexagonal lattice consists of two triangular
sublattices A and B. Base of all tetrahedrons tangentially lie
down on hexagonal planes. But apices of tetrahedrons whose
centers are on the two sublattices are oppositely oriented [44].

Similarly, we arrange the magnetic dipoles on the ver-
tices of a tetrahedron [Fig. 8(a)]. Then, the center of half
of tetrahedrons are laid on the sublattice A (B), while their
apices above (bellow) the planes of hexagonal lattice. Stack
of planes coupled to each other by the dipoles at the apices
of tetrahedrons. We should analyze the structure produced
[Fig. 8(b)], and find effective coupling between dipoles. In
this case, thermal fluctuations of all dipoles will not be around
a fixed orientation. Rather, it is assumed that each dipole
fluctuates on average along a segment of the line from the
tetrahedron’s centroid to the corresponding vertex [i.e., along
the directions of OA, BO, OC, or DO in Fig. 8(a)]. Therefore,
instead of the simple reflection matrix at Eq. (A2) five distinct
orthogonal transformations matrices (depending on the dipole
which is selected) should be used in calculation of Jeff .

Finite size behavior of Jeff is also analyzed. Variation
of Jeff with lattice size follows the asymptotic behavior as
L → ∞, which is shown by the solid line in Fig. 9. In this
figure Jeff (∞) extrapolated at the intersection of solid line

and vertical axis. Line intercept corresponds to
↔
Jeff (∞) ≈

(a) (b)

FIG. 8. (a) Dark arrows (���) placed on the tetrahedron’s vertices
A, B, C, and D are shown dipoles. They are aligned to OA, BO, OC,
and DO, respectively, where O shows the tetrahedron’s center. (b)
Stack of honeycomb structures. The diagonal hatch pattern (���)
marks a mediate hexagonal plane. Unlike to what is seen from the
appearance of the figure the hexagonal planes are not flat. Each plane
corresponds to hexagonal sublattices A and B. For simplicity, only
two of tetrahedrons have been shown here. One from the sublattice
A that creates a connection to an upper plane and another from
sublattice B that connects hexagonal plane to a lower plane.
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FIG. 9. Jeff (L) plotted in terms of 1/ log10(L), where 2L shows
the lattice size. Solid line shows the linear fit to the data points.
limL→∞ Jeff (L) corresponds to a linear interception ≈3.26μ0/(πl3)
on the vertical axis.

3.26μ0/(πl3)1. Thus, the method of Sec. II, explained in
detail from Eqs. (9) to (13), can be used to estimate the
value of λ(3D)

c ≈ 0.91. The value obtained from the mean-field
theory is the same as the corresponding dimensionless number
obtained for a system of electric dipoles with dipole-dipole
interaction in ice Ih. Here, we ignore the native frustration
well known and understood in the ice Ih lattice and to calcu-
late the critical condition, we do not perform the averaging
over all configurations. If frustration is taken into account the
system would have many states with similar minimum value
of energy with strong effects on the so-called residual entropy,

but it would have little effect on the accuracy of average
effective interaction energy in ground state.

APPENDIX C: ESTIMATING BIOLOGICAL PARAMETERS

Based on the experiments performed by Kirschvink et al.,
brain tissue contains some five million magnetic nanoparticles
per gram, which are organized in about 5 × 104 superclusters
per gram. But the density of superclusters in the human brain
meninges is about 20 times that of the brain tissue [2].

The volume number density of superclusters in the
meninges ρ (m) is 1 × 103 /mm3, so the average center-to-
center distance of superclusters in meninges tissue is l(m)

sc ∼
1. × 102 μm [2]. This value is about three times smaller
than the same distance in the neocortex tissue, i.e., l(nc)

sc ∼
3 × 102 μm.

Magnetic moment, μ ≈ Nscμm is the approximate net
dipole moment of the superclusters where Nsc stands for the
number of SD particles in a supercluster ∼100 and μm is the
average magnetic dipole moment of a SD nanoparticle. μm

is proportional to the SD nanoparticle volume, so 〈μm〉a ∝
〈a3〉a , where 〈· · · 〉a shows the average over the distribution
of particles. Kirschvink et al., estimate the size distribution
of SD nanoparticle to be bimodal, though the sample size is
not large. One can estimate the probability density function
by using the combination of two log-normal distributions
and estimate 〈a3〉1/3

a ≈ 85 nm, which is not equal to 〈a〉a =
ā ≈ 50 nm, because the positive tail of distribution has more
significant contribution to higher order moments. We use
μ̄m ∼ 1.4 × 10−15 Am2 for a typical nanoparticle with ra-
dius ∼85 nm which is slightly smaller than the particle size
considered in the literature (ā ∼ 100 nm and μ̄m ∼ 2.24 ×
10−15 Am2 [45]). Thus, the acceptable value for μ̄m is in the
range of 1.4–2.2 × 10−15 Am2.
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