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A mapping is developed between the linearized equation of motion for the dynamics of the transverse modes
at T=0 of the Heisenberg-Mattis model of one-dimensional �1D� spin glasses and the �discretized� random
wave equation. The mapping is used to derive an exact expression for the Lyapunov exponent �LE� of the
magnon modes of spin glasses and to show that it follows anomalous scaling at low magnon frequencies. In
addition, through numerical simulations, the differences between the LE and the density of states of the wave
equation in a discrete 1D model of randomly disordered media �those with a finite correlation length� and that
of continuous media �with a zero correlation length� are demonstrated and emphasized.
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I. INTRODUCTION

Since the pioneering work of Anderson,1 much research
has been done on the propagation and localization of waves
in disordered media. Anderson showed that, due to disorder,
electronic states of three-dimensional crystals can be local-
ized in space and that there is a disorder-induced transition
from the extended to the localized phase. Mott and Twose2

conjectured that all the eigenstates of an electron in a one-
dimensional �1D� disordered potential are localized in space,
which was confirmed by the scaling theory of localization, as
advanced by Abrahams et al.3

A very useful quantity for determining whether a state is
delocalized or localized is the Lyapunov exponent �LE� �,
which is simply the inverse of the localization length �. If
��0 for all energies or frequencies �, then all the states are
localized; that is, the wave function ��r� decays at large
distances r from the domain’s center as ��r��exp�−����r�.
The transition between the two states—the metal-to-insulator
transition—is characterized by the LE which follows the
power law, ����−�c��, where �c is the critical value of
disorder strength �.

In the literature, there is rigorous proof of localization,
with an exponential decay of the wave function, in 1D sys-
tems with diagonal disorder.4 Ishii5 showed that a powerful
theorem proposed by Furstenberg and co-workers,6 concern-
ing the limit of products of noncommuting random variables,
can be utilized in predicting a nonzero LE for the 1D model.
Moreover, the LE of the 1D Anderson model with the
Cauchy distribution of the potentials was calculated
precisely5 and it turned out to be nonzero for all the energies.
The weak-disorder expansion of the LE was also given7,8

through the energy band and near the band edge.9,10 In most
cases, however, the LE is calculated numerically by, for ex-
ample, the transfer-matrix �TM� method.

An important implication of the wave characteristics of
electrons is that the localization phenomena may also occur
in the propagation of the classical waves. However, unlike
electron localization in strongly disordered materials, which

has proven to be a very difficult problem, classical waves,
such as acoustic11 or elastic12 waves, do not interact with one
another; therefore, their propagation in strongly heteroge-
neous media provides an ideal tool for studying the localiza-
tion phenomena. Thus, many theoretical and experimental
efforts have been devoted to the problem of the propagation
of classical waves. For example, a low-frequency expansion
of the LE of harmonic chains with a random distribution of
masses yields

� =
�2�2

8maks
, �1�

which was derived by Matsuda and Ishii.13 Here, ma is the
average mass, ks is the spring constant, and �2 is the variance
of the mass distribution �see also below�.

Another important area of research over the past 30 years
in understanding disordered media has been the study of spin
glasses, which are disordered magnetic systems in which the
atoms are frozen in random positions. Then, the magnets
associated with the atoms are “frozen” in random orienta-
tions. There is a competition between the ferromagnetic and
antiferromagnetic interaction, which, due to the quenched
disorder, exhibits a continuous “freezing” transition to a
phase with zero net magnetization. It is believed that spin
glasses have only localized eigenvectors,14 which have made
it possible to explain some of the experimental data for them.
Such ideas have also led to a description of the spin glass
transition in terms of a transition to an extended state at the
mobility edge.15 Although, there are certain differences in the
symmetries of the field-theoretical description of the two
problems, it is believed that there is a deep relation between
the qualitative features of spin glasses and the localization
problem.

In this paper, we derive a mapping between the random
wave equation and the equation of motion for the dynamics
of 1D spin glasses in order to derive an exact expression for
the LE of the magnon modes of the Heisenberg-Mattis �HM�
spin glasses. We first summarize what is already known
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about the LE and the density of states �DOS� of the random
wave equation. The LE and the DOS of the wave equation
and their dependence on the frequency � and the variance �2

of the disorder are then computed using the TM method and
are compared with the analytical results. The comparison
helps us to understand whether there are any significant dif-
ferences between the LE and the DOS of the continuous
model �those with zero correlation length� and its discrete
counterpart �which represents a disordered medium with a
finite correlation length�. We then describe the mapping be-
tween the random wave equation and the equation of motion
for the 1D HM spin glasses in order to derive the new exact
result for the LE of the model.

II. ONE-DIMENSIONAL RANDOM WAVE EQUATION

Consider the classical wave equation in a medium with
random densities or masses,

�2��x,t�
�x2 − m�x�

�2��x,t�
�t2 = 0, �2�

where the density is given by m�x�=ma+c�x�, with ma as the
average density and c�x� as a Gaussian and uncorrelated ran-
dom function, such that

�c�x�� = 0,

�c�x�c�x��� = �2��x − x�� . �3�

We consider a wave component with angular frequency
�. Taking the temporal Fourier transformation of Eq. �2�
yields

�2�̂�x,��
�x2 + m�x��2�̂�x,�� = 0, �4�

where �̂�x ,�� is the Fourier transform of ��x , t�. Hereafter,
for simplicity, we delete the hat sign. The log derivative of
��x ,��, i.e., f�x ,��=���x ,�� /��x ,��, satisfies the follow-
ing equation:

f� + f2 + �2m�x� = 0. �5�

In one dimension, the Thouless relation16 connects the LE
to the DOS of a system. However, the LE may also be de-
rived in terms of the probability density function �PDF� of f ,
i.e., the probability P�	 ,x ,��d	 that one finds f�x ,�� in
�	 ,	+d	�, implying that P�	 ,x ,��= ���f −	��. The advantage
of the method based on the PDF is that it can be generalized
to higher-dimensional systems. The LE � is given by17

���� = lim
x→

	 �

�x
ln���
 = �f�
, �6�

where the average is taken over the PDF of f at infinity,
which is the solution to the following equation:

�	2 + �2ma +
1

2
�2�4 �

�	
�p�	,�� = p0, �7�

where p�	 ,��=limx→
 P�	 ,x ,��. Equation �7� is the Airy
equation which, after integration, yields the following solu-
tion:

p�	,�� =
2p0

�2�4exp−
2

�2�4�1

3
	3

+ �2ma	���
−


	

d� exp 2

�2�4�1

3
�3 + �2ma��� .

�8�

Therefore, one obtains17

���� =� 	p�	,��d	 . �9�

Substituting p�	 ,�� from Eq. �8�, one obtains, after some
algebra, the following exact relation:17

���� =
�2

2
� I+

I−
� , �10�

where

I���� = �
0




du u�1/2 exp�−
�2

6�2u3 −
2ma

�2 u� . �11�

In the low-frequency limit ��→0�, the integral �Eq. �11��
can be expanded in powers of �,

I���� = �
n=0



�− 1�n

n!

�4n+2�1

�2ma�3n+1�1/2�3n + 1 � 1/2��2n,

�12�

which then yields17 an exact expression for the LE in the low
frequency ��→0�,

���� =
�2�2

8ma
, �13�

which is identical to Eq. �1� �if one sets ks=1 in Eq. �1��, as
derived by Matsuda and Ishii13 using a perturbative method.
At high frequencies, a suitable expansion yields the follow-
ing equation for the LE:

� =
61/3��

2�1/6�
�2/3�4/3, �14�

implying that at high frequencies the localization length �
=1 /� scales with � as ���−4/3, i.e., localization becomes,
in some sense, stronger at such frequencies.

Sheng et al.18 suggested that in the presence of a diagonal
disorder and at high frequencies, � either approaches a con-
stant or diverges. Equation �14� indicates that the localization
length decreases at high frequencies. As discussed below, we
attribute the difference between Eq. �14� and the result of the
work of Sheng et al.18 at high frequencies to the presence of
a nonzero correlation length in the type of disorder that they
included in their model. Equation �14� is valid for a com-
pletely random �with a zero correlation length� disorder.
Thus, in the above continuum model, there is no character-
istic microscopic length scale so that the propagating waves
perceive a medium with the same properties at all relevant
length scales.

It can be shown17,19,20 that the exact integrated DOS,
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N��2�, for disordered 1D lattices is given by

N��2� = p0, �15�

where p0 is given by Eqs. �7� and �8�. It is then straightfor-
ward to show that N��2� has the following exact closed
form:17,19,20

1

N��2�
=

�2�

��2��2/3�
0


 dx
�x

exp�−
1

6
x3 −

2ma

�2/3�4/3x� , �16�

which, in fact, was first derived by Frisch and Lloyd.20 In the
limit �→0, Eq. �16� simplifies to

N��2� =
2

�
�ma�2, �17�

which is the expected result for a 1D ordered system with a
constant density.

Note that the above results pertain to random media with
nonzero average densities. In Sec. IV, we derive the exact
result for 1D media with a zero mean density.

III. NUMERICAL SIMULATION: DIFFERENCE BETWEEN
CONTINUOUS AND DISCRETE SYSTEMS

We begin with the discretized version of Eq. �4�, which,
for the wave component ��x ,�� at site i of a 1D lattice, is
given by

�i+1 + �i−1 − �2 − mi�
2��i = 0, �18�

where �i is the value of the function at site i. Equation �18�
is then written in the TM form as

��i+1

�i
� = �2 − mi�

2 − 1

1 0
�� �i

�i−1
� , �19�

with the initial normalized vector v= �1 /�2,1 /�2�T. To en-
sure the stability of the numerical method, after multiplying
the transfer matrices M times, we checked the length of the
resulting vector, normalized it again, and then continued with
the new vector.21–24 Moreover, to ensure that the random
masses were all positive, we kept � /ma small and checked
that the random masses were indeed positive for each fre-
quency. The LE is then expressed in terms of vector lengths
d�, obtained after N normalization of v, that is,

� =
1

MN
�
�=1

N

ln�d�� . �20�

Moreover, the error in estimating � is given by

��

�
=

1
�N

���ln d��2� − �ln d��2

�ln d��
, �21�

where the angular brackets indicate averaging over the se-
quence of �d��. According to the Oseledec theorem,21–25 � is
a self-averaged quantity, and the error of its estimates ap-
proaches zero as 1 /�N as N increases.

Figure 1 presents the frequency dependence of the LE for
the disorder standard deviations, �=0.5, computed both ana-

lytically and numerically �using the TM method� for the av-
erage densities ma=0 and 2. The numerical results indicate
that for small frequencies, the LE scales with the frequencies
���1.33�0.01 and ���2.06�0.01 for ma=0 and ma=2, respec-
tively, which is in agreement with the exact results. More-
over, Fig. 1 exhibits the effect of a nonzero average density
on the scaling of the LE with the frequency. For large fre-
quencies, we find the difference between the spectrum of the
continuous random-mass model and the discrete one to be
due to the presence of a high-frequency cutoff in the latter
model. For small frequencies, or in the limit of long wave-
lengths, the propagating waves cannot be scattered by the
fluctuations in the mass. The reason is that the typical length
scale over which the mass fluctuates is very small in com-
parison with the wavelength. In the opposite limit, in which
the waves’ wavelength is small compared to the length scale
of mass fluctuations, the medium is, indeed, in the limit of
geometrical acoustics.

For small frequencies, the scattering amplitude is sup-
pressed and the localization length is enhanced. The Ioffe-
Regel criterion26 for localization yields the physical picture
of the problem. According to this picture, localization is
stronger when k��1, where k is the wave number and � is
the mean-free path of elastic scattering �or of the carriers�,
which is of the order of the correlation length over which the
mass fluctuates. If the correlation length �and, hence, �� of
the fluctuations is decreased to zero, the criterion will be
satisfied at small frequencies �long wavelengths�. In other
words, when there is a finite correlation length in the disor-
der, we have an upper cutoff in the short-wavelength limit
�high frequencies� �min�� so that for wavelengths shorter
than �min, we have the so-called geometrical ray propagation.

If the correlation length approaches zero continuously, the
corresponding short-wavelength limit will also approach
smaller values and the localization length will also decrease
in a larger domain of frequencies. In the limit of zero corre-
lation length, which is the focus of the present work, there is
no such limit and, therefore, no geometrical ray propagation

FIG. 1. Frequency dependence of the Lyapunov exponent � for
the disorder standard deviation �=0.5. The solid lines represent the
exact results, while the symbols denote the results of the transfer-
matrix calculations with an error of about 6%.

EXACT LYAPUNOV EXPONENT OF THE HARMONIC… PHYSICAL REVIEW B 77, 104202 �2008�

104202-3



regime. The smallest characteristic frequency for an ordered
chain is the cutoff frequency, which corresponds to the mini-
mum wavelength, which is of the order of lattice spacing a.
The cutoff frequency is approximately �c� 2 / a�ks /ma,
where ks is the spring constant. By low frequencies, we mean
those that are smaller compared to �c.

Figure 2 shows the dependence of the LE on � at fre-
quency �=0.2, again computed both analytically and nu-
merically. Once again, the numerical results are in complete
agreement with the exact results given above.

In Fig. 3, we display the LE at larger frequencies, which
indicates that, in the long-wavelength �small-frequency�
limit, the small scale cutoff is irrelevant, and the continuous
and discrete models yield the same results. For large frequen-
cies, however, the spectrum of the continuous model �Eq.
�2�� and that of the discrete model �Eq. �18�� differ signifi-
cantly due to the presence of a high-frequency cutoff in the
discrete model.

Figure 4 compares the exact DOS ���2� of an ordered 1D
lattice with the results of the numerical simulations, which

were obtained for a single realization of a system with a size
of 106 by using the forced-oscillator method27 �FOM�, which
is an efficient technique for computing the eigenvalues and
eigenvectors of large matrices and, in particular, for calculat-
ing the DOS without direct diagonalization. The exact DOS
of the ordered chain diverges at zero frequency and also at
the cutoff frequency �c. Then, by adding randomness to, for
example, an average density ma=10 and a standard deviation
�=1.0, the singularity at the upper band edge is rounded and
a band tail appears, which leads to a maximum at the cutoff
frequency �c.

Figure 5 compares the computed DOSs for the continuous
and discrete models. The numerical results for the discrete

FIG. 2. Dependence of the Lyapunov exponent � on the stan-
dard deviations � of the disorder at frequency �=0.2. The solid
lines represent the exact results, while the symbols show the results
of the transfer-matrix calculations with an error of about 5% for the
average density ma=1 and 0.2% for ma=0.

FIG. 3. Frequency dependence of the Lyapunov exponent � for
�c� the continuous model and �d� the discrete model, computed by
the transfer-matrix method for ma=2 and �=0.5.

FIG. 4. Comparison of the density of states ���2� of the discrete
model with an average density ma=10 and two values of the disor-
der standard deviations �. The exact results are for the ordered 1D
lattice, while the symbols denote the results of the numerical simu-
lations of the model. The arrow indicates the position of the cutoff
frequency.

FIG. 5. Comparison of the density of states ���2� of the con-
tinuous model �exact result, continuous curve� with the results of
the numerical simulations for two values of the lattice constant a.
The arrows indicate the cutoff frequencies. As a decreases, the ex-
act results for the continuous model and the numerical results be-
come closer and the cutoff frequency shifts to higher values �shorter
times�.
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model are for a single realization of a system with a size of
106 using the FOM. Similar to the LE, the two DOSs agree at
low frequencies �long times� but differ at intermediate and
large frequencies �intermediate and short times�. As Fig. 5
also indicates, the DOS of the discrete model has a maxi-
mum while that of the continuous model decreases monoto-
nously. The differences between the two systems are ex-
pected: The agreement between the two DOSs should be in a
limited range of the spectrum, not in the entire spectrum,
because the DOS of the two models should be similar for
frequencies that correspond to long times; that is, at times
when the waves have sampled a large part of the lattice and
the wavelengths are much larger than the lattice spacing a of
the discrete model. Therefore, near �=0 �long times�, the
two models have similar DOSs �and LE�, but as the cutoff
frequency �c is approached, they begin to differ and, in par-
ticular, the discrete model behaves completely differently
from the continuous model.

If the lattice spacing a is shrunk toward zero, then the
cutoff frequency shifts to larger values �shorter times� and
the range of frequencies over which the two models agree is
enlarged. This is also shown in Fig. 5 for two values of the
lattice spacing a. Note that changing the lattice constant a in
the discrete model entails changing the disorder strength �.
According to the correlation function �Eq. �3��, the discrete
and continuous disorder strengths � are related through

�discrete =
1
�a

�continuous. �22�

IV. LYAPUNOV EXPONENT OF THE HARMONIC
MAGNON MODES OF THE ONE-DIMENSIONAL

HEISENBERG-MATTIS SPIN GLASSES

In this section, we consider an important feature of the
dynamical properties of spin glasses and discuss its relation
to the random wave equation considered above. Low energy
excitations �spin waves�, describing the dynamics of spin
glasses, have an anomalous dispersion relation given by

� � k3/2, �23�

where � is the magnon frequency and k is the inverse char-
acteristic length of the spin fluctuations.28 The power law
�Eq. �23�� is in contrast to the parabolic and linear dispersion
relations of the ferromagnetic and antiferromagnetic
systems,28 respectively. Such an anomalous power law has
also been reported29 for the LE and the DOS of the model at
low frequencies.

We consider the Heisenberg Hamiltonian for 1D spin
chains with nearest-neighbor couplings as

H = �
i,j

JijSi · Sj , �24�

where Jij is distributed randomly according to a binary dis-
tribution function, P�Jij�= 1 / 2 ���Jij −J�+��Jij +J��, and the
coupling J is a constant �set to unity in the following analy-
sis�. The Hamiltonian is then written in terms of the trans-
verse operators, S�=Sx� iSy, as

H = �
i,j

Jij1

2
�Si

+Sj
− + Si

−Sj
+� + Si

zSj
z� , �25�

which leads to the following Heisenberg equation of motion
for the transverse component:

i�
�Si

+

�t
= �

j�i

Jij�1

2
�Si

+,Si
+Sj

− + Si
−Sj

+� + �Si
+,Si

zSj
z�� . �26�

Using the relations �Si
+ ,Sj

−�=2�ijSi
z and �Si

z ,Sj
��= ��ijSi

�

in Eq. �26�, we obtain the following equation of motion:

i�
�Si

+

�t
= �

j�i

Jij�Si
zSj

+ − Sj
zSi

+� , �27�

or, for 1D spin chains,

i�
�Si

+

�t
= − �Ji,i+1Si+1

z + Ji,i−1Si−1
z �Si

+ + Ji,i+1Si
zSi+1

+ + Ji,i−1Si
zSi−1

+ .

�28�

Now, assuming that the spin wave amplitudes are small
�i.e., Sx, Sy�S�, we may replace Eq. �28� with a linear equa-
tion, which is known as the Heisenberg-Mattis spin glass.
This means that Si

z�	iS, where S is the length of the spin
vectors and 	i�1. Using the identities 	i

2=1 and
�S /�J�	i	 jJi,j =−1, we obtain

�2 − 	i���i = �i+1 + �i−1, �29�

where �i=	iSi
+. Here, we used �i�t�=�i exp�−i�t�.

Equation �29� is analogous to the discrete wave equation
�Eq. �18�� with an average mass of zero if we set �=�2. In
contrast to 	i, however, mi in Eq. �18� can take any value.
Due to the mapping between the two models, the exact re-
sults described in Sec. II are directly applicable to spin
glasses. In particular, Eqs. �10� and �14�, in the limit m→0,
lead to

� =
61/3��

2�1/6�
����2/3, �30�

hence predicting the anomalous scaling of the LE with the
magnon frequency �, i.e., the one with an exponent of 2/3.
Note that the numerical coefficient in Eq. �30� is not univer-
sal and depends on the form of the distribution function of 	i.
Here, we give its exact value for a continuous Gaussian dis-
tribution with variance �2. The positivity of the LE implies
that all the magnon modes are localized in the 1D HM spin
glasses. The exponent 2/3 in Eq. �30� is, indeed, the anomaly
in the band edge of the Anderson model with a diagonal
disorder, which has been studied extensively using the dis-
crete model. For example, Derrida and Gardner9 calculated
the LE of the 1D Anderson model using a weak-disorder
expansion and, therefore, their result is valid for a weak het-
erogeneity. Here, we reported the same anomalous exponent
for a continuous model of wave propagation with a zero
average mass.
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V. SUMMARY

The exact Lyapunov exponent �the inverse of the localiza-
tion length� of the one-dimensional disordered wave equa-
tion in the low-frequency limit was derived a long time ago
by Lifshits et al.17 We derived the corresponding expression
for the high-frequency limit. The LE and the DOS of the
random wave equation in a 1D lattice were computed by
numerical simulations. For small frequencies, the simulation
results are in complete agreement with the exact results but
deviate from them at high frequencies. The difference is due
to the existence of a cutoff frequency in the discrete system.

Since a discrete system can be thought of as one in which the
correlation length is the same as the lattice constant, the dif-
ference also distinguishes such lattices from continuous ran-
dom media in which the correlation length is zero and for
which the exact results have been derived.

By deriving a mapping between the equation of motion
for the dynamics of the tranverse modes at zero temperature
of the Heisenberg-Mattis model of 1D spin glasses and the
discretized wave equation with nonzero density, we also ob-
tained an exact expression for the LE of the magnon modes
of the spin glasses, which indicates anomalous scaling of the
LE with the frequency.
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