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Functional scale-free networks in the two-dimensional Abelian sandpile model
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Recently, the similarity of the functional network of the brain and the Ising model was investigated by Chialvo
[Nat. Phys. 6, 744 (2010)]. This similarity supports the idea that the brain is a self-organized critical system.
In this study we derive a functional network of the two-dimensional Bak-Tang-Wiesenfeld sandpile model as a
self-organized critical model, and compare its characteristics with those of the functional network of the brain,
obtained from functional magnetic resonance imaging.
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I. INTRODUCTION

The brain consists of tens of billions of highly nonlinear
components and exhibits collective dynamics which in many
aspects resemble some of the well-known phenomena in
statistical physics [1]. Neurons can be considered as leaky in-
tegrators with a highly nonlinear input-output transfer function
[2]. The individual neurons integrate synaptic inputs received
from other neurons and if a threshold is crossed, they send their
activity back to the network. The neurons receiving stimulation
can in turn exceed threshold and transfer the activity to other
neurons and initiate an avalanche whose spatial and temporal
length determines how much the perturbation can survive
in the network. This process can be seen in many other
complex systems in which individual units with a threshold,
integrate and then send energy back to the system [3–6].
In such systems the perturbations can die out in very short
distances or propagate through the network as avalanches with
no characteristic time and length scale, indicating the system
is in critical state [7]. Unlike the conventional critical states in
equilibrium statistical mechanics which occur with fine-tuned
parameters, these critical states are attractors reached by
starting far from equilibrium; they are insensitive to parameters
and many dynamical systems with extended spatial degrees of
freedom evolve into such self-organized critical states [7].

With no dominant characteristic scale the process shows
scale-free behavior characterized by power-law distribution.
Power-law scaling behavior in such systems reflects the ten-
dency of complex systems to develop correlation that decays
more slowly and extends over larger distances in time and
space than the mechanisms of the underlying process would
suggest [8–10]. Such power-law statistics in neuronal activity
has been reported in several experimental and modeling studies
(see, e.g., [1,11–20], and as an opposite view see [21]). Recent
works on healthy brain at small and large scales show that
the brain dynamics is not composed of completely random
patterns or of periodic oscillations [22], but in the critical
state characterized by a scale-free behavior. Studies show that
several aspects of information processing by neural networks,
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including dynamic range of processing the stimulus and the
amount of information which can be transferred, are optimized
in the critical state [11,23–25].

Scaling behavior can be seen in the functional connectivity
of the healthy brain [26–28] and possible deficit in functional
connectivity among brain regions contribute to the cognitive
dysfunction such as schizophrenia [29], Alzheimer, and
epilepsy [28,30,31]. Functional connectivity is a measure of
correlation among voxels signal in the functional magnetic
resonance imaging (fMRI) from the brain regions. Although
in healthy adult brains structural and functional connectivity
show positive correlation, functional connectivity can be ob-
served between the regions with no direct structural connection
[32]. Interestingly functional connectivity has been shown to
be robust against structural deficits. Experiments show that
there are compensatory reorganization mechanisms which
retain the functional coordination between brain regions after
removing structural connections [33,34].

The data associated with fMRI for a brain in a resting state
(a condition in which the brain is not performing an explicit
task) indicate that the characteristic properties of the human
brain’s functional network have striking similarities with
properties extracted from the dynamics of the two-dimensional
Ising model at its critical state [1,14,35,36]. With each spin
considered as a vertex of a graph in the Ising model, spins that
are more correlated are connected to each other with undirected
edges and in this manner functional network of the Ising model
is constructed. It is shown that at the critical temperature the
functional network of the Ising model would be scale-free with
power-law degree distribution, similar to that of the functional
network of the brain [1,13,27].

Small-world [37], scale-free [38] functional network of the
brain at the rest state is a strong evidence of the self-organized
criticality (SOC) in the brain [1]. This behavior encourages us
to using the BTW sandpile model, suggested by Bak, Tang,
and Wiesenfeld, instead of the two-dimensional Ising model to
compare the results with the behavior of the brain functional
network [7,39,40]. The BTW model represents the simple
but complex non-equilibrium dynamics of a driven dissipative
system with simple short-range interaction of the components,
keeping pressure on its cells until they exceed the specific
threshold (non-linearity in the model) and progress toward
critical state and leads it to produce the events have been called
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avalanches [10]. That is the first and the simplest example of
self-organizing critical systems [39].

In the present study we extract the functional network
of the sandpile model with a similar method introduced in
[14,41]. We preferred the sandpile model to the Ising model
for two significant reasons. First, the BTW model can be
investigated as a cellular automata [42], where evolution
rule of each cell is speculatively similar to the evolution
rule of an integrate-and-fire neuron [43]. So, one can expect
scaling behavior of two-dimensional BTW model to be similar
to the scaling behavior of integrate-and-fire neurons on a
regular square lattice. Second, unlike the Ising model, where
emerging power-law behavior (criticality), is only possible by
controlling temperature of the model around the critical point,
the BTW model shows critical behavior in a self-organized
manner, without any tunable external parameter [2,43,44].

II. THE ABELIAN SANDPILE MODEL

Self-organized criticality is introduced in 1987, based on the
dynamics of complex systems with a critical attractor in their
phase space portrait [7,39]. Many of the complex phenomena
in the nature which show scaling behavior [10] and make pink
noise [45–47]—two specific signs of SOC—can be explained
with the same concepts [10]. The BTW sandpile model is
introduced as the most basic system that provides all of main
features of SOC systems [7,39,44].

The BTW sandpile model in the two-dimensional L × L

square lattice is an Abelian sandpile model [48]. The lattice
contains L2 sites and each lattice site (i,j ) has an associated
variable hij , where hij = 1,2,3,4 shows the height of the site
[49]. In each step, a random site (i,j ) is chosen, and its height
is increased by one:

hi,j −→ hi,j + 1. (1)

If the height of the site exceeds the threshold, hc = 4, a
toppling occurs. The toppling is characterized by the following
rules [39,48]:

hi,j −→ hi,j − hc,

hi,j±1 −→ hi,j±1 + 1, (2)

hi±1,j −→ hi±1,j + 1.

This may in turn lead to other unstable sites; so the update rule
Eq. (2) is continued for such sites till stable state is reached,
where the height of all the sites is below the threshold, hc.
In this model the system boundary is open, so for a toppling
event which occurs at the boundary of the lattice, grains that
fall outside the lattice are disposed. The final state of the
system obtained at each step will be used at the next step
by selecting another random site. The simulation begins from
random initial condition, which may be a transient state of
the system. Dynamics of the sandpile model starts from such
transient state and eventually reaches a steady state which is
suitable for calculating statistical quantities. According to our
knowledge when the dynamics of BTW model reaches to its
steady state, it will not produce a transient state in the next
steps [44]. The well-known Burning algorithm [44] is used
to distinguish the transition from transient state to the steady

FIG. 1. (Color online) Functional network of the two-
dimensional BTW sandpile model for lattice size L = 32.

state, and thereafter we perform all the next steps to calculate
the statistical quantities.

We use the two-point correlation coefficient between height
of arbitrary sites x = (i,j ) and x′ = (i ′,j ′),

r(hx,hx′ ) = 〈hx(t)hx′(t)〉 − 〈hx(t)〉〈hx′(t)〉
σ (hx)σ (hx′)

, (3)

to measure the degree of linear dependency between any
pair of sites [35]. In Eq. (3) σ 2(hx) = 〈h2

x〉 − 〈hx〉2 and 〈· · · 〉
represents the average taken over the length of the time series.

If the correlation coefficient r is higher than a threshold rc,
we assume that the two sites are functionally connected. Each
site in the two-dimensional lattice of the sandpile model is
considered as a vertex of a complex network. Any two vertices
corresponding to the two arbitrary sites are connected to each
other with an edge if the correlation coefficient r between them
is higher than rc. Correlation matrix of the sandpile model was
used to produce the adjacency matrix of the network. This
network is called the functional network of model. Finally,
network visualization (Fig. 1) and analysis were performed by
using the software Cytoscape 3.0.2 [50], also part of analysis
reported in Fig. 2 is performed by SNAP 2.4 [51].

III. A SUITABLE CHOICE FOR rc

In this section we argue how we choose a suitable threshold
for the correlation coefficient rc, over which the nodes are
assumed to be functionally connected. We have calculated
the characteristic parameters for the functional network of the
sandpile model with lattice size L = 64 for different values
of rc, and for an equivalent random network with the same
number of nodes and links. The results are shown in Fig. 2.
As is seen in Fig. 2(a), for rc � 0.8 the network has a large
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FIG. 2. (Color online) (a) The solid triangles (�) represent clus-
tering coefficient c for the functional network of the sandpile model,
and the empty triangles (�) represent clustering coefficient cran of
the equivalent random network. (b) The cross symbols (×) show
the ratio of the number of vertices in the largest connected graph
to the total number of the vertices in the network, nc/N . Empty
squares (�) show the density of the links ρl . (c) Solid diamonds
(�) represent the network diameter, d and solid circles (•) represent
the network average shortest path length (characteristic path length),
l. Also empty symbols show the same parameters for the equivalent
random network, respectively. The network parameters are calculated
for the lattice size L = 64. The lines are drawn only to guide the eyes.

clustering coefficient which is a signature of the regular and
small-world networks. For rc > 0.6, the ratio of the clustering
coefficient of the functional network to the same parameter
calculated for the equivalent random network c/cran � 1. For
threshold values less than 0.4, the clustering coefficients of the

random network and the functional network get closer together
since both the networks turn into all-to-all connected network.

In Fig. 2(b) we have shown the normalized size of the
largest connected network nc/N versus the threshold value for
correlation coefficient rc, where nc and N are the number of
vertices in the largest connected graph and the total number of
vertices in the network, respectively. nc/N → 1 means all of
the nodes in the network are members of the largest connected
graph and nc/N 	 1 means that largest connected graph is too
small. The total possible number of edges in a fully connected
graph of the size nc is nc(nc − 1)/2. We can define the density
of links ρl as the ratio of the number of edges, nl , to the
total possible number of edges in the largest connected graph,
2nl/[nc(nc − 1)]. Empty squares in Fig. 2(b) show ρl : In the
range of 0.5 to 0.8 the number of nodes in the graph has an
acceptable value and the graph is sparse. For rc � 0.5, the
number of links in the functional network is too large and
the network approaches to a fully connected network. Above
this range rc � 0.8 the number of nodes is too small and the
statistical average is not reliable. The density of links ρl in
Fig. 2(b) is calculated by averaging over 3 sets of data. In all
data points with rc < 0.9 error bars are smaller than symbol
size, but for rc � 0.9 error is increased and is of the order of
0.01.

For small values of rc, the diameter d and average shortest
path length l are small similar to the random graph, and they
grow when the rc increases [see Fig. 2(c)]. The results also
show a steep drop in l and d for rc � 0.8, because for the large
values of rc the largest connected graph is vanished. These
parameters are compared with the same parameters in the
equivalent random network with the same number of nodes and
edges and it can be seen that d � dran and l � lran in the range
0.5 < rc < 0.8. In sum in this range, clustering coefficient is
large and the diameter and the average shortest path length
are small, which means that we have a small-world network.
Logarithmic behavior of the average shortest path length l

in terms of nc, shown in Fig. 3, confirms that the functional
network is small-world (in preparing Fig. 3 rc is tuned to keep
the mean degree constant 〈k〉 = 2nl/nc). Besides the above
noted properties (indicators of a small-world network), it will
be shown that in this range of the threshold for rc the node

 3
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102 103 104
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FIG. 3. (Color online) Network average shortest path length l in
terms of the number of vertices nc shows logarithmic behavior which
is an indicator of the small-world network.
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FIG. 4. (Color online) Degree distribution of the functional net-
work of the sandpile model for three different threshold values rc.
Straight lines with a slope of 1.9 and 2.3 in the plot are drawn to
guide eyes. Simulation is run for the sandpile model with lattice size
L = 128.

degree distribution of the network has scaling behavior. In the
following we choose rc = 0.6 to calculate the characteristic
parameters of the network, because for this value connected
graph contains the largest fraction of vertices (nc/N ), that
gives best statistical results.

IV. RESULTS

Degree distribution of the functional network of the
sandpile model for three different threshold values rc

(0.6,0.7, and 0.8), and lattice size L = 128 is plotted in Fig. 4.
Due to the small two-point correlation in the BTW model, a
fraction less than one percent of links in the complete graph
appears in the degree distribution of the functional network.
Scaling behavior of this graph [p(k) ∼ k−γ ] shows that the
functional network is scale-free. Choosing rc in the range
[0.6,0.8] does not affect the scaling exponent γ significantly,
but the lattice parameters reported in Table I vary when rc

changes, as was shown in the Fig. 2. We also derived the
functional network considering anti-correlated nodes in BTW
sandpile model (r < rc = −0.6). Consistent with the reported
data for Ising model in the critical temperature [35], the
resultant network is a random network with c ∼ 0.0, l ∼ 4.4,
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rc = 0.7
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FIG. 5. (Color online) Degree distribution of the functional net-
work of Ising model at the critical temperature for three different
threshold values rc. Straight lines with a slope of 1.2 and 2.0 in the
plot are drawn to guide eyes. Simulation is run for the Ising model
with lattice size L = 128.

and d ∼ 13, and scaling behavior of degree distribution is
vanished.

Fitting the three plots in Fig. 4 with regression over
0.98 shows power-law behavior with exponent γ = 2.1 ± 0.2,
which has a good agreement with the exponent of the degree
distribution of the functional network of the brain [27]. Figure
4 also shows that, this model behaves similar to Ising model
in two dimensions at the critical point (Fig. 5). Ising model is
described by the Hamiltonian [52]

H ({σi}) = −J
∑
[i,j ]

σiσj , (4)

where σi and J show ith spin and interaction strength,
respectively, and the notation [· · · ] indicates summation taken
over all nearest neighbor sites.

As was reported by Fraiman et al. degree distribution of the
functional network of Ising model shows scaling behavior,
which indicates a scale-free network [35]. Someone may
perform a power-law fitting in Fig. 5 for rc = 0.7 and 0.8
and estimate its exponent ∼2. These results were repeated to
ensure the validity of our statistical calculations in comparison
with the corresponding results for the functional network of

TABLE I. Characteristic properties of the functional networks of the BTW sandpile model, the Ising model, and the brain. Fifth row of
data has been taken from the Fraiman et al. article [35].

T rc N = L × L c l d

BTW sandpile model

− 0.60 16384 0.461 1.99 4
Ising model

2. 0.10 16384 0.083 3.16 5
2.405 0.60 16384 0.499 7.76 35
10. 0.09 16384 0.202 3.36 5

Brain

− 0.60 26985 0.454 4.4 13
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Ising model [35]. In addition we have used logarithmic bin
in calculations to improve accuracy at the tail of distribution
function (Figs. 4 and 5). The logarithmic binning method con-
trols fluctuations and extends scaling behavior of distribution
function by one order of magnitude [53,54].

We have also calculated the Pearson degree-degree corre-
lation coefficient [55],

rd−d =
n−1

l

∑
i jiki −

[
n−1

l

∑
i

1
2 (ji + ki)

]2

n−1
l

∑
i

1
2

(
j 2
i + k2

i

) −
[
n−1

l

∑
i

1
2 (ji + ki)

]2 , (5)

where ji and ki are the degrees of the vertices which are
connected by the ith edge, and

∑
i is summation over all

edges, where nl is number of edges in graph. rd−d lies in
the range of [−1, + 1], where rd−d = +1 (−1) shows an
assortative (a disassortative) mixing of nodes in the graph.
The Pearson degree-degree correlation coefficient is negative
for some biological networks such as the structural neural
network of the nematode C. Elegans ∼−0.163 [55]. Our results
show that the coefficient is 0.299 for the functional network
of BTW sandpile model, 0.274 for the functional network of
Ising model at the critical temperature, and 0.183 (0.385) at a
sub(super)critical temperature.

Other important characteristic parameters of the network
for sandpile model with rc = 0.6, and for the Ising model
at subcritical, critical, and supercritical temperature for
rc = 0.1,0.6, and 0.09, are calculated by using the software
Cytoscape and are reported in Table I (in both of model
L = 128). For comparison, the results of Fraiman et al., for
the functional network of brain have been added to Table I
[35].

V. DISCUSSION

Functional network of BTW sandpile model shows a small
characteristic path length scale and large clustering coefficient,
in addition to the scaling behavior (see Table I and Fig. 4).
The first two properties show that we are dealing with a small-
world network and the last property suggests that the functional
network of the sandpile model is scale-free.

Nonlinear dynamics in this model is accompanied by the
incidence of self-organized critical behavior. In such situations
where adding a grain of sand to the sandpile might drive all
of the system by events called avalanches, one can conclude
existence of sites which are hubs in the network and affect
many other connected sites. Such behavior may be responsible
for the facilitation of communication in the network. These
hubs make large clustering coefficient similar to the functional
network of the brain [1,14]. On the other hand analysis of
the fMRI images and EEG data illustrates that the avalanche
behavior is involved in the transmission of data and has the

essential role to speed up the communication between different
parts of the brain [23].

Dynamics of the BTW model is in some sense similar to
the integrate-and-fire model [43]. Both of the models can be
considered as a cellular automata model. Terms of rules in
microscale (evolution rule in each cell) [i.e., Eq. (2)] which
are used in simulating the BTW model are similar to those
in the integrate-and-fire model, which is widely used in the
simulation of neuronal networks [43]. Leaky integrate-and-fire
model is described by

Cmv̇i =
∑
j 
=i

Iij − vi

Rm

,

(6)
if vi > vc −→ vi = 0,

where vi is the membrane voltage of ith neuron and Iij is
intensity of the synaptic stimulation from the j th neuron
to the ith neuron. vc, Cm, and Rm are membrane voltage
threshold, membrane capacitance, and membrane resistance,
respectively. In both the models, the pressure builds up to
reach a specific threshold value, then releases to the neighbor
cells [i.e., in the BTW (integrate-and-fire) model each sites
integrates grains (stimulation) till hc (vc) and in toppling
(firing) send grains (stimulation) to the neighboring sites].
Although here the BTW is simulated on a regular lattice
instead of a complex network, which is usually used for
simulating neural networks. It should be noted that the BTW
sandpile model with discrete dynamics of the nodes and nearest
neighbor interactions, is not supposed to explain all the features
of the brain activity such as the exponent of spatial correlation
function in the blood-oxygen-level dependent of the brain
resting-state activity ∼0.47 reported by Eguiluz et al. [18,27],
and for a more concrete comparison other parameters like
scaling behavior of functional network should be explored
[55–57]. Interestingly a recent study shows that when the
effect of noise is considered in a continuous version of the
sandpile model (the stochastic parallel Zhang model), the
resulted exponents are closer to those reported for the brain
activity [58].

This result may reinforces qualitative impression in the
reader, that if the dendritic growth mechanism extends brain
network by new synaptic connections based on the correlations
in the neural dynamics, even if the initial structure of the brain
network is a regular network, the final will be a scale-free
and small-world network [37,59]. However it should not be
forgotten that the structural network and the function network
of brain have fundamental differences [60].
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[21] C. Bédard, H. Kröger, and A. Destexhe, Phys. Rev. Lett. 97,
118102 (2006).
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network analysis and graph mining library in C++,
http://snap.stanford.edu/snap (2014).

[52] E. Ising, Z. Phys. 31, 253 (1925).
[53] D. W. Sims, D. Righton, and J. W. Pitchford, J. Anim. Ecol. 76,

222 (2007).
[54] E. P. White, B. J. Enquist, and G. J. L., Ecology 89, 905

(2008).
[55] M. E. J. Newman, Phys. Rev. Lett. 89, 208701 (2002).
[56] C. Song, S. Havlin, and H. A. Makse, Nature 433, 392 (2005).
[57] S. D. Reis, Y. Hu, A. Babino, J. S. Andrade, Jr., S. Canals, M.

Sigman, and H. A. Makse, Nat. Phys. 10, 762 (2014).
[58] S. A. Moosavi and A. Montakhab, Phys. Rev. E 89, 052139

(2014).
[59] G. Caldarelli, A. Capocci, P. De Los Rios, and M. A. Muñoz,
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