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An integral equation with simple discretization:

Consider the following integral equation

2u(x)~ [ K(xy)uyddy =f(x), xeQ
Q
and imagine the following system of equations as its discretization

Aum— Y B"K(Xm, Xp)un = f(Xm), Xm€Q
Xn€Q,n#m

where h=1/N
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Discrete Dipole Approximation (DDA)

Let Q2 = U;L; €2, x; € Q;, collocate Eq. (asli) at points x; and approximate
the integrals by one-point quadrature rule, then

AE(x) ~ (— Zk Xi, X;)E E(x) |,
J#i

where

k(x,y) = —(Vdiv+Kk2)Ge(x — y)

= _(D2 + K2)GK(X—y).
The idea of DDA is introduced in:

@ PURCELL, E. M., AND PENNYPACKER, R. P: Scattering and absorption of light

by non spherical dielectric grains. ApJ, 186, pp.705-714, (1973)
with Clausius-Mossotti polarizability as o’

S:

3 € = €(x;), dielectric function at
_8d&—1 location x;, d® = V/N and
AT €42’ V = Vol(Q).
3 V g—-1
4N g +2
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Discrete Dipole Approximation (DDA)

Another option for o;’s in order to answer the question: " for what
polarizability ¢ will an infinite lattice of polarizable points have the same
dispersion relation as a continuum of refractive index m = \/€? ",

T L (by + mRby + b S) (k)2 — (2/3)i(kd)?]
with
3
by = —1.891531; by = 0.1648469; by = —1.7700004; S = Y (ay¢))°,
is discussed in:

@ DRAINE, B. T., AND GOODMAN J.: Beyond Clausius-Mossotti-Wave
propagation on a polarizable point lattice and the discrete dipole
approximation. ApdJ, 405, pp. 685-697, (1993).
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Figure: Pseudospheres made from 32, 552 and 3112 dipoles, arranged in cubic
lattic

ﬁ LOKE, V. AND MENGUG, M PINAR AND NIEMINEN, TiMO A: Discrete-dipole
approximation with surface interaction: Computational toolbox for MATLAB.
JQSRAT, 112, pp. 1711-1725, (2011).
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Figure: Coefficient Matrix

@ LOKE, V. AND MENGUG, M PINAR AND NIEMINEN, TIMO A: Discrete-dipole
approximation with surface interaction: Computational toolbox for MATLAB.
JQSRT, 112, pp. 1711-1725, (2011).
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TMat (k,N)
Np = N+1;  Np3 = Np*3;
Line = collect(range(@,1,length=Np));
Peint = zeros(Np3,3);
m=0;
for 1 in 1:Np for j in 1:Np for 1 in 1:Np
m=ml;
Point[m,:] = [Line[i]; Line[j]; Line[1]]
end end end
TMI1 = complex(zeros(Np3,Np3));
TMI2 = similar(TMI1); TMI3 = similar(TM11);
TM21 = similar(TM11); TM22 = similar(TM11); TM23 = similar(TM11);
TM31 = similar(TM11); TM32 = similar(TM11); TM33 - similar(TM11);
for m in 1:Np3 for n in 1:Np3
Kmn = K(k,Point[m,:]-Point[n,:]);
TM11[m,n] = Kmn[1,1]; TM12[m,n] = Kmn[1,2]; TM13[m,n] = Kmn[1,3];
TH21[m,n] = Kmn[2,1]; TM22[m,n] = Kmn[2,2];
1 [
] [

TM23[m,n] = Kmn[2,3]; TM31[m,n] = Kmn[3,1];
TM32[m,n] = Kmn[3,2]; TM33[m,n] = Kmn[3,3];
end end
TM = [TMI11 TM12 TM13; TM21 TM22 TM23; TM31 TM32 TM33];

h = 1/N; TM = h*3*TW;  return TH
end

Figure: A piece of Julia code for DDA matrix
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DDA: the pros and cons

* v Itis the simplest method that one can apply to numerically solve an
IE. Open source codes are available in Fortran(DDSCAT),
MATLAB(DDA-SI), Python(PyDDA), C(ADDA), C++(DDScat), ...

Go gle Scholar "discrete dipole approximation” n

>

Articles

MC, MD, KN (IASBS) VIE-DDA January 2, 2023 8/42



DDA: the pros and cons

* v Itis the simplest method that one can apply to numerically solve an
IE. Open source codes are available in Fortran(DDSCAT),
MATLAB(DDA-SI), Python(PyDDA), C(ADDA), C++(DDScat), ...

*  Itis quite easy to understand in comparison with BEM, FEM or
even FDM.

Go gle Scholar "discrete dipole approximation” n

>

Articles

MC, MD, KN (IASBS) VIE-DDA January 2, 2023 8/42



DDA: the pros and cons

* v Itis the simplest method that one can apply to numerically solve an
IE. Open source codes are available in Fortran(DDSCAT),
MATLAB(DDA-SI), Python(PyDDA), C(ADDA), C++(DDScat), ...

*  Itis quite easy to understand in comparison with BEM, FEM or
even FDM.

* « Convolution structure of the operator; Toeplitz matrix in the
discretized level; application of FFT method.
One can see the last development in:

@ GROTH, S. P., ATHANASIOS G. P., AND JACOB K. W.:
Accelerating the discrete dipole approximation via circulant
preconditioning. Journal of Quantitative Spectroscopy and
Radiative Transfer, 420, (2020)

Go gle Scholar "discrete dipole approximation” n

>

Articles

MC, MD, KN (IASBS) VIE-DDA January 2, 2023 8/42



DDA: the pros and cons

* v Itis the simplest method that one can apply to numerically solve an
IE. Open source codes are available in Fortran(DDSCAT),
MATLAB(DDA-SI), Python(PyDDA), C(ADDA), C++(DDScat), ...

*  Itis quite easy to understand in comparison with BEM, FEM or
even FDM.

* « Convolution structure of the operator; Toeplitz matrix in the
discretized level; application of FFT method.
One can see the last development in:

@ GROTH, S. P., ATHANASIOS G. P., AND JACOB K. W.:
Accelerating the discrete dipole approximation via circulant
preconditioning. Journal of Quantitative Spectroscopy and
Radiative Transfer, 420, (2020)

*  Itis very popular: 9/30/2022

Go gle Scholar "discrete dipole approximation” n

>

Articles

MC, MD, KN (IASBS) VIE-DDA January 2, 2023 8/42



MC, MD, KN (IASBS)



DDA: the pros and cons

‘ but among physicists not mathematicians! ‘

ZbMATH"sOpen

’
be
'.';. MATHEMATICAL REVIEWS
1 hitin NA (MR1375267) published 12 hits from 2014-2022, there is no
1996! document before!
% In continuous level: ¢ is a strongly singular operator. So
compared to boundary integral operators, it is less

discussed.

January 2, 2023 9/42
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3D electromagnetic scattering on penetrable objects

Q ¢ R3, bounded domain:

Time-harmonic Maxwell Equations:

curlE—ixpucurlH=0; curlH+ikeE=J

e=¢inQ, e=1inR3\Q,
n=1—¢: hascompact support n
U= inQ, u=1inR3\Q, Q

.
v=1 i

; supp
‘/
Supp J compact in R®\ Q

Transition condition on the boundary ' = 9Q:
[Exnlr=0, [n.uH]r=0, [Hxn]r=0, [n.€E]r=0

+ Sommerfeld Radiation Condition
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olume ntegral quation

]
curl — curlE— x?¢E=J
u
4
1
curl curl E — k?E =ikJ — k(1 —&)E+curl (1 — ﬁ)curl E

=ikd— k2N yqE+curlvyq curl E

It is seen that

]
(curl curl —K2]I)(?Vdiv +1) = —(A 4 «20)

so E is obtained from the convolution with the fundamental solution

gk(x) = (%Vdiv—HI)GK(X), Ge(x) = eXZSE(XD
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olume ntegral quation

We get an VIE for the electric part E:
E = k29, * (N X E) + gi * (curl v xq curl E) +ixgy *J,
or
E(x) =x* /Q ge(x —y)n(y)E(y)dy + /Q gx(x —y)eurl v(y) curl E(y)dy
+iK/QgK(x—y)J(y)dy7

Let

’ Dielectric problem: u =const,v =0 ‘

then

E(x) = —(Viv-+2Lo) | Ge(x—yIn(y)E()dy +E™(x)
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We get

E(x) — Ax(nE)(x) = E™(x)

with
(sAxu)(y) = —(Vdiv+x°La) /Q Ge(x — y)u(y)dy.

Applying Fourier transform on &

T .2
(&) = F et} (§) = S 200

the inversion Fourier transform gives:

(Au)(x) = (2m) [

R

L 0(E)a(&) exp(—iEx)dE |

So ¥ has a inverse Fourier representation with specific kernel called
symbol of the operator. Such operators are called pseudo-differential
operators.
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VIE for Maxwell’s equations

The operator 9 can be represented as a strongly singular integral
operator:

oA E(x) = pv. /Q V.V, Ge(x — y)E(y)dy + %E(x) :

where p.v denotes the Cauchy Principle Value:

T«E(x) ::p.v./QVXVka(x—y)E(y)dy: Iim/ b )VXVyG,((x—y)E(y)dy.
e (X

£—0 Q\

Is the problem .
E— o (nE)=E™ (asli)

or its equivalence

1 .
—E—-AE=E"
n

well-posed in the sense of Hadamard (existence, uniqueness and stability)?
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Some properties of %

v The operator ¢/ can be extended to L2(2) as a bounded
operator;

v d.—dyisa operator in L2(9);

Let spectrum:

Sp(T):={A €C|(AI—T) " does not exits}

and essential spectrum

’SpeSS(T) :={A €C| (AI—T)is not Fredholm} ‘

then
v Let ¥ := Spegs(21+ K') € (0,1), then for Lipschitz T

SPess (o) = {0,1}UX and for smooth I': Sp.es(o) ={0,1/2,1}. K is

boundary integral operator adjoint to the Helmholtz double layer potential
operator.
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DDA: the questions

* DDA as a popular method between physicists and engineers
is really accurate as it is shown by numerical examples?

* Isita consistent, convergent and stable method?
* |s there any estimation for the rate of convergence?
@ YURKIN, M. A., VALERI P. M., AND A. G. HOEKSTRA: Convergence of

the discrete dipole approximation. |. Theoretical analysis, JOSA A,
23(10), pp. 2578-2591 (2006).

(A KE)(x;) — ARPAE); | 1 @ = ch+ G (hlog(h)) for E € C*(Q)

Lax equivalence theorem:

For a consistent numerical algorithm:

stability < convergence

Q: Is DDA stable?
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Consistency, stability, convergence

Let Au = f and the discrete form as Ayun = fy := Inf:

X A, x

[ [w
Xy 225 Xy

Consistency error (truncation error): Ex[v] = Anrnv — rnAv
Discrete error: ey = ryu — Uy

ANeN = ANI’NU—ANUN = ANI’NU— I’Nf = ANI’NU— rNAu = EN[U] ‘

4

llewl| < [I(An) " [l|Enlu]l

If 3 C>0s.t|/(Anv) "] < C, uniformly, then the method is stable and
truncation error gives an estimation for discrete error.
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DDA in 3D: Q is unit cube; h=1/N; N the number of dipoles

Spectrum N = 12

k=1+15im
k=15+ 1lim

fowm
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An example: convergence of the spectrum

DDA in 3D: Q is unit cube; h=1/N; N the number of dipoles

Spectrum for k = 15

Im(A)

. e _1_1_
Figure: k = k, A—ﬁ—g— 3(1-8)
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Spectrum for k = 15
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We have

QR Ko (P16, and ot — Ko (1a0)

and

and

then

MC, MD, KN (IASBS)

Tieu =p.V. [q Kie(x — y)u(y)dy

Aeu=Teu+ Ju

diagonal terms

VIE-DDA
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Discrete Dipole Approximation (DDA)

Let Q2 = U;L; €2, x; € Q;, collocate Eq. (asli) at points x; and approximate
the integrals by one-point quadrature rule, then

AE(x) ~ (— Zk Xi, X;)E E(x) |,
J#i

where

k(x,y) = —(Vdiv+Kk2)Ge(x — y)

= _(D2 + K2)GK(X—y).
The idea of DDA is introduced in:

@ PURCELL, E. M., AND PENNYPACKER, R. P: Scattering and absorption of light

by non spherical dielectric grains. ApJ, 186, pp.705-714, (1973)
with Clausius-Mossotti polarizability as o’

S:

3 € = €(x;), dielectric function at
_8d&—1 location x;, d® = V/N and
AT €42’ (1) V =Vol(Q).
3 &—1
47tN &+2
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The discrete system

DDA system matrix:

_ n
T = (N Ke(Xm—Xn)) pmean> Ke(0)=0, aoy={neZ%| x,= N €
To get an approximation for %Hd — A, we see that

1 1 1
ﬁﬂd_ﬁx = (H - E)Hd_ Tk,

for TN as an approximation for T, AT— T is an approximation for
%H — A

The stability: | [|(A1—TY) || < M. | Let (&) = ¥ peze @(m)e'™s,

a(m) = (27)~? [, &(t)e "™ d&, then the quadratic form of the DDA system
is

(un; (AT = T un) promy = (27?)*"/ On(8) (AT - K{(&))tn(£)d,
Q ——

F(&)

where Q = [-7,7]? ~ R?\ (27Z%). Let A = § — y and n =1 — &, then

_ d-1+¢ ; _ . 2+e
A= d(i s, - Especially, for d =3, A= (AL
MC, MD, KN (IASBS) VIE-DDA
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Recall: numerical range (field of values)

A: X — X abounded linear operator in Hilbert space H and
a(u,v) = (Au, v) the corresponding sesquilinear form

Definition: W(A) = {(Au,u) |ue X, |lul|=1}

v W(A) is convex;

v Sp(A) c W(A) c{zeC|z[ < All};

v (Au,u) is coercive iff 0 ¢ W(A), and coercivity constant y = inf ,cy4) | 2]

v Let Xy C X and Ay : Xy — Xn with Ay = a(u, u)|x,, then
W(An) C W(A) and furthermore for A ¢ W(A),

1

[(AT—An) || < dist(%, W(A))
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Stability results for quasi static case: k =0

Theorem(Zachlin & Hochstenbach)

The numerical range of a Hermitian matrix T is a closed interval on the real
axis, whose endpoint are formed by the extreme eigenvalue of T.

Due to symmetry and Tr(Fo(t)) =0, for d = 2, Fo(t) = { Zgg —brfzé)t) ]

Theorem A

There exits an interval ¥ := [A_,A] such that & = Uyeny W(TY"). Then for
A € C\ X, DDA metod (AL — T¥)u = f is *-stable and

1

It is seen that the spectrum of Ty is [—1/d,1 — 1/d] which is contained in
[A-,A4], so for

A<A<—=1/d or 1—-1/d<A <Ay
the VIE is well-posed in L2(Q) but DDA is unstable.
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Ford=2

r(1/4)*
—N_=N >N = =0.5471...
=10 3272
ford=3
A_~—042 and A, ~0.77 Conjecture: AL =g

numerical range of T_0 for N=8
1.00 -
0.75

0.50

0.25

0.00 |

L ! ! 1
-0.5 0.0 0.5 1.0
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Stability results for k € C\ R

Let @ € arg x € (—m, ) \ {0} and

Wi={zeC| |zf%(zficot(2oc)) , Imz.Im(x?) < 0}.

1
D
< 2|sin(20)|

The compact bounded set [A_, A ]+ W is bounded set for the spectrum
of the VIE and it bounds the numerical range

Let A € C\ ([A—, A ]+ Wi). Then the sequence of matrices (A1 — T )yen
is /2-stable in the following sense: Given any & > 0 that satisfies

€ < di :=dist(A,[A_,A+]), there exists Ny € N such that for N > Ny the
matrix A1 — TV is invertible, and for the /2-matrix norm we have the

estimate ’
Al-TH < ——
IAT-T 7 < g
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k € C\ R: bounds for different T — TV

Q is unit cube,

k|=5and N=8

Matrix TN — TéV: eigenvalues, numerical range, and proven bounds

0.00 £~ ]
_ Q J/

K =0.37+4.99i K = 3.53+3.53i

00 V'S - ’ //, “\\\
E 05 \ S o "\ E [
\\\ 1 // \\\\ 7 ///
K =4.62+1.91i K =4.97+0.5i
VIE-DDA
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Stability results for real x: imaginary part of DDA matrix
Let

K
2dr(g)nd/2—1K ( i () = 5 an 355)

1 (K)

then
W(im(T) c [u, ud],
with u¥ = iy (K)N~9 and limy_e uN = — 14 (k) (9]

If A € Cis such that either ImA > 0 or ImA < —p(x)|€2], then for large

enough N the matrix AT — T¥ is invertible, and the /% matrix norms

(AL — T¥)=|| are bounded uniformly in N. The invertibility holds if either
|oN]-1

ImA > py (K)N~9 or ImA < —p (k) 25—
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K real: bounds for the imaginary part of the numerical range

Q unit cube, k =10

Eigenvalues, numerical range, and proven bounds:

MC, MD, KN (IASBS)
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K real: bounds for the imaginary part of the numerical range

€ unit cube, kK =10
Eigenvalues, numerical range, and proven bounds:

MC, MD, KN (IASBS) VIE-DDA
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Analysis: for k =0

For operator
A =Ao+ (Ax— Ho)
N——

compact

the principle part is o and Wou = —D?Gy * (xqu)
The kernel K(x) = —D?go(x) and

1
—5-log|x|, d=2
Go(X):{ & d—3
4x[x]’ -

K is homogenous of degree —d
VIE: Au— Tu = f with Tu(x) = p.v [ K(x — y)u(y)dy
Discretization: Atp — N9 Y neoVmzn K(Xn — Xm)Um = fp,n € @V

Q C RY is a bounded domain and ®" = {n € Z9|x, € Q}
System matrix

N=9K(xm—x7) = K(m—n), m#n

N
T = (tmn)m,newN=ZdﬁNQ’ tmn = {0’ m=n
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Analysis (k = 0): Toeplitz structure

The elements of ¢y, of the system matrix are independent of N.

Let 7° = (K(m—n))peze, K(0)=0.
TN is Finite Section of the infinite block Toeplitz matrix.
Diagonalization via Fourier series leads to symbol

(&) = Lmzo K(m)e™*

Parseval and convolution theorems for Fourier series:

(1. 7)oy = (2m) 7 [ T (£)E(E)T(E)a

W(TN) C W(T™) C oV Ugcq W(H(E))

Fourier series is not absolutely convergent. A
Are there some bounds for 1(&)?

MC, MD, KN (IASBS) VIE-DDA
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Analysis: quasi static case

Recall Poisson summation formula:

Y f(m)exp(im.ty =Y F{f}(t+2nn)

meZd nezd

then
H(&) = Loeza (& +2n7) for o(£) =F {KHE) = %5

o(&) is homogeneous of degree zero (the kernel is homogenous of degree
—d), we have thus replaced a slowly converging Fourier series by a lattice

sum that does not converge at all

Remedy for slowly converging or diverging lattice sums: Ewald’s method.
@ EwALD, PAUL PETER Ewald summation. Ann. Phys, 369, pp. 1-2, (1921).
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Ewald’s method

The idea is to split f into f = f© + P such that f and Fourier transform of
" are rapidly decreasing at infinity .

Thus the Fourier series for fF is absolutely convergent and the Poisson
sum for ¥ is also absolutely convergent, hence

Y f(me™t =Y F(me™+ Y F{HE+2mk)
meZzd mezd kezd

and both sums on the right converge absolutely and boundedness of
F {f} follows. Applying this for f(x) = K(x), Theorem A is proved:

Theorem A

There exits an interval ¥ := [A_,A] such that & = Uyen W(TY). Then for
A € C\ X, DDA metod (AL — TV)u = f is ?-stable and

1
1A= < sy
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Ewald’s method in 3D

Details for the case d = 3: We write
Kic(x) = —(D? + k%) G(x) = (K.j1)ij=1.23
as integral (Mellin transform) of Gaussians
Kic(x) = (Kk.j)ij=123

with
(22228 — 424 xix; — k28729 exp(—|x[2Z2 + £5)dz, Rex? <0
2272 Jo i i i 4z

For B > 0, we split the integral over z at z = f3:

Ke = KE +KE,

F 1 222 ) 4 2 2 2.2 K2
K — 271:3/2 /2( i 47 Xf)(j — K (;,'/')Z exp(—|x| zZ°+ 722 )dZ
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Ewald’s mathod in 3D

It is shown that

1 & (x/2)% og XiXj
KF (x) — _apt2a X%
2401 = o 1.2

[x[?

+((2-49)8 - 4(3/2 - 0) 7 )3/~ 0. 6% 1)

where I(m, x,z) =z~ (m, zx).
For K,f, we use the Fourier transformed (Poisson summation formula)

T_ 2] g2, L2
éé'z_ﬁcgdexp( |€iﬁ:K)

F{KEHE) =

and K[ (0) = —KF(0) get the final Ewald summation:

F) = Y Kgn(me™ =Y Kny(me™ + Y F{KEy}H(t+2xn)

meZ9\{0} mezd4 nezd
Homogenity: 6,x(p&) = 0x(&) leads to N-9Ki(m/N) = Ki/n(m).
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Ewald method in 3D: k =0

It is shown that

F ( 1 Z ()(/2 4ﬁ472qﬁ

Kxi 4732 2 X2

+((2—-49)9;

Ix |2)/(3/2 a,B%,r%)

where I(m, x,z) =z~ (m, zx).
For K}’}, we use the Fourier transformed (Poisson summation formula)

T g2
S

It is now evident that both the Fourier sum with K* and the lattice sum with
KP converge exponentially.

F{KIE) =
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Ewald’s method in 3D

The characteristic function f is a bounded 27-periodic function on R®
whose values are real symmetric 3 x 3 matrices of trace 0 with elements

. M XiX; 6 X% i

W)= Y (A28 6 /2 87 )
my,Mmg,M3=—

i (& +2mn;)(&i +2mn;) e—%

+ |E +27n|2

+RM(E)

m,ng,n3=—N

where in the first sum in the term with m = (0,0,0) is understood to be
—(%)3. As M, N — oo, the remainders R(MN) converge to zero uniformly
exponentially fast.
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Analysis for k #0 € C\ R

t(E) = ok (&) + v(x, &) where v is continuous on B;(0) x Q and

V(x,§) = 5 +6 ()

To bound W(o«(&)), we notice that

T 2] 2 !
Gx(é) — €|€€|2—K1<2d =Iy+ K2|§|§|2 (]Id— |€§|2 )

2
s0 W(ox(€)) = {1} +2>5z[0.1]
Bound depending on arg k(—x, )\ {0} lead to Theorem B
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Analysis for k #0 € R

Lemma: Plane wave representation for the imaginary part

M Gie(x) = sga= /qu &= *ds(&)

d—2 _
Im Ke(x) = sirea [, (67 L) ds(£)

Let F(u(&)) := Emeay (Um — (Um-§)&) exp(—ix&.m), then

_1d
ST [ IFU(E)RAS(E) + 11 ()

and 0 < [(§)[? < |@"|||ul|% results Theorem C.

(0,ImTNu) =
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Thank you for your attention!
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