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An integral equation with simple discretization:

Consider the following integral equation

λu(x)−
∫
Ω

K (x ,y)u(y)dy = f (x), x ∈ Ω

and imagine the following system of equations as its discretization

λum − ∑
xn∈Ω,n ̸=m

hmK (xm,xn)un = f (xm), xm ∈ Ω

where h = 1/N
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Discrete Dipole Approximation (DDA)

Let Ω=
⋃N

i=i Ωi , xi ∈ Ωi , collocate Eq. (asli) at points xi and approximate
the integrals by one-point quadrature rule, then:

Aκ E(xi)≃ (
1
N
)3

∑
j ̸=i

k(xi ,xj)E(xj)+α
−1
i E(xi) ,

where

k(x ,y) =−(∇div+κ
2)Gκ(x −y) =−(D2 +κ

2)Gκ(x −y).

The idea of DDA is introduced in:
PURCELL, E. M., AND PENNYPACKER, R. P: Scattering and absorption of light
by non spherical dielectric grains. ApJ, 186, pp.705-714, (1973)

with Clausius-Mossotti polarizability as αi ’s:

α
CM
i =

3d3

4π

εi −1
εi +2

,

=
3V

4πN
εi −1
εi +2

εi = ε(xi), dielectric function at
location xi , d3 = V/N and
V = Vol(Ω).
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Discrete Dipole Approximation (DDA)

Another option for αi ’s in order to answer the question: " for what
polarizability α will an infinite lattice of polarizable points have the same
dispersion relation as a continuum of refractive index m =

√
ε? ",

α
LDR
i =

αCM

1+ αCM

d3 [(b1 +m2b2 +m2b3S)(kd)2 − (2/3)i(kd)3]
,

with

b1 =−1.891531; b2 = 0.1648469; b3 =−1.7700004; S =
3

∑
j=1

(ajej)
3,

is discussed in:
DRAINE, B. T., AND GOODMAN J.: Beyond Clausius-Mossotti-Wave
propagation on a polarizable point lattice and the discrete dipole
approximation. ApJ, 405, pp. 685-697, (1993).
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Figure: Pseudospheres made from 32, 552 and 3112 dipoles, arranged in cubic
lattic

LOKE, V. AND MENGÜÇ, M PINAR AND NIEMINEN, TIMO A: Discrete-dipole
approximation with surface interaction: Computational toolbox for MATLAB.
JQSRT, 112, pp. 1711–1725, (2011).

MC, MD, KN (IASBS) VIE-DDA January 2, 2023 5 / 42



Figure: Coefficient Matrix

LOKE, V. AND MENGÜÇ, M PINAR AND NIEMINEN, TIMO A: Discrete-dipole
approximation with surface interaction: Computational toolbox for MATLAB.
JQSRT, 112, pp. 1711–1725, (2011).
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Figure: A piece of Julia code for DDA matrix
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DDA: the pros and cons

⋆ ✓ It is the simplest method that one can apply to numerically solve an
IE. Open source codes are available in Fortran(DDSCAT),
MATLAB(DDA-SI), Python(PyDDA), C(ADDA), C++(DDScat), ...

⋆ ✓ It is quite easy to understand in comparison with BEM, FEM or
even FDM.

⋆ ✓ Convolution structure of the operator; Toeplitz matrix in the
discretized level; application of FFT method.
One can see the last development in:

GROTH, S. P., ATHANASIOS G. P., AND JACOB K. W.:
Accelerating the discrete dipole approximation via circulant
preconditioning. Journal of Quantitative Spectroscopy and
Radiative Transfer, 420, (2020)

⋆ ✓ It is very popular: 9/30/2022
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DDA: the pros and cons

but among physicists not mathematicians!

1 hit in NA (MR1375267) published
1996!

12 hits from 2014-2022, there is no
document before!

⋆ In continuous level: Aκ is a strongly singular operator. So
compared to boundary integral operators, it is less
discussed.
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3D electromagnetic scattering on penetrable objects

Ω⊂ R3, bounded domain:

Time-harmonic Maxwell Equations:

curlE− iκ µ curl H = 0; curlH+ iκ ε E = J

ε = εr in Ω, ε = 1 in R3 \Ω,
η = 1− εr : has compact support
µ = µr in Ω, µ = 1 in R3 \Ω,
ν = 1− 1

µr

Supp J compact in R3 \Ω
Transition condition on the boundary Γ = ∂Ω:
[E×n]Γ = 0, [n.µH]Γ = 0, [H×n]Γ = 0, [n.εE]Γ = 0

+ Sommerfeld Radiation Condition
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Volume Integral Equation (VIE)

curl
1
µ

curl E−κ
2

ε E = J

⇓

curl curl E−κ
2 E =iκ J−κ

2(1− ε)E+curl(1− 1
µ
)curl E

=iκ J−κ
2
ηχΩ E+curlνχΩ curl E

It is seen that

(curl curl −κ
2I)(

1
κ2 ∇div+I) =−(∆+κ

2I)

so E is obtained from the convolution with the fundamental solution

gκ(x) = (
1

κ2 ∇div+I)Gκ(x), Gκ(x) =
exp(iκ|x |)

4π|x |
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Volume Integral Equation (VIE)

We get an VIE for the electric part E:

E = κ
2gκ ∗ (η χΩ E)+gκ ∗ (curl ν χΩ curl E)+ iκgκ ∗J,

or

E(x) =κ
2
∫
Ω

gκ(x −y)η(y)E(y)dy +
∫
Ω

gκ(x −y)curl ν(y) curl E(y)dy

+ iκ
∫
Ω

gκ(x −y)J(y)dy ,

Let
Dielectric problem: µ ≡ const,ν = 0

then

E(x) =−(∇div+κ
2Id)

∫
Ω

Gκ(x −y)η(y)E(y)dy +Einc(x).
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We get

E(x)−Aκ(ηE)(x) = Einc(x)

with
(Aκ u)(y) =−(∇div+κ

2Id)
∫
Ω

Gκ(x −y)u(y)dy .

Applying Fourier transform on Aκ :

σκ(ξ ) := F{Aκ u}(ξ ) = ξ ξ T −κ2Id

|ξ |2 −κ2 û(ξ ),

the inversion Fourier transform gives:

(Aκ u)(x) = (2π)−d
∫
Rd

σκ(ξ )û(ξ )exp(−iξ .x)dξ .

So Aκ has a inverse Fourier representation with specific kernel called
symbol of the operator. Such operators are called pseudo-differential
operators.
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VIE for Maxwell’s equations

The operator Aκ can be represented as a strongly singular integral
operator:

Aκ E(x) = p.v.
∫
Ω

∇x ∇y Gκ(x −y)E(y)dy +
1
3

E(x) ,

where p.v denotes the Cauchy Principle Value:

Tκ E(x) := p.v.
∫
Ω

∇x ∇y Gk (x−y)E(y)dy = lim
ε→0

∫
Ω\Bε (x)

∇x ∇y Gκ(x−y)E(y)dy .

Is the problem
E−Aκ(ηE) = Einc (asli)

or its equivalence
1
η

E−Aκ E = Einc

well-posed in the sense of Hadamard (existence, uniqueness and stability)?
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Some properties of Aκ

✓ The operator Aκ can be extended to L2(Ω) as a bounded
operator;

✓ Aκ −A0 is a compact operator in L2(Ω);

Let spectrum:

Sp(T ) := {λ ∈ C | (λ I−T )−1 does not exits}

and essential spectrum

Spess(T ) := {λ ∈ C | (λ I−T ) is not Fredholm}

then
✓ Let Σ := Spess(

1
2 I+K ′)⊂ (0,1), then for Lipschitz Γ:

Spess(A0) = {0,1}
⋃
Σ and for smooth Γ: Spess(A0) = {0,1/2,1}. K ′ is

boundary integral operator adjoint to the Helmholtz double layer potential
operator.
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DDA: the questions

⋆ DDA as a popular method between physicists and engineers
is really accurate as it is shown by numerical examples?

⋆ Is it a consistent , convergent and stable method?

⋆ Is there any estimation for the rate of convergence?

YURKIN, M. A., VALERI P. M., AND A. G. HOEKSTRA: Convergence of
the discrete dipole approximation. I. Theoretical analysis, JOSA A,
23(10), pp. 2578-2591 (2006).

∥(Aκ E)(xi)−ADDA
κ (E)i∥L1(Ω) = ch+O(h2 log(h)) for E ∈ C4(Ω)

Lax equivalence theorem:

For a consistent numerical algorithm:

stability ⇔ convergence

Q: Is DDA stable?
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Consistency, stability, convergence

Let Au = f and the discrete form as ANuN = fN := rN f :

X X

XN XN

A

rN rN
AN

Consistency error (truncation error): EN [v ] = AN rNv − rNAv
Discrete error: eN = rNu−uN

ANeN = AN rNu−ANuN = AN rNu− rN f = AN rNu− rNAu = EN [u]

⇓

∥eN∥ ≤ ∥(AN)
−1∥∥EN [u]∥

If ∃ C > 0 s.t ∥(AN)
−1∥ ≤ C, uniformly, then the method is stable and

truncation error gives an estimation for discrete error.
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An example: The eigenvalues and different wavenumbers

DDA in 3D: Ω is unit cube; h = 1/N; N the number of dipoles

Figure: k ≡ κ, λ = 1
η
− 1

3 = 2+εr
3(1−εr )
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An example: convergence of the spectrum

DDA in 3D: Ω is unit cube; h = 1/N; N the number of dipoles

Figure: k ≡ κ, λ = 1
η
− 1

3 = 2+εr
3(1−εr )
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Figure: k ≡ κ, λ = 1
η
− 1

3 = 2+εr
3(1−εr )
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We have

Ω⊂ Rd , Kκ =−(D2 +κ
2)Gκ and Aκ u = Kκ ∗ (χΩu)

and

Tκ u = p.v.
∫
Ω Kκ(x −y)u(y)dy

and

Aκ u = Tκ u+ 1
d u

then

( 1
η
Id −Aκ)u = (

1
η
− 1

d
)u︸ ︷︷ ︸

diagonal terms

−Tκ u
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Discrete Dipole Approximation (DDA)

Let Ω=
⋃N

i=i Ωi , xi ∈ Ωi , collocate Eq. (asli) at points xi and approximate
the integrals by one-point quadrature rule, then:

Aκ E(xi)≃ (
1
N
)3

∑
j ̸=i

k(xi ,xj)E(xj)+α
−1
i E(xi) ,

where

k(x ,y) =−(∇div+κ
2)Gκ(x −y) =−(D2 +κ

2)Gκ(x −y).

The idea of DDA is introduced in:
PURCELL, E. M., AND PENNYPACKER, R. P: Scattering and absorption of light
by non spherical dielectric grains. ApJ, 186, pp.705-714, (1973)

with Clausius-Mossotti polarizability as αi ’s:

α
CM
i =

3d3

4π

εi −1
εi +2

,

=
3

4πN
εi −1
εi +2

(1)

εi = ε(xi), dielectric function at
location xi , d3 = V/N and
V = Vol(Ω).
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The discrete system

DDA system matrix:

T κ
N = (N−d Kκ(xm −xn))n,m∈ωN , Kκ(0) = 0, ωN = {n ∈ Zd | xn =

n
N

∈Ω}.

To get an approximation for 1
η
Id −Aκ , we see that

1
η
Id −Aκ = (

1
η
− 1

d
)Id −Tκ ,

for T N
κ as an approximation for Tκ , λ I−T N

κ is an approximation for
1
η
I−Aκ .

The stability: ∥(λ I−T N
κ )−1∥< M. Let ã(ξ ) = ∑m∈Zd a(m)eim.ξ ,

a(m) = (2π)−d ∫
Q ã(t)e−im.ξ dξ , then the quadratic form of the DDA system

is

(uN ,(λ I−T N
κ )uN)l2(ωN ) = (2π)−d

∫
Q

ũN(ξ )(λ I− K̃ N
κ (ξ )︸ ︷︷ ︸

:=FN
κ (ξ )

)ũN(ξ )dξ ,

where Q = [−π,π]d ≃ Rd \ (2πZd). Let λ = 1
η
− 1

d and η = 1− εr , then

λ = d−1+εr
d(1−εr )

. Especially, for d = 3, λ = 2+εr
3(1−εr )

.
MC, MD, KN (IASBS) VIE-DDA January 2, 2023 23 / 42



Recall: numerical range (field of values)

A : X → X a bounded linear operator in Hilbert space H and
a(u,v) = (Au,v) the corresponding sesquilinear form

Definition: W (A) = {(Au,u) | u ∈ X , ∥u∥= 1}

✓ W (A) is convex;

✓ Sp(A)⊂ W (A)⊂ {z ∈ C | |z| ≤ ∥A∥};

✓ (Au,u) is coercive iff 0 /∈ W (A), and coercivity constant γ = infz∈W (A) |z|

✓ Let XN ⊂ X and AN : XN → XN with AN = a(u,u)|XN , then
W (AN)⊂ W (A) and furthermore for λ /∈ W (A),

∥(λ I−AN)
−1∥ ≤ 1

dist(λ ,W (A))
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Stability results for quasi static case: κ = 0

Theorem(Zachlin & Hochstenbach)

The numerical range of a Hermitian matrix T is a closed interval on the real
axis, whose endpoint are formed by the extreme eigenvalue of T .

Due to symmetry and Tr(F0(t)) = 0, for d = 2, F0(t) =
[

a(t) b(t)
b(t) −a(t)

]
Theorem A

There exits an interval Σ := [Λ−,Λ+] such that Σ= ∪N∈NW (T N
0 ). Then for

λ ∈ C\Σ, DDA metod (λ I−T N
0 )u = f is l2-stable and

∥(λ I−T N
0 )−1∥ ≤ 1

dist(λ ,Σ)
.

It is seen that the spectrum of T0 is [−1/d ,1−1/d ] which is contained in
[Λ−,Λ+], so for

Λ− ≤ λ <−1/d or 1−1/d < λ < Λ+

the VIE is well-posed in L2(Ω) but DDA is unstable.
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For d = 2

−Λ− = Λ+ ≥ Λ0 =
Γ(1/4)4

32π2 = 0.5471 . . .

for d = 3

Λ− ∼−0.42 and Λ+ ∼ 0.77 Conjecture: Λ+ = Λ0

Figure: k ≡ κ, λ = 1
η
− 1

3 = 2+εr
3(1−εr )
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Stability results for κ ∈ C\R

Theorem B

Let α ∈ arg κ ∈ (−π,π)\{0} and

Wκ = {z ∈ C
∣∣ |z − 1

2
(z − icot(2α))| ≤ 1

2|sin(2α)|
, Imz.Im(κ2)< 0}.

The compact bounded set [Λ−,Λ+]+Wκ is bounded set for the spectrum
of the VIE and it bounds the numerical range

Corollary

Let λ ∈C\ ([Λ−,Λ+]+Wκ). Then the sequence of matrices (λ I−T N
κ )N∈N

is l2-stable in the following sense: Given any ε > 0 that satisfies
ε < dκ := dist(λ , [Λ−,Λ+]), there exists N0 ∈ N such that for N ≥ N0 the
matrix λ I−T N

κ is invertible, and for the l2-matrix norm we have the
estimate

∥(λ I−T N
κ )−1∥ ≤ 1

dκ − ε
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κ ∈ C\R: bounds for different T N
κ −T N

0

Ω is unit cube, |κ|= 5 and N = 8
Matrix T N

κ −T N
0 : eigenvalues, numerical range, and proven bounds

κ = 0.37+4.99i κ = 3.53+3.53i

κ = 4.62+1.91i κ = 4.97+0.5i
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Stability results for real κ : imaginary part of DDA matrix

Theorem C

Let

µ+(κ) =
d −1

2dΓ( d
2 )π

d/2−1
κ

d (d = 2,µ+(κ) =
κ2

8
and d = 3,

κ3

6π
)

then
W (Im(T N

κ ))⊂ [µN
− ,µ

N
+ ],

with µN
+ = µ+(κ)N−d and limN→∞ µN

− =−µ+(κ)|Ω|.

Corollay

If λ ∈ C is such that either Imλ > 0 or Imλ <−µ+(κ)|Ω|, then for large
enough N the matrix λ I−T N

κ is invertible, and the l2 matrix norms
∥(λ I−T N

κ )−1∥ are bounded uniformly in N. The invertibility holds if either

Imλ > µ+(κ)N−d or Imλ <−µ+(κ)
|ωN |−1

Nd .
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κ real: bounds for the imaginary part of the numerical range

Ω unit cube, κ = 10
Eigenvalues, numerical range, and proven bounds:
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Analysis: for κ = 0

For operator
Aκ = A0 +(Aκ −A0︸ ︷︷ ︸

compact

)

the principle part is A0 and A0u =−D2G0 ∗ (χΩu)
The kernel K (x) =−D2g0(x) and

G0(x) =

{
− 1

2π
log |x |, d = 2

1
4π|x | , d = 3

K is homogenous of degree −d

VIE: λu−Tu = f with Tu(x) = p.v
∫
Ω K (x −y)u(y)dy

Discretization: λun −N−d
∑m,n∈ωN m ̸=n K (xn −xm)um = fn,n ∈ ωN

Ω⊂ Rd is a bounded domain and ωn = {n ∈ Zd |xn ∈ Ω}
System matrix

T N = (tmn)m,n∈ωN=Zd∩NΩ, tmn =

{
N−d K (xm −xn) = K (m−n), m ̸= n

0, m = n
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Analysis (κ = 0): Toeplitz structure

The elements of tmn of the system matrix are independent of N.
Let T ∞ = (K (m−n))m,n∈Zd , K (0) = 0.
T N is Finite Section of the infinite block Toeplitz matrix.
Diagonalization via Fourier series leads to symbol

t̃(ξ ) = ∑m ̸=0 K (m)eim.ξ

Parseval and convolution theorems for Fourier series:

(u,T Nu)l2(ωN ) = (2π)−d
∫

Q
ũ

T
(ξ )̃t(ξ )ũ(ξ )dξ

Lemma

W (T N)⊂ W (T ∞)⊂ conv∪ξ∈Q W ( ˜t(ξ ))

Fourier series is not absolutely convergent.△!

Are there some bounds for t̃(ξ )?
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Analysis: quasi static case

Recall Poisson summation formula:

∑
m∈Zd

f (m)exp(im.t) = ∑
n∈Zd

F{f}(t +2nπ)

then

t̃(ξ ) = ∑n∈Zd σ(ξ +2nπ) for σ(ξ ) = F{K}(ξ ) = ξ ξ T

|ξ |2 .

σ(ξ ) is homogeneous of degree zero (the kernel is homogenous of degree
−d), we have thus replaced a slowly converging Fourier series by a lattice

sum that does not converge at all△!

Remedy for slowly converging or diverging lattice sums: Ewald’s method.

EWALD, PAUL PETER Ewald summation. Ann. Phys, 369, pp. 1–2, (1921).
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Ewald’s method

The idea is to split f into f = f F + f p such that f F and Fourier transform of
f P are rapidly decreasing at infinity .

Thus the Fourier series for f F is absolutely convergent and the Poisson
sum for f P is also absolutely convergent, hence

∑
m∈Zd

f (m)eim.t = ∑
m∈Zd

f F (m)eim.t + ∑
k∈Zd

F{f P}(ξ +2πk)

and both sums on the right converge absolutely and boundedness of
F{f} follows. Applying this for f (x) = K (x), Theorem A is proved:

Theorem A

There exits an interval Σ := [Λ−,Λ+] such that Σ= ∪N∈NW (T N
0 ). Then for

λ ∈ C\Σ, DDA metod (λ I−T N
0 )u = f is l2-stable and

∥(λ I−T N
0 )−1∥ ≤ 1

dist(λ ,Σ)
.
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Ewald’s method in 3D

Details for the case d = 3: We write

Kκ(x) =−(D2 +κ
2)Gκ(x) = (Kκ,ij)i,j=1,2,3

as integral (Mellin transform) of Gaussians

Kκ(x) = (Kκ,ij)i,j=1,2,3,

with
1

2πd/2

∫
∞

0 (2z2δij −4z4xixj −κ2δij)zd−1 exp(−|x |2z2 + κ2

4z2 )dz, Reκ2 < 0

For β > 0, we split the integral over z at z = β :

Kκ = K F
κ +K P

κ ,

with

K F
κ,ij =

1
2π3/2

∫
∞

β 2
(2z2

δij −4z4xixj −κ
2
δij)z2 exp(−|x |2z2 +

κ2

4z2 )dz.
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Ewald’s mathod in 3D

It is shown that

K F
κ,ij(x) =

1
4π3/2

∞

∑
q=0

(κ/2)2q

q!
(−4β

4−2q xixj

|x |2

+((2−4q)δij −4(3/2−q)
xixj

|x |2
)I(3/2−q,β 2, r2))

where I(m,x ,z) = z−mΓ(m,zx).
For K P

κ , we use the Fourier transformed (Poisson summation formula)

F{K P
κ }(ξ ) = ξ ξ T −κ2Id

|ξ |2 −κ2 exp(
−|ξ |2 +κ2

4β 2 )

and K F
κ (0) =−K P

κ (0) get the final Ewald summation:

F N
κ (t) = ∑

m∈Zd\{0}
Kκ/N(m)eim.t = ∑

m∈Zd

K F
κ/N(m)eim.t + ∑

n∈Zd

F{K P
κ/N}(t +2πn)

Homogenity: σρκ(ρξ ) = σκ(ξ ) leads to N−d Kκ(m/N) = Kκ/N(m).
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Ewald method in 3D: κ = 0

It is shown that

K F
κ ,ij(x) =

1
4π3/2

∞

∑
q=0

(κ/2)2q

q!
(−4β

4−2q xixj

|x |2

+((2−4q)δij −4(3/2−q)
xixj

|x |2
)I(3/2−q,β 2, r2))

where I(m,x ,z) = z−mΓ(m,zx).
For K P

κ , we use the Fourier transformed (Poisson summation formula)

F{K P
κ }(ξ ) = ξ ξ T −κ2Id

|ξ |2 −κ2 exp(
−|ξ |2 +κ2

4β 2 )

It is now evident that both the Fourier sum with K F and the lattice sum with
K P converge exponentially.
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Ewald’s method in 3D

The characteristic function t̃ is a bounded 2π-periodic function on R3

whose values are real symmetric 3×3 matrices of trace 0 with elements

t̃ij(ξ ) =
M

∑
m1,m2,m3=−M

1
4π3/2

(−4β
4 xixj

|x |2
+(2δij −6

xixj

|x |2
)I(3/2,β 2, r2))eim.ξ

+
N

∑
n1,n2,n3=−N

(ξj +2πnj)(ξi +2πni)

|ξ +2πn|2
e
−−|ξ+2nπ|2

4β2 +R(MN)
ij (ξ )

where in the first sum in the term with m = (0,0,0) is understood to be
−( β√

π
)3. As M,N → ∞, the remainders R(MN) converge to zero uniformly

exponentially fast.
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Analysis for κ ̸= 0 ∈ C\R

Lemma

t̃κ(ξ ) = σκ(ξ )+ v(κ,ξ ) where v is continuous on Bπ(0)×Q and

v(κ,ξ ) =− 1
d
+O(κ2)

To bound W (σκ(ξ )), we notice that

σκ(ξ ) =
ξ ξ T −κ2Id

|ξ |2 −κ2 = Id +
|ξ |2

κ2 −|ξ |2
(Id −

ξ ξ T

|ξ |2
)

so W (σκ(ξ )) = {1}+ |ξ |2
κ2−|ξ |2 [0,1]

Bound depending on arg κ(−π,π)\{0} lead to Theorem B
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Analysis for κ ̸= 0 ∈ R

Lemma: Plane wave representation for the imaginary part

Im Gκ(x) =
κd−2

2d+1πd−1

∫
Sd−1

eiκξ .x ds(ξ )

Im Kκ(x) =
κd−2

2d+1πd−1

∫
Sd−1

(ξ ξ
T − Id)eiκξ .x ds(ξ )

Let F(u(ξ )) := ∑m∈ωN
(um − (um.ξ )ξ )exp(−iκξ .m), then

⟨ū, ImT N
κ u⟩= −κd

2d+1πd−1

∫
Sd−1

|F(u(ξ ))|2ds(ξ )+µ+(κ)∥u∥2
l2

and 0 ≤ |ũ(ξ )|2 ≤ |ωN |∥u∥2
l2 results Theorem C.
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