Discrete Dipole Approximation of Volume Integral Equations: A perfect method for perfect equations?

M. Costabel, M. Dauge, K. Nedaiasl

IRMAR - IASBS

January 2, 2023

An integral equation with simple discretization:

Consider the following integral equation

$$\lambda u(x) - \int_{\Omega} K(x,y)u(y) \mathrm{d}y = f(x), \quad x \in \Omega$$

and imagine the following system of equations as its discretization

$$\lambda u_m - \sum_{x_n \in \Omega, n \neq m} h^m K(x_m, x_n) u_n = f(x_m), \quad x_m \in \Omega$$

where h = 1/N

Discrete Dipole Approximation (DDA)

Let $\Omega = \bigcup_{i=i}^{N} \Omega_i$, $x_i \in \Omega_i$, collocate Eq. (asli) at points x_i and approximate the integrals by one-point quadrature rule, then:

$$\mathscr{A}_{\kappa}\mathsf{E}(x_i)\simeq (\frac{1}{N})^3\sum_{j\neq i}k(x_i,x_j)\mathsf{E}(x_j)+\alpha_i^{-1}\mathsf{E}(x_i)$$

where

$$k(x,y) = -(\nabla \operatorname{div} + \kappa^2)G_{\kappa}(x-y) = -(D^2 + \kappa^2)G_{\kappa}(x-y).$$

The idea of DDA is introduced in:

PURCELL, E. M., AND PENNYPACKER, R. P: Scattering and absorption of light by non spherical dielectric grains. *ApJ*, *186*, *pp.705-714*, (1973) with Clausius-Mossotti polarizability as α_i's:

$$\alpha_{i}^{\text{CM}} = \frac{3d^{3}}{4\pi} \frac{\varepsilon_{i} - 1}{\varepsilon_{i} + 2},$$
$$= \frac{3V}{4\pi N} \frac{\varepsilon_{i} - 1}{\varepsilon_{i} + 2}$$

 $\varepsilon_i = \varepsilon(x_i)$, dielectric function at location x_i , $d^3 = V/N$ and $V = \text{Vol}(\Omega)$.

Discrete Dipole Approximation (DDA)

Another option for α_i 's in order to answer the question: " for what polarizability α will an infinite lattice of polarizable points have the same dispersion relation as a continuum of refractive index $m = \sqrt{\epsilon}$? ",

$$\alpha_i^{\text{LDR}} = \frac{\alpha^{\text{CM}}}{1 + \frac{\alpha^{\text{CM}}}{d^3} [(b_1 + m^2 b_2 + m^2 b_3 S)(kd)^2 - (2/3)i(kd)^3]},$$

with

$$b_1 = -1.891531; b_2 = 0.1648469; b_3 = -1.7700004; S = \sum_{j=1}^{3} (a_j e_j)^3,$$

is discussed in:

DRAINE, B. T., AND GOODMAN J.: Beyond Clausius-Mossotti-Wave propagation on a polarizable point lattice and the discrete dipole approximation. *ApJ*, *405*, *pp*. *685-697*, (1993).

Figure: Pseudospheres made from 32, 552 and 3112 dipoles, arranged in cubic lattic

LOKE, V. AND MENGÜÇ, M PINAR AND NIEMINEN, TIMO A: Discrete-dipole approximation with surface interaction: Computational toolbox for MATLAB. JQSRT, 112, pp. 1711–1725, (2011).

Figure: Coefficient Matrix

LOKE, V. AND MENGÜÇ, M PINAR AND NIEMINEN, TIMO A: Discrete-dipole approximation with surface interaction: Computational toolbox for MATLAB. *JQSRT*, *112*, pp. *1711–1725*, (2011).

Figure: A piece of Julia code for DDA matrix

DDA: the pros and cons

- ★ ✓ It is the simplest method that one can apply to numerically solve an IE. Open source codes are available in Fortran(DDSCAT), MATLAB(DDA-SI), Python(PyDDA), C(ADDA), C++(DDScat), ...
 - It is quite easy to understand in comparison with BEM, FEM or even FDM.
 - Convolution structure of the operator; Toeplitz matrix in the discretized level; application of FFT method.
 One can see the last development in:
- GROTH, S. P., ATHANASIOS G. P., AND JACOB K. W.: Accelerating the discrete dipole approximation via circulant preconditioning. *Journal of Quantitative Spectroscopy and Radiative Transfer*, 420, (2020)
- ★ ✓ It is very popular: 9/30/2022

DDA: the pros and cons

- ★ ✓ It is the simplest method that one can apply to numerically solve an IE. Open source codes are available in Fortran(DDSCAT), MATLAB(DDA-SI), Python(PyDDA), C(ADDA), C++(DDScat), ...
- ★ ✓ It is quite easy to understand in comparison with BEM, FEM or even FDM.
 - Convolution structure of the operator; Toeplitz matrix in the discretized level; application of FFT method.
 One can see the last development in:
- ★ ✓ It is very popular: 9/30/2022

- ✓ It is the simplest method that one can apply to numerically solve an IE. Open source codes are available in Fortran(DDSCAT), MATLAB(DDA-SI), Python(PyDDA), C(ADDA), C++(DDScat), ...
- ★ ✓ It is quite easy to understand in comparison with BEM, FEM or even FDM.
- ✓ Convolution structure of the operator; Toeplitz matrix in the discretized level; application of FFT method.
 One can see the last development in:
 - GROTH, S. P., ATHANASIOS G. P., AND JACOB K. W.: Accelerating the discrete dipole approximation via circulant preconditioning. *Journal of Quantitative Spectroscopy and Radiative Transfer, 420*, (2020)

- ✓ It is the simplest method that one can apply to numerically solve an IE. Open source codes are available in Fortran(DDSCAT), MATLAB(DDA-SI), Python(PyDDA), C(ADDA), C++(DDScat), ...
- ★ ✓ It is quite easy to understand in comparison with BEM, FEM or even FDM.
- ✓ Convolution structure of the operator; Toeplitz matrix in the discretized level; application of FFT method.
 One can see the last development in:
 - GROTH, S. P., ATHANASIOS G. P., AND JACOB K. W.: Accelerating the discrete dipole approximation via circulant preconditioning. *Journal of Quantitative Spectroscopy and Radiative Transfer, 420*, (2020)
- \star \checkmark It is very popular: 9/30/2022

but among physicists not mathematicians!

1 hit in NA (MR1375267) published 1996!

12 hits from 2014-2022, there is no document before!

 $\star\,$ In continuous level: \mathscr{A}_{κ} is a strongly singular operator. So compared to boundary integral operators, it is less discussed.

 $\Omega \subset \mathbb{R}^3$, bounded domain:

Time-harmonic Maxwell Equations:

curl $\mathbf{E} - i\kappa\mu$ curl $\mathbf{H} = 0$; curl $\mathbf{H} + i\kappa\varepsilon\mathbf{E} = \mathbf{J}$

$$\begin{split} \varepsilon &= \varepsilon_r \text{ in } \Omega, \quad \varepsilon = 1 \text{ in } \mathbb{R}^3 \setminus \overline{\Omega}, \\ \eta &= 1 - \varepsilon_r; \text{ has compact support } \\ \mu &= \mu_r \text{ in } \Omega, \ \mu = 1 \text{ in } \mathbb{R}^3 \setminus \overline{\Omega}, \\ \nu &= 1 - \frac{1}{\mu_r} \end{split}$$

$$\begin{split} & \text{Supp J compact in } \mathbb{R}^3 \setminus \Omega \\ & \text{Transition condition on the boundary } \Gamma = \partial \Omega \\ & [\textbf{E} \times \textbf{n}]_{\Gamma} = 0, \quad [\textbf{n}. \mu \textbf{H}]_{\Gamma} = 0, \quad [\textbf{H} \times \textbf{n}]_{\Gamma} = 0, \quad [\textbf{n}. \boldsymbol{\varepsilon} \textbf{E}]_{\Gamma} = 0 \end{split}$$

+ Sommerfeld Radiation Condition

4

It is seen that

$$(\operatorname{\mathbf{curl}}\operatorname{\mathbf{curl}}-\kappa^2\mathbb{I})(rac{1}{\kappa^2}
abla\operatorname{div}+\mathbb{I})=-(\Delta+\kappa^2\mathbb{I})$$

so ${\bf E}$ is obtained from the convolution with the fundamental solution

$$g_{\kappa}(x) = (rac{1}{\kappa^2}
abla \operatorname{div} + \mathbb{I}) G_{\kappa}(x), \quad G_{\kappa}(x) = rac{\exp(i\kappa |x|)}{4\pi |x|}$$

Volume Integral Equation (VIE)

We get an VIE for the electric part E:

$$\mathbf{E} = \kappa^2 g_{\kappa} * (\eta \, \chi_{\Omega} \, \mathbf{E}) + g_{\kappa} * (\operatorname{curl} \nu \, \chi_{\Omega} \, \operatorname{curl} \, \mathbf{E}) + \mathrm{i} \kappa g_{\kappa} * \mathbf{J},$$

or

$$\begin{split} \mathbf{E}(x) &= \kappa^2 \int_{\Omega} g_{\kappa}(x-y) \eta(y) \mathbf{E}(y) \mathrm{d}y + \int_{\Omega} g_{\kappa}(x-y) \operatorname{curl} v(y) \operatorname{curl} \mathbf{E}(y) \mathrm{d}y \\ &+ \mathrm{i}\kappa \int_{\Omega} g_{\kappa}(x-y) \mathbf{J}(y) \mathrm{d}y, \end{split}$$

Let

Dielectric problem: $\mu \equiv \text{const}, \nu = 0$

then

$$\mathbf{E}(x) = -(\nabla \operatorname{div} + \kappa^2 \mathbb{I}_d) \int_{\Omega} G_{\kappa}(x-y) \eta(y) \mathbf{E}(y) \mathrm{d}y + \mathbf{E}^{\operatorname{inc}}(x).$$

We get

$$\mathbf{E}(x) - \mathscr{A}_{\kappa}(\eta \mathbf{E})(x) = \mathbf{E}^{\mathrm{inc}}(x)$$

with

$$(\mathscr{A}_{\kappa}u)(y) = -(\nabla \operatorname{div} + \kappa^2 \mathbb{I}_d) \int_{\Omega} G_{\kappa}(x-y)u(y) \mathrm{d}y.$$

Applying Fourier transform on \mathscr{A}_{κ} :

$$\sigma_{\kappa}(\xi) := \mathscr{F}\{\mathscr{A}_{\kappa}u\}(\xi) = \frac{\xi\xi^{T} - \kappa^{2}\mathbb{I}_{d}}{|\xi|^{2} - \kappa^{2}}\hat{u}(\xi),$$

the inversion Fourier transform gives:

$$(\mathscr{A}_{\kappa}u)(x) = (2\pi)^{-d} \int_{\mathbb{R}^d} \sigma_{\kappa}(\xi) \hat{u}(\xi) \exp(-\mathrm{i}\xi.x) \mathrm{d}\xi$$

So \mathscr{A}_{κ} has a inverse Fourier representation with specific kernel called symbol of the operator. Such operators are called pseudo-differential operators.

VIE for Maxwell's equations

The operator \mathscr{A}_{κ} can be represented as a strongly singular integral operator:

$$\mathscr{A}_{\kappa}\mathsf{E}(x) = \mathsf{p.v.}\int_{\Omega} \nabla_{x} \nabla_{y} G_{\kappa}(x-y)\mathsf{E}(y) \mathrm{d}y + \frac{1}{3}\mathsf{E}(x)$$

where p.v denotes the Cauchy Principle Value:

$$T_{\kappa}\mathbf{E}(x) := \mathrm{p.v.} \int_{\Omega} \nabla_{x} \nabla_{y} G_{k}(x-y) \mathbf{E}(y) \mathrm{d}y = \lim_{\varepsilon \to 0} \int_{\Omega \setminus B_{\varepsilon}(x)} \nabla_{x} \nabla_{y} G_{\kappa}(x-y) \mathbf{E}(y) \mathrm{d}y.$$

Is the problem

$$\mathbf{E} - \mathscr{A}_{\kappa}(\eta \mathbf{E}) = \mathbf{E}^{\text{inc}}$$
 (asli)

or its equivalence

$$rac{1}{\eta} \mathsf{E} - \mathscr{A}_\kappa \mathsf{E} = \mathsf{E}^{\mathsf{inc}}$$

well-posed in the sense of Hadamard (existence, uniqueness and stability)?

Some properties of \mathscr{A}_{κ}

✓ The operator \mathscr{A}_{κ} can be extended to L²(Ω) as a bounded operator;

 $\checkmark \mathscr{A}_{\kappa} - \mathscr{A}_{0}$ is a compact operator in $L^{2}(\Omega)$;

Let spectrum:

$$\operatorname{Sp}(T) := \{\lambda \in \mathbb{C} \mid (\lambda \mathbb{I} - T)^{-1} \text{ does not exits}\}$$

and essential spectrum

 $\mathsf{Sp}_{\mathsf{ess}}(\mathit{T}) \mathrel{\mathop:}= \{\lambda \in \mathbb{C} \mid (\lambda \mathbb{I} - \mathit{T}) \text{ is not Fredholm} \}$

then \checkmark Let $\Sigma := \operatorname{Sp}_{ess}(\frac{1}{2}\mathbb{I} + K') \subset (0, 1)$, then for Lipschitz Γ : $\operatorname{Sp}_{ess}(\mathscr{A}_0) = \{0, 1\} \cup \Sigma$ and for smooth Γ : $\operatorname{Sp}_{ess}(\mathscr{A}_0) = \{0, 1/2, 1\}$. K' is

boundary integral operator adjoint to the Helmholtz double layer potential operator.

- DDA as a popular method between physicists and engineers is really accurate as it is shown by numerical examples?
- * Is it a consistent, convergent and stable method?
- * Is there any estimation for the rate of convergence?
- YURKIN, M. A., VALERI P. M., AND A. G. HOEKSTRA: Convergence of the discrete dipole approximation. I. Theoretical analysis, JOSA A, 23(10), pp. 2578-2591 (2006).

$$\|(\mathscr{A}_{\kappa}\mathsf{E})(\mathbf{x}_{i}) - \mathscr{A}_{\kappa}^{\mathsf{DDA}}(\mathsf{E})_{i}\|_{L^{1}(\overline{\Omega})} = ch + \mathcal{O}\left(h^{2}\log(h)\right) \text{ for } \mathsf{E} \in C^{4}(\overline{\Omega})$$

Lax equivalence theorem:

For a consistent numerical algorithm:

stability \Leftrightarrow convergence

Consistency, stability, convergence

Let Au = f and the discrete form as $A_N u_N = f_N := r_N f$:

Consistency error (truncation error): $E_N[v] = A_N r_N v - r_N A v$ Discrete error: $e_N = r_N u - u_N$

$$A_N e_N = A_N r_N u - A_N u_N = A_N r_N u - r_N f = A_N r_N u - r_N A u = E_N[u]$$

$$\downarrow$$

$$\|e_N\| \le \|(A_N)^{-1}\|\|E_N[u]\|$$

If $\exists C > 0$ s.t $||(A_N)^{-1}|| \le C$, uniformly, then the method is stable and truncation error gives an estimation for discrete error.

An example: The eigenvalues and different wavenumbers

DDA in 3D: Ω is unit cube; h = 1/N; N the number of dipoles

An example: convergence of the spectrum

DDA in 3D: Ω is unit cube; h = 1/N; N the number of dipoles

We have

$$\Omega \subset \mathbb{R}^d$$
, $K_{\kappa} = -(D^2 + \kappa^2)G_{\kappa}$ and $\mathscr{A}_{\kappa}u = K_{\kappa}*(\chi_{\Omega}u)$

and

$$T_{\kappa}u = p.v. \int_{\Omega} K_{\kappa}(x-y)u(y)dy$$

and

$$\mathscr{A}_{\kappa}u = T_{\kappa}u + \frac{1}{d}u$$

then

$$(\frac{1}{\eta}\mathbb{I}_d - \mathscr{A}_\kappa)u = \underbrace{(\frac{1}{\eta} - \frac{1}{d})u}_{\text{diagonal terms}} - T_\kappa u$$

Discrete Dipole Approximation (DDA)

Let $\Omega = \bigcup_{i=i}^{N} \Omega_i$, $x_i \in \Omega_i$, collocate Eq. (asli) at points x_i and approximate the integrals by one-point quadrature rule, then:

$$\mathscr{A}_{\kappa}\mathsf{E}(x_i)\simeq (\frac{1}{N})^3\sum_{j\neq i}k(x_i,x_j)\mathsf{E}(x_j)+\alpha_i^{-1}\mathsf{E}(x_i)$$

where

$$k(x,y) = -(\nabla \operatorname{div} + \kappa^2)G_{\kappa}(x-y) = -(D^2 + \kappa^2)G_{\kappa}(x-y).$$

The idea of DDA is introduced in:

PURCELL, E. M., AND PENNYPACKER, R. P: Scattering and absorption of light by non spherical dielectric grains. *ApJ*, *186*, *pp.705-714*, (1973) with Clausius-Mossotti polarizability as α_i's:

$$\alpha_{i}^{\text{CM}} = \frac{3d^{3}}{4\pi} \frac{\varepsilon_{i} - 1}{\varepsilon_{i} + 2},$$

$$= \frac{3}{4\pi N} \frac{\varepsilon_{i} - 1}{\varepsilon_{i} + 2}$$
(1)

 $\varepsilon_i = \varepsilon(x_i)$, dielectric function at location x_i , $d^3 = V/N$ and $V = \text{Vol}(\Omega)$.

DDA system matrix:

 $T_N^{\kappa} = (N^{-d} \mathcal{K}_{\kappa}(x_m - x_n))_{n,m \in \omega^N}, \ \mathcal{K}_{\kappa}(0) = 0, \ \omega_N = \{n \in \mathbb{Z}^d \mid x_n = \frac{n}{N} \in \Omega\}.$

To get an approximation for $\frac{1}{n}\mathbb{I}_d - \mathscr{A}_{\kappa}$, we see that

$$\frac{1}{\eta}\mathbb{I}_d - \mathscr{A}_{\kappa} = (\frac{1}{\eta} - \frac{1}{d})\mathbb{I}_d - T_{\kappa},$$

for T_{κ}^{N} as an approximation for T_{κ} , $\lambda \mathbb{I} - T_{\kappa}^{N}$ is an approximation for $\frac{1}{n}\mathbb{I} - \mathcal{A}_{\kappa}$.

The stability: $\|(\lambda \mathbb{I} - T_{\kappa}^{N})^{-1}\| < M$. Let $\tilde{a}(\xi) = \sum_{m \in \mathbb{Z}^{d}} a(m) e^{im.\xi}$,

 $a(m) = (2\pi)^{-d} \int_Q \tilde{a}(t) e^{-im.\xi} d\xi$, then the quadratic form of the DDA system is

$$(u_N,(\lambda\mathbb{I}-T_{\kappa}^N)u_N)_{l^2(\omega^N)}=(2\pi)^{-d}\int_Q\overline{\widetilde{u}_N(\xi)}(\lambda\mathbb{I}-\underbrace{\widetilde{\mathcal{K}}_{\kappa}^N(\xi)}_{:=F_{\kappa}^N(\xi)})\widetilde{u}_N(\xi)\mathrm{d}\xi,$$

where $Q = [-\pi, \pi]^d \simeq \mathbb{R}^d \setminus (2\pi\mathbb{Z}^d)$. Let $\lambda = \frac{1}{\eta} - \frac{1}{d}$ and $\eta = 1 - \varepsilon_r$, then $\lambda = \frac{d-1+\varepsilon_r}{d(1-\varepsilon_r)}$. Especially, for d = 3, $\lambda = \frac{2+\varepsilon_r}{3(1-\varepsilon_r)}$.

 $A: X \to X$ a bounded linear operator in Hilbert space H and a(u, v) = (Au, v) the corresponding sesquilinear form

Definition: $W(A) = \{(Au, u) \mid u \in X, ||u|| = 1\}$

- \checkmark W(A) is convex;
- ✓ Sp(A) ⊂ $\overline{W(A)}$ ⊂ { $z \in \mathbb{C} | |z| \le ||A||$ };

✓ (Au, u) is coercive iff 0 $\notin \overline{W(A)}$, and coercivity constant $\gamma = \inf_{z \in W(A)} |z|$

✓ Let $X_N \subset X$ and $A_N : X_N \to X_N$ with $A_N = a(u, u)|_{X_N}$, then $W(A_N) \subset W(A)$ and furthermore for $\lambda \notin W(A)$,

$$\|(\lambda \mathbb{I} - A_N)^{-1}\| \leq \frac{1}{\operatorname{dist}(\lambda, W(A))}$$

Theorem(Zachlin & Hochstenbach)

The numerical range of a Hermitian matrix T is a closed interval on the real axis, whose endpoint are formed by the extreme eigenvalue of T.

Due to symmetry and $Tr(F_0(t)) = 0$, for d = 2, $F_0(t) = \begin{bmatrix} a(t) & b(t) \\ b(t) & -a(t) \end{bmatrix}$

Theorem A

There exits an interval $\Sigma := [\Lambda_{-}, \Lambda_{+}]$ such that $\Sigma = \bigcup_{N \in \mathbb{N}} W(T_{0}^{N})$. Then for $\lambda \in \mathbb{C} \setminus \Sigma$, DDA metod $(\lambda \mathbb{I} - T_{0}^{N})u = f$ is l^{2} -stable and

$$\|(\lambda \mathbb{I} - T_0^N)^{-1}\| \leq \frac{1}{\operatorname{dist}(\lambda, \Sigma)}$$

It is seen that the spectrum of T_0 is [-1/d, 1-1/d] which is contained in $[\Lambda_-, \Lambda_+]$, so for

$$\Lambda_{-} \leq \lambda < -1/d$$
 or $1-1/d < \lambda < \Lambda_{+}$

the VIE is well-posed in $L^2(\Omega)$ but DDA is unstable.

For
$$d=2$$

 $-\Lambda_{-}=\Lambda_{+}\geq\Lambda_{0}=rac{\Gamma(1/4)^{4}}{32\pi^{2}}=0.5471\ldots$ for $d=3$

 $\Lambda_- \sim -0.42$ and $\Lambda_+ \sim 0.77$ Conjecture: $\Lambda_+ = \Lambda_0$

MC, MD, KN (IASBS)

Theorem B

Let $lpha\in$ arg $\kappa\in(-\pi,\pi)\setminus\{0\}$ and

$$W_{\kappa} = \{z \in \mathbb{C} \mid |z - \frac{1}{2}(z - \operatorname{i}\operatorname{cot}(2\alpha))| \leq \frac{1}{2|\sin(2\alpha)|}, \ \operatorname{Im} z.\mathit{Im}(\kappa^2) < 0\}.$$

The compact bounded set $[\Lambda_-, \Lambda_+] + W_{\kappa}$ is bounded set for the spectrum of the VIE and it bounds the numerical range

Corollary

Let $\lambda \in \mathbb{C} \setminus ([\Lambda_-, \Lambda_+] + W_{\kappa})$. Then the sequence of matrices $(\lambda \mathbb{I} - T_{\kappa}^N)_{N \in \mathbb{N}}$ is l^2 -stable in the following sense: Given any $\varepsilon > 0$ that satisfies $\varepsilon < d_{\kappa} := \operatorname{dist}(\lambda, [\Lambda_-, \Lambda_+])$, there exists $N_0 \in \mathbb{N}$ such that for $N \ge N_0$ the matrix $\lambda \mathbb{I} - T_{\kappa}^N$ is invertible, and for the l^2 -matrix norm we have the estimate

$$\|(\lambda \mathbb{I} - T_{\kappa}^{N})^{-1}\| \leq \frac{1}{d_{\kappa} - \varepsilon}$$

$\kappa \in \mathbb{C} \setminus \mathbb{R}$: bounds for different $T_{\kappa}^{N} - T_{0}^{N}$

Ω is unit cube, $|\kappa| = 5$ and N = 8Matrix $T_{\kappa}^{N} - T_{0}^{N}$: eigenvalues, numerical range, and proven bounds

Stability results for real κ : imaginary part of DDA matrix

Theorem C

Let

$$\mu_+(\kappa) = rac{d-1}{2^d \Gamma(rac{d}{2}) \pi^{d/2-1}} \kappa^d$$
 $(d=2, \mu_+(\kappa) = rac{\kappa^2}{8} ext{ and } d=3, rac{\kappa^3}{6\pi})$

then

$$W(\operatorname{Im}(\mathcal{T}_{\kappa}^{N})) \subset [\mu_{-}^{N}, \mu_{+}^{N}],$$

with
$$\mu_+^N = \mu_+(\kappa) N^{-d}$$
 and $\lim_{N \to \infty} \mu_-^N = -\mu_+(\kappa) |\Omega|$.

Corollay

If $\lambda \in \mathbb{C}$ is such that either $\operatorname{Im} \lambda > 0$ or $\operatorname{Im} \lambda < -\mu_+(\kappa) |\Omega|$, then for large enough *N* the matrix $\lambda \mathbb{I} - T_{\kappa}^N$ is invertible, and the l^2 matrix norms $\|(\lambda \mathbb{I} - T_{\kappa}^N)^{-1}\|$ are bounded uniformly in *N*. The invertibility holds if either $\operatorname{Im} \lambda > \mu_+(\kappa) N^{-d}$ or $\operatorname{Im} \lambda < -\mu_+(\kappa) \frac{|\omega^N| - 1}{N^d}$.

κ real: bounds for the imaginary part of the numerical range

Ω unit cube, κ = 10Eigenvalues, numerical range, and proven bounds:

κ real: bounds for the imaginary part of the numerical range

Ω unit cube, κ = 10Eigenvalues, numerical range, and proven bounds: For operator

$$\mathcal{A}_{\kappa} = \mathcal{A}_{0} + (\underbrace{\mathcal{A}_{\kappa} - \mathcal{A}_{0}}_{\text{compact}})$$

the principle part is \mathscr{A}_0 and $\mathscr{A}_0 u = -D^2 G_0 * (\chi_\Omega u)$ The kernel $K(x) = -D^2 g_0(x)$ and

$$G_0(x) = \begin{cases} -\frac{1}{2\pi} \log |x|, & d = 2\\ \frac{1}{4\pi |x|}, & d = 3 \end{cases}$$

K is homogenous of degree -d

VIE: $\lambda u - Tu = f$ with $Tu(x) = p.v \int_{\Omega} K(x - y)u(y)dy$ Discretization: $\lambda u_n - N^{-d} \sum_{m,n \in \omega^N m \neq n} K(x_n - x_m)u_m = f_n, n \in \omega^N$ $\Omega \subset \mathbb{R}^d$ is a bounded domain and $\omega^n = \{n \in \mathbb{Z}^d | x_n \in \Omega\}$ System matrix

$$T^{N} = (t_{mn})_{m,n \in \omega^{N} = \mathbb{Z}^{d} \cap N\Omega}, \quad t_{mn} = \begin{cases} N^{-d} K(x_{m} - x_{n}) = K(m - n), & m \neq n \\ 0, & m = n \end{cases}$$

Analysis ($\kappa = 0$): Toeplitz structure

The elements of t_{mn} of the system matrix are independent of *N*. Let $T^{\infty} = (K(m-n))_{m,n \in \mathbb{Z}^d}$, K(0) = 0. T^N is Finite Section of the infinite block Toeplitz matrix. Diagonalization via Fourier series leads to symbol

 $\tilde{t}(\xi) = \sum_{m \neq 0} K(m) e^{\mathrm{i}m.\xi}$

Parseval and convolution theorems for Fourier series:

$$(u, T^N u)_{l^2(\omega^N)} = (2\pi)^{-d} \int_Q \overline{\tilde{u}}^T(\xi) \tilde{t}(\xi) \tilde{u}(\xi) \mathrm{d}\xi$$

Lemma

$$W(T^N) \subset W(T^\infty) \subset \overline{\operatorname{conv}} \cup_{\xi \in Q} W(t(\widetilde{\xi}))$$

Fourier series is not absolutely convergent. $\angle !$ Are there some bounds for $\tilde{t}(\xi)$? Recall Poisson summation formula:

$$\sum_{m\in\mathbb{Z}^d} f(m) \exp(\mathrm{i} m.t) = \sum_{n\in\mathbb{Z}^d} \mathscr{F}\{f\}(t+2n\pi)$$

then

$$\tilde{t}(\xi) = \sum_{n \in \mathbb{Z}^d} \sigma(\xi + 2n\pi)$$
 for $\sigma(\xi) = \mathscr{F}\{K\}(\xi) = \frac{\xi\xi^T}{|\xi|^2}$

 $\sigma(\xi)$ is homogeneous of degree zero (the kernel is homogenous of degree -d), we have thus replaced a slowly converging Fourier series by a lattice sum that does not converge at all

Remedy for slowly converging or diverging lattice sums: Ewald's method.

EWALD, PAUL PETER Ewald summation. Ann. Phys, 369, pp. 1–2, (1921).

The idea is to split *f* into $f = f^F + f^p$ such that f^F and Fourier transform of f^P are rapidly decreasing at infinity.

Thus the Fourier series for f^F is absolutely convergent and the Poisson sum for f^P is also absolutely convergent, hence

$$\sum_{m\in\mathbb{Z}^d} f(m)e^{\mathsf{i}m.t} = \sum_{m\in\mathbb{Z}^d} f^F(m)e^{\mathsf{i}m.t} + \sum_{k\in\mathbb{Z}^d} \mathscr{F}\{f^P\}(\xi + 2\pi k)$$

and both sums on the right converge absolutely and boundedness of $\mathscr{F}{f}$ follows. Applying this for f(x) = K(x), Theorem A is proved:

Theorem A

There exits an interval $\Sigma := [\Lambda_-, \Lambda_+]$ such that $\Sigma = \bigcup_{N \in \mathbb{N}} W(T_0^N)$. Then for $\lambda \in \mathbb{C} \setminus \Sigma$, DDA metod $(\lambda \mathbb{I} - T_0^N)u = f$ is l^2 -stable and

$$\|(\lambda \mathbb{I} - T_0^N)^{-1}\| \leq \frac{1}{\operatorname{dist}(\lambda, \Sigma)}.$$

Details for the case d = 3: We write

$$K_{\kappa}(x) = -(D^2 + \kappa^2)G_{\kappa}(x) = (K_{\kappa,ij})_{i,j=1,2,3}$$

as integral (Mellin transform) of Gaussians

$$K_{\kappa}(x)=(K_{\kappa,ij})_{i,j=1,2,3},$$

with $\frac{1}{2\pi^{d/2}}\int_0^\infty (2z^2\delta_{ij} - 4z^4x_ix_j - \kappa^2\delta_{ij})z^{d-1}\exp(-|x|^2z^2 + \frac{\kappa^2}{4z^2})dz, \quad \text{Re}\kappa^2 < 0$ For $\beta > 0$, we split the integral over z at $z = \beta$: $\kappa_{\kappa} = \kappa_{\kappa}^F + \kappa_{\kappa}^P,$

$$K_{\kappa,ij}^{F} = \frac{1}{2\pi^{3/2}} \int_{\beta^{2}}^{\infty} (2z^{2}\delta_{ij} - 4z^{4}x_{i}x_{j} - \kappa^{2}\delta_{ij})z^{2} \exp(-|x|^{2}z^{2} + \frac{\kappa^{2}}{4z^{2}}) \mathrm{d}z.$$

It is shown that

$$\begin{split} \mathcal{K}_{\kappa,ij}^{\mathsf{F}}(x) &= \frac{1}{4\pi^{3/2}} \sum_{q=0}^{\infty} \frac{(\kappa/2)^{2q}}{q!} (-4\beta^{4-2q} \frac{x_i x_j}{|x|^2} \\ &+ ((2-4q)\delta_{ij} - 4(3/2-q) \frac{x_i x_j}{|x|^2}) I(3/2-q,\beta^2,r^2)) \end{split}$$

where $I(m, x, z) = z^{-m} \Gamma(m, zx)$. For K_{κ}^{P} , we use the Fourier transformed (Poisson summation formula)

$$\mathscr{F}\{\mathcal{K}_{\kappa}^{\mathcal{P}}\}(\xi) = \frac{\xi\xi^{T} - \kappa^{2}\mathbb{I}_{d}}{|\xi|^{2} - \kappa^{2}}\exp(\frac{-|\xi|^{2} + \kappa^{2}}{4\beta^{2}})$$

and $K_{\kappa}^{F}(0) = -K_{\kappa}^{P}(0)$ get the final Ewald summation:

$$F_{\kappa}^{N}(t) = \sum_{m \in \mathbb{Z}^{d} \setminus \{0\}} K_{\kappa/N}(m) e^{im.t} = \sum_{m \in \mathbb{Z}^{d}} K_{\kappa/N}^{F}(m) e^{im.t} + \sum_{n \in \mathbb{Z}^{d}} \mathscr{F}\{K_{\kappa/N}^{P}\}(t+2\pi n)$$

Homogenity: $\sigma_{\rho\kappa}(\rho\xi) = \sigma_{\kappa}(\xi)$ leads to $N^{-d}K_{\kappa}(m/N) = K_{\kappa/N}(m)$.

It is shown that

$$\begin{split} \mathcal{K}_{\mathbf{x},ij}^{E}(x) &= \frac{1}{4\pi^{3/2}} \sum_{q=0}^{\infty} \frac{(\mathbf{x}/2)^{2q}}{q!} (-4\beta^{4-2q} \frac{x_{i}x_{j}}{|x|^{2}} \\ &+ ((2-4q)\delta_{ij} - 4(3/2-q) \frac{x_{i}x_{j}}{|x|^{2}}) I(3/2-q,\beta^{2},r^{2})) \end{split}$$

where $I(m, x, z) = z^{-m} \Gamma(m, zx)$. For $K_{\mathbf{x}}^{P}$, we use the Fourier transformed (Poisson summation formula)

$$\mathscr{F}\{\mathcal{K}_{\kappa}^{\mathcal{P}}\}(\xi) = \frac{\xi\xi^{T} - \varkappa^{e}\mathbb{I}_{d}}{|\xi|^{2} - \varkappa^{e}} \exp(\frac{-|\xi|^{2} + \varkappa^{e}}{4\beta^{2}})$$

It is now evident that both the Fourier sum with K^F and the lattice sum with K^P converge exponentially.

The characteristic function \tilde{t} is a bounded 2π -periodic function on \mathbb{R}^3 whose values are real symmetric 3×3 matrices of trace 0 with elements

$$\begin{split} \tilde{t}_{ij}(\xi) &= \sum_{m_1,m_2,m_3=-M}^{M} \frac{1}{4\pi^{3/2}} (-4\beta^4 \frac{x_i x_j}{|x|^2} + (2\delta_{ij} - 6\frac{x_i x_j}{|x|^2}) I(3/2,\beta^2,r^2)) e^{im.\xi} \\ &+ \sum_{n_1,n_2,n_3=-N}^{N} \frac{(\xi_j + 2\pi n_j)(\xi_i + 2\pi n_i)}{|\xi + 2\pi n|^2} e^{-\frac{-|\xi + 2n\pi|^2}{4\beta^2}} + R_{ij}^{(MN)}(\xi) \end{split}$$

where in the first sum in the term with m = (0,0,0) is understood to be $-(\frac{\beta}{\sqrt{\pi}})^3$. As $M, N \to \infty$, the remainders $R^{(MN)}$ converge to zero uniformly exponentially fast.

Lemma

SO

 $\widetilde{t}_{\kappa}(\xi) = \sigma_{\kappa}(\xi) + v(\kappa,\xi)$ where *v* is continuous on $B_{\pi}(0) \times Q$ and

$$v(\kappa,\xi) = -\frac{1}{d} + \mathcal{O}(\kappa^2)$$

To bound $W(\sigma_{\kappa}(\xi))$, we notice that

$$\sigma_{\kappa}(\xi) = \frac{\xi\xi^{T} - \kappa^{2}\mathbb{I}_{d}}{|\xi|^{2} - \kappa^{2}} = \mathbb{I}_{d} + \frac{|\xi|^{2}}{\kappa^{2} - |\xi|^{2}} (\mathbb{I}_{d} - \frac{\xi\xi^{T}}{|\xi|^{2}})$$

so $W(\sigma_{\kappa}(\xi)) = \{1\} + \frac{|\xi|^{2}}{\kappa^{2} - |\xi|^{2}} [0, 1]$
Bound depending on arg $\kappa(-\pi, \pi) \setminus \{0\}$ lead to Theorem B

Analysis for $\kappa \neq 0 \in \mathbb{R}$

Lemma: Plane wave representation for the imaginary part

$$\operatorname{Im} G_{\kappa}(x) = \frac{\kappa^{d-2}}{2^{d+1}\pi^{d-1}} \int_{\mathbb{S}^{d-1}} e^{i\kappa\xi \cdot x} \mathrm{d}s(\xi)$$

$$\operatorname{Im} K_{\kappa}(x) = \frac{\kappa^{d-2}}{2^{d+1}\pi^{d-1}} \int_{\mathbb{S}^{d-1}} (\xi \xi^{T} - \mathbb{I}_{d}) e^{i\kappa\xi \cdot x} \mathrm{d}s(\xi)$$

Let $F(u(\xi)) := \sum_{m \in \omega_N} (u_m - (u_m \cdot \xi)\xi) \exp(-i\kappa \xi \cdot m)$, then

$$\langle \bar{u}, \operatorname{Im} T_{\kappa}^{N} u \rangle = \frac{-\kappa^{d}}{2^{d+1} \pi^{d-1}} \int_{\mathbb{S}^{d-1}} |F(u(\xi))|^{2} \mathrm{d}s(\xi) + \mu_{+}(\kappa) ||u||_{\ell^{2}}^{2}$$

and $0 \leq |\tilde{u}(\xi)|^2 \leq |\omega^N| \|u\|_{l^2}^2$ results Theorem C.

M.COSTABEL, M. DAUGE, K. NEDAIASL: Stability analysis of the DDA for Dielectric Scattering. *Oberwolfach Reports (vol. 43)*, (2022) 70-73.

M.COSTABEL, M. DAUGE, K. NEDALASL: On the Stability of the Discrete Dipoleet Approximation in Time-Harmonic Dielectric Scattering. In preparation, (2022)

A COSTABEL, M. DAUGE, K. NEDALASL: On the stability of the collocation nethod for stronly singular operators: A revisit in preparation, (2022).

M.COSTABEL, M. DAUGE, K. NEDAIASL: Stability analysis of the DDA for Dielectric Scattering. *Oberwolfach Reports (vol. 43)*, (2022) 70-73.

- M.COSTABEL, M. DAUGE, K. NEDAIASL: Delta-Delta Approximation for Some Stronly Singular Integral Equations. *early draft*, (2022).

M.Costabel, M. Dauge, K. Nebalasi: On the Stability of the Discrete Dipole Approximation in Time-Harmonic Dielectric Scattering. *In propagation*. (2022)

A. COSTABEL, M. DAUGE, K. NEDALASLY On the stability of the collocation nethod for stronly singular operators: A revisit *in preparation*, (2022).

- M.COSTABEL, M. DAUGE, K. NEDAIASL: Stability analysis of the DDA for Dielectric Scattering. Oberwolfach Reports (vol. 43), (2022) 70-73.
- M.COSTABEL, M. DAUGE, K. NEDAIASL: Delta-Delta Approximation for Some Stronly Singular Integral Equations. *early draft*, (2022).
- M.COSTABEL, M. DAUGE, K. NEDAIASL: On the Stability of the Discrete Dipole Approximation in Time-Harmonic Dielectric Scattering. *in preparation*, (2022).
 - M.COSTABEL, M. DAUGE, K. NEDAIASL: On the stability of the collocation method for stronly singular operators: A revisit *in preparation*, (2022).

- M.COSTABEL, M. DAUGE, K. NEDAIASL: Stability analysis of the DDA for Dielectric Scattering. Oberwolfach Reports (vol. 43), (2022) 70-73.
- M.COSTABEL, M. DAUGE, K. NEDAIASL: Delta-Delta Approximation for Some Stronly Singular Integral Equations. *early draft*, (2022).
- M.COSTABEL, M. DAUGE, K. NEDAIASL: On the Stability of the Discrete Dipole Approximation in Time-Harmonic Dielectric Scattering. *in preparation*, (2022).
- M.COSTABEL, M. DAUGE, K. NEDAIASL: On the stability of the collocation method for stronly singular operators: A revisit *in preparation*, (2022).