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Abstract. For a metric space like (X, d), a subset A is called a resolver of (X, d),
if each point x in X is uniquely determined by the distance d(x, a) for each a in
A. Also the metric dimension of (X, d) is the smallest integer md(X, d) = md(X)
such that there is a set A of cardinality md(X) that resolves X.
In general cases of the metric spaces we know very little about metric dimension,
bout in the case that X is the vertex set of a graph, there are much investigations
in this regards. In [1], the metric dimension of n-dimensional Euclidean space, Hy-
perbolic space, spherical space and some special subsets of them and some more
is computed. In this work we are going to compute md(X) for the case that X
is an n-dimensional geometric space. This category includes a vast domain of the
Riemannian manifolds.
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Introduction

Let (X, d) be a metric space. A non-empty subset A of X is called a resolver
of (X, d) if d(x, a) = d(y, a) for all a in A implies x = y. The metric dimension
md(X) of (X, d) is the smallest integer k such that there is a resolver of (X, d) of
cardinality k . A resolver of (X, d) with cardinality md(X) is called a metric basis
for X. As X resolves X every metric space X has a metric dimension which is at
most the cardinality |X| of X. For the first time the concept of the metric dimension
of a metric space appeared in 1953 in [3], and attracted some more attention in 1975
when it was applied to the set of the vertices of a graph [7, 12]. Since then its applied
in some more branches of the sciences and much has been published on this topic,
see, for example [4, 5, 6, 8, 10]. Also in [1], md(X) is computed in the cases that
X is an n-dimensional Euclidian space En, spherical space Sn, Hyperbolic space Hn

and open subsets and convex sets of them and also when X is a Riemann surface.
In this paper we are going to compute the metric dimension of some metric spaces
that are called geometric spaces are very important in differential geometry. All
homogeneous Riemannian manifolds are in this category of metric spaces.
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Notations and examples

Let (X, d) be a metric space. For two distinct points P and Q in X, we define
the bisector B(P |Q) by

(0.0.1) B(P |Q) = {x ∈ X | d(x, P ) = d(x,Q)}
A subset A of X fails to resolve X if and only if there are distinct points P and Q
in X such that for all a in A,d(P, a) = d(Q, a); then a subset A of X is a resolver of
X if and only if it is not contained in any bisector.

Example 0.0.1. For each open subset A in R (including R ), since each point is
between two points in A,(A is open) then md(A) > 1. Also for each two distinct
point P and Q in A, B(P |Q) = {P+Q

2
} includes a single point. Then each subset

including two distinct points in A is a resolver for A. Then md(A) = 2. But for
A = [a, b), a, b ∈ R(including b = ∞),{a} is a metric basis for A. Then md(A) = 1.

Example (0.0.1) shows that for A ⊆ B ⊆ X in general non of the inequalities
md(A) ≤ md(B) or md(B) ≤ md(A) is true. In fact the metric dimension of the
subsets of a metric space depends hardly on the shape of the subset.

Example 0.0.2. For each two distinct points P,Q in S1 the unit circle, with P ̸= ±Q,
{P,Q} is a metric basis for S1. Then md(S1) = 2.

Let (X, d) be the following three standard n-dimensional geometries of constant
curvature:

(1) Euclidian space En; that is Rn = {x = (x1, ..., xn) | xi ∈ R} with the metric
d(x, y) = ∥x− y∥.
(2) Hyperbolic space Hn; that is Hn = {x ∈ Rn | xn > 0} with path metric derived
from |dx|/xn.
(3) Spherical space Sn; that is Sn = {x ∈ Rn+1 | ∥x∥ = 1} with path metric induced
by the Euclidian metric on Rn+1.

Then the metric dimension of (X, d) in each three cases is n+ 1 [1].

We denote by BX(x, r), the open ball with center x and radius r in (X, d). When
(X, d) is one of the above three cases, for each two distinct points P and Q, the
bisector B(P |Q) is a Euclidian, spherical or hyperbolic hyperplane [2, 9]. Then in
these cases each subset of n+1 points in X that is not included in a hyperplane is a
metric basis for X. Then, in these cases, each open ball BX(x, r) includes a metric
basis for X.

Definition 0.0.3. (i) A geodesic arc in a metric space (X, d) is a distance preserving
function α : [a, b] → X, with a < b in R. And a geodesic segment joining a point p
to a point Q in X is the image of a geodesic arc whose initial point is P and terminal
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point is Q.

(ii) A geodesic line in a metric space (X, d) is a locally distance preserving function
λ : R → X. And a geodesic in X is the image of a geodesic line.

Definition 0.0.4. An n-dimensional geometric space is a metric space (X, d) sat-
isfying the following axioms:

(1) The metric space X is geodesically connected ; that is, each pair of distinct points
of X are joined by a geodesic segment( the image of a geodesic arc) in X.
(2) The metric spaceX is geodesically complete; that is, each geodesic are α : [a, b] →
X extends to a unique geodesic line ᾱ : R → X.
(3) There is a continuous function ε : En → X and a real number k > 0 such that
ε maps BEn(0, k) homeomorphically onto BX(ε(0), k); for each point u of Sn−1, the
map λ : R → X, defined by λ(t) = ε(tu), is a geodesic line such that λ restricts to
a geodesic arc on the interval [−k, k];
(4) The metric space (X, d) is homogenous ; that is, for each two points p and Q in
X there is an isometry of X say ϕ : X → X such that ϕ(P ) = Q.

Note that axioms (3) and (4) imply that X is an n-manifold.

Example 0.0.5. En,Hn,Sn,Tn (n-Torus) and RPn (real n-projective space) are some
geometric spaces.

Definition 0.0.6. A similarity from a metric space (X, dX) to a metric space (Y, dY )
is a bijective change of scale. That is a bijective map Φ : X → Y that, there is a
real number k > 0 such that

dY (Φ(x),Φ(y)) = kdX(x, y)

for all x, y in X. In this case we say that (X, dX) is similar to (Y, dY ).

It is obvious that like the isometries the similarities between metric spaces preserve
the metric dimension. Also a similarity preserves the geodesics.

Definition 0.0.7. A function φ : X → Y between metric spaces is a local isometry
if and only if for each point x in X, there is a real number r > 0 such that φ
maps BX(x, r) isometrically onto BY (φ(x), r). Local isometries preserve the length
of curves. Then they preserve geodesics.

For the distinct points P and Q in a geometric space like X, the geodesic passing
from P and Q that is the image of a geodesic line, is unique and we denote it by
←→
PQ. The midpoints of P and Q are the points on

←→
PQ that are equidistant from both

P and Q. In the case that
←→
PQ is not compact the midpoint of P and Q is unique,

but in the compact case there are two midpoints between P and Q on
←→
PQ. Also we

denote by PxQ the geodesic segment between P and Q including the midpoint x.
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1. The Metric Dimension of Geometric Spaces

In the following, we are going to compute the metric dimensions of n-dimensional
geometric spaces by an inductional method on the manifold dimension of them.

Theorem 1.0.8. Let (M,d) be a 1-dimensional geometric space. Then for each
open set A (including M) md(A) = 2.

Proof. By axioms (1) and (2) and (3) in the definition (0.0.4), (M,d) is similar to
E1 (in non-compact case) or S1 (in compact case). Then md(A) = 2, in both cases
by the examples (0.0.1) and (0.0.2). �
In dimension 2, the geometric spaces are connected homogeneous Riemannian

surfaces [11, p.371]. The following theorem plays an important role in all of the
remaining parts of the paper.

Theorem 1.0.9. Let (M,d) be a 2-dimensional geometric space and consider two
distinct points P and Q in M . Then the bisector B(P |Q) is one or two geodesics

passing from the midpoints of P and Q on
←→
PQ.

Proof. Since M is a 2-dimensional geometric space then it is a connected and homo-
geneous Riemannian surface. Then the sectional curvature of M is constant. Then
the universal covering of M is similar to X = E2,H2 or S2 [11, p.372]. This shows
that M is locally similar to X = E2,H2 or S2. It is enough to show that for one
of the midpoints between P and Q say x0, the component of B(P |Q) including the
midpoint x0 is a geodesic passing from x0.
Let U be an open set in M containing x0 and ϕ : U → V ⊂ X be a similarity with
scale k. Also let P ′ and Q′ be two points in U ∩ Px0Q having x0 as the midpoint.
We know that B(ϕ(P ′)|ϕ(Q′)) in X is a geodesic say Imα for α : (a, b) → X, and
let α′ = φ−1 ◦ (α|I). Where I is an interval in (a, b) such that α(I) ⊂ U . Then Imα′

is a part of a geodesic in M and Imα′ = B(P |Q) ∩ U . Since, if x ∈ Imα then for
some t0, x = φ−1(α(t0)) and

dM(x, P ′) = dM(φ−1(α(t)), P ′)

= kdX(α(t0), φ(P
′))

= kdX(α(t0), φ(Q
′))

= dM(φ−1(α(t0)), Q
′)

= dM(x,Q′)(1.0.2)

then x ∈ B(P ′|Q′). Also M is a surface, then B(P ′|Q′) is a curve and locally a
geodesic segment. Then by uniqueness of the geodesics, B(P ′|Q′) is a geodesic. Now
this argument is true for each x, y ∈ B(P ′|Q′) with the same distance from x0, i.e.

B(x|y) is a geodesic too. Then B(x|y) =
←→
PQ. This means that B(P |Q) = B(P ′|Q′)

and B(P |Q) is a geodesic. �
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Theorem 1.0.10. Let (M,d) be a 2-dimensional geometric space. Then md(M) =
3.

Proof. Let x and y be two distinct points of M . Since M is a surface then x has
a ball neighborhood like BM(x, r) and there are points P,Q ∈ BM(x, r) such that
←→
xy ⊆ B(P |Q). Also considering r small enough, the set {x, y} is a metric basis for
←→
xy as a metric space. Then {x, y, P} is not on a geodesic. Then choosing r small
enough {x, y, P} is not in any B(P ′|Q′) for P ′, Q′ in M . Then {x, y, P} is a resolver
for M . Then md(M) ≤ 3.
Also each distinct two points x and y in M are in a unique geodesic, and for some

P and Q,
←→
xy ⊂ B(P |Q). Then {x, y} is not a resolver for M . Then md(M) > 2.

This shows that md(M) = 3. �
Corollary 1.0.11. The metric dimension of each connected homogeneous Riemann-
ian surface is 3.

Lemma 1.0.12. Let (M,d) be an n-dimensional geometric space and P,Q be two
distinct points in M . Then B(P |Q) have at most two component and each component
is an (n− 1)-dimensional geometric space.

Proof. The condition for the number of the components of B(P |Q) is like in 2-

dimensional case, i.e. if the geodesic
←→
PQ be compact then there are two midpoints

between P and Q on
←→
PQ and in this case B(P |Q) may have two components, but if

←→
PQ is not compact then there is one midpoint and B(P |Q) has only one component.
It is enough to show the theorem in the second case.

Let x0 be the midpoint of
←→
PQ and ε : En → X be the map in axiom (3) in definition

(0.0.4) with ε(0) = x0. Then according to axiom(3)
←→
PQ is the image of the geodesic

line λ(t) = ε(tv) for some v in Sn−1. Because of the homogeneity of M we can
consider v = en = (0, ..., 0, 1). In this case if we denote by V = span{ei|i =
1, ..., n−1} the orthogonal subspace of En to v, then each one dimensional subspace
of V say < w > is in the same case as in two dimensional case for ε(< {v, w} >)
and the ε image of the geodesic tw in M is a geodesic in B(P |Q), and actually
ε(V ) = B(P |Q).
In fact B(P |Q) is the union of all geodesics passing from x0 with the same distance
from P and Q and each such geodesic is the image of a geodesic in the form λ(t) =
ε(tw) for some w in V with |w| = 1.
It is obvious that B(P |Q) with the induced metric from M is a metric space and
we have the following conditions:
(1)Let x and y be two distant points in B(P |Q). Since M is a homogeneous metric

space we can consider ε : En → X with ε(0) = x. Since
←→
xy passes from x then

←→
xy

is the image of the geodesic ε(tw) for some w in Sn−1 and y is a point of B(P |Q)
and the image of ε(tw) includes y. Then w is orthogonal to en = v. This means
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that ε(tw) ⊂ B(P |Q) and the geodesic segment xy is in B(P |Q).
(2) M is geodesically complete. Then each geodesic arc in B(P |Q) can be extended
on R in M , and by (1) it should be in B(P |Q).
(3)For an isometry say Φ : En−1 → V , the map ε′ = ε|V ◦ Φ : En−1 → B(P |Q)
satisfies the axiom (3) for B(P |Q).
(4) M is homogeneous. Then B(P |Q) with the induced metric is homogeneous too.
Then B(P |Q) is an (n− 1)-dimensional geometric space. �
Theorem 1.0.13. The metric dimension of an n-dimensional geometric space is
n+ 1.

Proof. Let M be an n-dimensional geometric space. We show that md(M) = n+1.
For n = 1, M is similar to E1 or S1. Then md(M) = 2. Also by theorem (1.0.10)
for n = 2, md(M) = 3.
Let the theorem be true for dimension n − 1. Consider x0 in M . Since M is an
n-dimensional open manifold then for some r > 0 the n-dimensional ball BM(x0, r)
is a neighborhood of x0. Then there are two distinct points P,Q ∈ BM(x0, r) such
that x0 is in B(P |Q). By previous lemma B(P |Q) is an n-dimensional geometric
space and by hypothesis md(B(P |Q)) = n. Let B = {x1, ..., xn} be a metric basis
for B(P |Q). Then {x1, ..., xn, p} is not included in any B(P ′|Q′) for any P ′ and Q′

in M . This shows that B is a resolver for M and md(M) ≤ n+ 1.
Also if {x1, ..., xn} be a subset of M , and ε : En → M be the map in axiom (3) of
definition (0.0.4) with ε(0) = x1 then for each i = 2, ..., n, there a is geodesic from
x1 to xi and this geodesic is the image of λ(t) = ε(tvi) for some vi in Sn−1. Then if
we denote by V the subspace generated by {v2, ...vn} and v1 be a vector orthogonal
to V , then by axiom (3), x1 has a ball neighborhood like BM(x1, r) for r > 0
small enough such that ε|BEn (0,r) : BEn(0, r) → BM(x1, r) is a homeomorphism.

Also there are two points P and Q in BM(x1, r) such that
←→
PQ is the image of the

geodesic line ε(tv1). This shows that B(P |Q) includes the image of the subspace
V and {x1, ..., xn} is not a resolver of M . Then md(M) > n. By the inequalities
md(M) > n and md(M) ≤ n+ 1 we conclude that md(M) = n+ 1 �
Corollary 1.0.14. The metric dimension of all n-dimensional connected homoge-
nous Riemannian manifolds is n+ 1.

Proof. Each connected homogenous Riemannian manifold is an n-dimensional geo-
metric space [11]. �
Example 1.0.15. For X = Hn, Sn,En, Tn or RPn, md(X) = n+ 1.
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