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-]
OPERATION OF NUMBERS

Behnam Khosravi

Addition +: Latin word "Et" meaning "And".

> : Euler.

Subtraction —: May be derived from a tilde written over m;
or it may come from a shorthand version of the letter m itself.

Multiplication x or - or [[: Napier, Oughtred and ?,
Leibniz, Gauss.
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E—
DIVISION OF NUMBERS

Behnam Khosravi

Islamic Age — Fibonacci:

A
B
De Morgan:
A/B
Johann Heinrich Rahn:
[ ]
—_ H -
[ ]
Leibniz;
A:B
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EUCLID AND FACTORIZATION OF NUMBERS

Behnam Khosravi

Euclid’'s lemma. If a prime p divides the product ab of two
integers a and b, then p must divide at least one of those
integers a or b.

Fundamental theorem of arithmetic. Every integer
greater than 1 can be represented uniquely as a product of
prime numbers, up to the order of the factors.

Euclid’s theorem. There are infinitely many prime numbers.
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WHAT ARE BUILDING BLOCKS IN OTHER
STRUCTURES? Behnam Khosravi
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-]
HOow WE CAN FIND BUILDING BLOCKS?

. .. i Behnam Khosravi
If a prime number p divides a number n, then there exists
m € N such that

n
p=—.
m

There is NO number m < m’ < n such that
/

n n m

m m m
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-]
HOow WE CAN FIND BUILDING BLOCKS?

Behnam Khosravi

If a prime number p divides a number n, then there exists

m € N such that N
p=—.
m

There is NO number m < m’ < n such that

n n m

m m m

Simplest Factors

Factor?!!!
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E—
CONGRUENCES MODULO m

Behnam Khosravi
If two integer numbers a and b have the property that their
difference a — b is integrally divisible by a number m (i.e.,
(a— b)/mis an integer), then a and b are said to be
"congruent modulo m" and we write a = b( mod m).

Equivalence relation a ~ b if and only if a = b.

The equivalence class of a:
a={neZ|n=a}
Zm=1{3|acZ}
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E—
CONGRUENCES MODULO m

Behnam Khosravi

Properties: If a= a’ and b= b’ mod m, then
(1) a+b=a +b;
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CONGRUENCES MODULO m

Behnam Khosravi

Properties: If a= a’ and b= b’ mod m, then
(1) a+b=a +b;
(2) —a= -4
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CONGRUENCES MODULO m

Behnam Khosravi

Properties: If a= a’ and b= b’ mod m, then
(1) a+b=a +b;

(2) —a= -4

(3) a—b=ad -Vb.
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CONGRUENCES MODULO m

Properties: If a= a’ and b= b’ mod m, then
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CONGRUENCES MODULO m

Behnam Khosravi

Properties: If a= a’ and b= b’ mod m, then

(1) a+b=a + b;— a+ b= a+ bis well-defined;
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CONGRUENCES MODULO m

Behnam Khosravi

Properties: If a= a’ and b= b’ mod m, then

(1) a+b=a + b;— a+ b= a+ bis well-defined;

(2) —a=—3a;— —a = —ais well-defined;
(3) a—b=a —b.
(4) ab= a’b’
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CONGRUENCES MODULO m

Behnam Khosravi

Properties: If a= a’ and b= b’ mod m, then

(1) a+b=a + b;— a+ b= a+ bis well-defined;
(2) —a=—3a;— —a = —ais well-defined;

(3) a— - b.
(4) a

4 = a’b’ﬁ 3- b = ab is well-defined.
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CONGRUENCES MODULO m

Behnam Khosravi

Properties: If a= a’ and b= b’ mod m, then

(1) a+b=a + b;— a+ b= a+ bis well-defined;
(2) —a=—3a;— —a = —ais well-defined;

(3) a— - b.
(4) a

4 = a’b’ﬁ 3- b = ab is well-defined.

(Zim, +) s a group;
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E—
CONGRUENCES MODULO m

Behnam Khosravi

Properties: If a= a’ and b= b’ mod m, then
(1) a+b=a + b;— a+ b= a+ bis well-defined;

(2) —a=—3a;— —a = —ais well-defined;
(3) a— - b.
(4) ab= a’b’ﬁ a- b = ab is well-defined.

(Zms+) is 2 group;
(Zm,-) is a monoid,
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E—
CONGRUENCES MODULO m

Behnam Khosravi

Properties: If a= a’ and b= b’ mod m, then

(1) a+b=3a + b';— 3+ b= a+ bis well-defined;
(2)

(3) a— —b.
(4) a

4 = a’b’ﬁ 3- b = ab is well-defined.

—a=—a;— —a = —ais well-defined:;

(Zum, +) s 2 group;
(Zm,-) is a monoid,
(Zm,+, ) is a ring with identity 1.
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[S IT TRUE FOR EVERY EQUIVALENCE
RELATION ON Z°7 Behnam Khosravi

Let the relation p be defined by

p=1{(a,b) € ZxZ | both a and b are odd}U{(a, a) | a € Z}.
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[S IT TRUE FOR EVERY EQUIVALENCE
RELATION ON Z°7 Behnam Khosravi

Let the relation p be defined by

p=1{(a,b) € ZxZ | both a and b are odd}U{(a, a) | a € Z}.

[l]P + [1]P = {2747 6, };

[1+1], =[], = {2}.
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[S IT TRUE FOR EVERY EQUIVALENCE
RELATION ON Z°7 Behnam Khosravi

Let the relation p be defined by

p=1{(a,b) € ZxZ | both a and b are odd}U{(a, a) | a € Z}.

[l]P + [1]P = {2747 6, };

[1+1], =[], = {2}.

Nol
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FOR WHICH EQUIVALENCE RELATION ON Z
WE HAVE THIS PROPERTY? Behnam Khosravi

For the equivalence relation p,

@ if the operation [a], + [b], = [a + b], is well-defined,
then [0], is a subsemigroup of (Z, +) because
[a+ b], = [0+ 0], = [0], for every a, b € [0],;
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FOR WHICH EQUIVALENCE RELATION ON Z
WE HAVE THIS PROPERTY? Behnam Khosravi

For the equivalence relation p,
@ if the operation [a], + [b], = [a + b], is well-defined,
then [0], is a subsemigroup of (Z, +) because
[a+ b], = [0+ 0], = [0], for every a, b € [0],;
@ if the operation —[a], = [—a], is well-defined too, then
[0], is a subgroup of (Z, +);
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FOR WHICH EQUIVALENCE RELATION ON Z
WE HAVE THIS PROPERTY? Behnam Khosravi

For the equivalence relation p,
@ if the operation [a], + [b], = [a + b], is well-defined,
then [0], is a subsemigroup of (Z, +) because
[a+ b], = [0+ 0], = [0], for every a, b € [0],;
@ if the operation —[a], = [—a], is well-defined too, then
[0], is a subgroup of (Z, +);

apb= 0= (a—a)p(b—a)e b—ac|0],
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SUBGROUPS AND WELL-BEHAVIOUR
EQUIVALENCE RELATIONS Behnam Khosravi

For the equivalence relation p on Z, Z/p = {[n], | n € Z}
with the addition defined by [a], + [b], = [a + b], is a group
if and only if [0], is a subgroup of Z.
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SUBGROUPS AND WELL-BEHAVIOUR
EQUIVALENCE RELATIONS Behnam Khosravi

For the equivalence relation p on Z, Z/p = {[n], | n € Z}
with the addition defined by [a], + [b], = [a + b], is a group
if and only if [0], is a subgroup of Z.

How about an arbitrary group?
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FOR WHICH EQUIVALENCE RELATION ON Z
WE HAVE THIS PROPERTY? Behnam Khosravi

© if the operation [a], - [b], = [ab], is well-defined, then
[0],, is a subsemigroup of (Z,-) because
[a- b] =[0-0] = [0] for every a, b € [0].
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FOR WHICH EQUIVALENCE RELATION ON Z
WE HAVE THIS PROPERTY? Behnam Khosravi

© if the operation [a], - [b], = [ab], is well-defined, then
[0],, is a subsemigroup of (Z,-) because
[a- b] =[0-0] = [0] for every a, b € [0].

@ if the operation [a], - [b], = [ab], is well-defined too,
then [0], is a subring of (Z,+, ).
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FOR WHICH EQUIVALENCE RELATION ON Z
WE HAVE THIS PROPERTY? Behnam Khosravi

© if the operation [a], - [b], = [ab], is well-defined, then
[0],, is a subsemigroup of (Z,-) because
[a- b] =[0-0] = [0] for every a, b € [0].

@ if the operation [a], - [b], = [ab], is well-defined too,
then [0], is a subring of (Z,+, ).

Remember quotients of rings!

Behnam Khosravi () Quotients and Factorizations 1400 Summer 12 / 32



E—
ARBITRARY GROUP

Behnam Khosravi

For a group G and an equivalence relation p on it such that
G/pis a group we have H = [1], < G and apb if and only if
aH = bH.

Furthermore, for every g € G we have

HE = gHg ' = g{x € G | xpl}g ' = {gxg ' | xpl}.

Since [ng_l]p = [g]p[x]p[g_l]p = [g]p[l]p[g_l]p = [1]p,
H is a normal subgroup of G!
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E—
ARBITRARY RING

Behnam Khosravi

For a ring R and an equivalence relation p on it such that
R/p is a ring we have | = [0], < R and apb if and only if
at+l=b+1.

Furthermore, for every r € R we have

rl = r[0], = {rx | xp0} and Ir = {xr | xp0}.

Since [rx], = [r],[x], = [r]o[0], = [0],,
I is an ideal of R!
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HOwW ABOUT OTHER ALGEBRAIC
STRUCTURES? Behnam Khosravi

Modules or vector spaces. For an R-module M and an
equivalence relation p on it such that M/p is an R-module
with the following operations

[a], + [b], = [a + b], and r[a], = [ra],.

Since [ra], = r[a], = r[0], = [0],,
the class [0], is a submodule of M!
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E—
CONGRUENCES

Behnam Khosravi

Roughly speaking, for every algebraic structure A, an
equivalence relation p on A is called a congruence if natural
operations on the set of equivalence classes of A are
well-behaviour (e.g. if Ais a group (ring), then A/p is a
group (ring) with natural operations).

Groups Normal subgroups
Rings Ideals
R-modules Submodules

Vector Spaces Subspaces

~ 4L Ll
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[S THERE ALWAYS A BIJECTION BETWEEN
CONGRUENCES AND A COLLECTION OF Behnam Khosravi
SUBALGEBRAS?

Semigroups. For (N, +), the equivalence relation
A = {(n,n) | n € N} is a congruence and every equivalence
class of A is not a subsemigroup.

Therefore the answer is NO!
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-]
REES CONGRUENCE ON SEMIGROUPS

Behnam Khosravi

Let / be a subset of a semigroup S such that S/, /1S C /.
Then the relation p; defined by
{(s,s) | s€ S} uU{(a,d) | a,a’ € I} is a congruence.

Example. For (NU {0}, -) we have
{(n.n) | n € NU{0}} = peoy.
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QUOTIENTS AND FACTORIZATIONS

Behnam Khosravi

Recall that in the group Zg the subgroups 2Zg and 3Zg have
trivial intersection and Zg = 2Z¢ + 3Z¢ and in fact
~ Le _ Ze

= .
6= 27¢  3Ze
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-
QUOTIENTS AND FACTORIZATIONS

Behnam Khosravi

Recall that in the group Zg the subgroups 2Zg and 3Zg have
trivial intersection and Zg = 2Z¢ + 3Z¢ and in fact

~ ZLg Zg

= .
6= 27¢  3Ze

For an arbitrary group G, let Ny, N, <t G such that the
following conditions hold.

(1) NinNy={1};
(11) G = NyNy(= NoNjp) (uniqueness: n = nyny).

Then
G G

G Wlxﬁz

12
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QUOTIENTS AND FACTORIZATIONS

Behnam Khosravi

Indecomposable groups Groups without any pair of
non-trivial normal subgroups which satisfies the conditions at
the above.

Example. Zg (in general, every abelian group of order p” for
some prime number p)
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QUOTIENTS AND FACTORIZATIONS

Behnam Khosravi

Indecomposable groups Groups without any pair of
non-trivial normal subgroups which satisfies the conditions at
the above.

Example. Zg (in general, every abelian group of order p” for
some prime number p)

Krull-Schmidt theorem. Every finite group can be uniquely
written as a finite direct product of indecomposable
subgroups.
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-
QUOTIENTS AND FACTORIZATIONS

Behnam Khosravi

Indecomposable groups Groups without any pair of
non-trivial normal subgroups which satisfies the conditions at
the above.

Example. Zg (in general, every abelian group of order p” for
some prime number p)

Krull-Schmidt theorem. Every finite group can be uniquely
written as a finite direct product of indecomposable
subgroups.

The fundamental theorem of finite abelian groups.
Every finite abelian group can be expressed as the direct sum
of cyclic subgroups of prime-power order.

Behnam Khosravi () Quotients and Factorizations 1400 Summer 20 / 32



E—
How THEY ARE USEFUL?

Behnam Khosravi

Natural numbers — prime numbers

Finite groups — indecomposable finite groups
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How THEY ARE USEFUL?

Behnam Khosravi

Natural numbers — prime numbers

Finite groups — indecomposable finite groups

What are abelian groups of order less than 100 which have
an element of order 5 and an element of order 77
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E—
How THEY ARE USEFUL?

Behnam Khosravi

Natural numbers — prime numbers

Finite groups — indecomposable finite groups

What are abelian groups of order less than 100 which have
an element of order 5 and an element of order 77

Zn = Ls X -+ X L
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E—
How THEY ARE USEFUL?

Behnam Khosravi

Natural numbers — prime numbers

Finite groups — indecomposable finite groups

What are abelian groups of order less than 100 which have
an element of order 5 and an element of order 77

Zn = Ls X -+ X L

Just Zs X Z7 = Z35 and Zo X Zs X Z7 =2 Z79
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E—
OTHER ALGEBRAIC STRUCTURES?

Behnam Khosravi

If G = N% X N% under the map ¢(g) = (gn,, &n,), then for
every x,y € G, there exists z € G such that

¢(z) = (xNy, yNo)
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If G = N% X N% under the map ¢(g) = (gn,, &n,), then for
every x,y € G, there exists z € G such that
¢(z) = (xNy, yN2) and specially,

xNy 0 yNy £ ().
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E—
OTHER ALGEBRAIC STRUCTURES?

Behnam Khosravi

If G = N% X N% under the map ¢(g) = (gn,, &n,), then for
every x,y € G, there exists z € G such that
¢(z) = (xNy, yN2) and specially,

xNy 0 yNy £ ().

For every algebraic structure A let p; and p, be two
congruences on A such that
(1) prNp2=A={(a,a) | ac AL
(11) for every x,y € A there exist z,z’ € A such that
(x,2) € p1 and (z,y) € p2; and
(x,2) € p2 and (Z/,y) € p1.
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E—
OTHER ALGEBRAIC STRUCTURES?

Behnam Khosravi

If G = N% X N% under the map ¢(g) = (gn,, &n,), then for
every x,y € G, there exists z € G such that
¢(z) = (xNy, yN2) and specially,

xNy 0 yNy £ ().

For every algebraic structure A let p; and p, be two
congruences on A such that

(1) prNp2=A={(a,a) | ac AL

(11) for every x,y € A there exist z,z’ € A such that
(x,2) € p1 and (z,y) € p2; and
(x,2) € p2 and (Z/,y) € p1.

a pair of factor congruences
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QUOTIENTS AND FACTORIZATIONS OF FINITE
ALGEBRAS Behnam Khosravi

An algebra A is (directly) indecomposable if A is not
isomorphic to a direct product of two nontrivial algebras
(equivalently, A has no pair of factor congruences

p1,p2 # ).

Theorem. Every finite algebra is isomorphic to a direct
product of directly indecomposable algebras.

S. Burris, and H. P. Sankappanavar, A Course in Universal Algebra,
Springer New York, 2011.
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E—
OTHER STRUCTURES?

Behnam Khosravi

For every structure A let p; and p, be two compatible
equivalence relation on A such that
(1) ppNp2=A={(aa)|ac A}
(11) for every x,y € A there exist z,z’ € A such that
(x,z) € p1 and (z,y) € p2; and
(x,2) € p2 and (Z/,y) € p1.
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QUOTIENTS AND FACTORIZATIONS OF
ORDERED STRUCTURES Behnam Khosravi

Order on Quotients Given a poset (P, <) and an
equivalence relation p, let [p] < [q] if and only if there exists
p’ € [p] and ¢’ € [q] such that p' < ¢'.

Nicholas J. Williams, A survey of congruences and quotients of partially
ordered sets, arXiv:2303.03765.
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ORDERED STRUCTURES Behnam Khosravi

Order on Quotients Given a poset (P, <) and an
equivalence relation p, let [p] < [q] if and only if there exists
p’ € [p] and ¢’ € [q] such that p' < ¢'.

An equivalence p on P is called compatible if P/p is a poset.

Nicholas J. Williams, A survey of congruences and quotients of partially
ordered sets, arXiv:2303.03765.
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QUOTIENTS AND FACTORIZATIONS OF
ORDERED STRUCTURES Behnam Khosravi

Order on Quotients Given a poset (P, <) and an
equivalence relation p, let [p] < [q] if and only if there exists
p’ € [p] and ¢’ € [q] such that p' < ¢'.

An equivalence p on P is called compatible if P/p is a poset.
(Z,<)?

Nicholas J. Williams, A survey of congruences and quotients of partially
ordered sets, arXiv:2303.03765.
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QUOTIENTS AND FACTORIZATIONS OF
ORDERED GROUP OR ORDERED SEMIGROUP  Behnam Khosrai

Let S be a set endowed with a law of composition that is
written multiplicatively. By a compatible order on S we mean
an order < with respect to which all translations y — xy and
Yy — yx are isotone.

T.S. Blyth, Lattices and Ordered Algebraic Structures, Springer-Verlag
London Limited 2005.
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Let S be a set endowed with a law of composition that is
written multiplicatively. By a compatible order on S we mean
an order < with respect to which all translations y — xy and
Yy — yx are isotone.

Example. By an ordered group we shall mean a group on
which there is defined a compatible order.

T.S. Blyth, Lattices and Ordered Algebraic Structures, Springer-Verlag
London Limited 2005.
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QUOTIENTS AND FACTORIZATIONS OF
ORDERED GROUP OR ORDERED SEMIGROUP  Behnam Khosrai

Let S be a set endowed with a law of composition that is
written multiplicatively. By a compatible order on S we mean
an order < with respect to which all translations y — xy and
Yy — yx are isotone.

Example. By an ordered group we shall mean a group on
which there is defined a compatible order. (Z,+,<)?

T.S. Blyth, Lattices and Ordered Algebraic Structures, Springer-Verlag
London Limited 2005.
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QUOTIENTS AND FACTORIZATIONS OF
DIRECTED GRAPHS Behnam Khosravi

Remark. The definition of the quotient also applies to
arbitrary relations and directed graphs.

W. Imrich, and S. Klavzar, Product graphs:structure and recognition,
Wiley, 2000.
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QUOTIENTS AND FACTORIZATIONS OF
DIRECTED GRAPHS Behnam Khosravi

Remark. The definition of the quotient also applies to
arbitrary relations and directed graphs.

Quotient of a directed graph Given a directed graph )
= (V, E) and an equivalence relation p, let ([p], [q]) € E if
and only if there exists p’ € [p] and ¢’ € [q] such that

(p'.q') € E.

W. Imrich, and S. Klavzar, Product graphs:structure and recognition,
Wiley, 2000.
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QUOTIENTS AND FACTORIZATIONS OF
TOPOLOGICAL STRUCTURES Behnam Khosravi

A topological space X and an equivalence relation p

Quotient topology induced by the natural projection
m: X = X/p.
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QUOTIENTS AND FACTORIZATIONS OF
TOPOLOGICAL STRUCTURES Behnam Khosravi

A topological space X and an equivalence relation p

Quotient topology induced by the natural projection
m: X = X/p.

Quotient space
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QUOTIENTS AND FACTORIZATIONS OF
TOPOLOGICAL STRUCTURES Behnam Khosravi

A topological space X and an equivalence relation p

Quotient topology induced by the natural projection
m: X = X/p.

Quotient space

Hausdorff spaces???
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A topological space X and an equivalence relation p

Quotient topology induced by the natural projection
m: X = X/p.

Quotient space
Hausdorff spaces???

Fatorization? X = X1 x Xo and m; : X — X
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QUOTIENTS AND FACTORIZATIONS OF
TOPOLOGICAL STRUCTURES Behnam Khosravi

A topological space X and an equivalence relation p

Quotient topology induced by the natural projection
m: X = X/p.

Quotient space
Hausdorff spaces???

Fatorization? X = X1 x Xo and m; : X — X

0c{(1,1)}c{(1,1),(1,2)} C
{(1,1),(1,2),2, 1)} < {(1,1),(1,2),(2,1),(2,2)}
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QUOTIENTS AND FACTORIZATIONS OF
ALGEBRAIC TOPOLOGICAL STRUCTURES Eshnamlkbosiayi

Algebraic topological structures and topological
congruences?
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QUOTIENTS AND FACTORIZATIONS OF
ALGEBRAIC TOPOLOGICAL STRUCTURES Eshnamlkbosiayi

Algebraic topological structures and topological
congruences?

Topological semigroup: A semigroup S with a topology on it
is called a topological semigroup if its multiplication is
continuous.
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QUOTIENTS AND FACTORIZATIONS OF
ALGEBRAIC TOPOLOGICAL STRUCTURES Behnam Khosravi

Algebraic topological structures and topological
congruences?

Topological semigroup: A semigroup S with a topology on it
is called a topological semigroup if its multiplication is
continuous.

Topological congruence

Wallace A. D., On the structure of topological semigroups, Bull. Amer.
Math. Soc., 61 (1955),95-112.

Lawson, J. D. and Madison, B., On congruences and cones, Math. Z.,
120 (1971), 18-24.
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QUOTIENTS AND FACTORIZATIONS OF
NORMAL EDGE-TRANSITIVE CAYLEY GRAPHS |Benem Khostavi

Praeger determined quotients of normal edge-transitive
Cayley graphs which are again normal edge-transitive Cayley
graphs.

C. E. Praeger, Finite Normal Edge-transitive Cayley graphs, Bull.
Austral. Math. Soc. 60 (1999), 207-220.

Behnam Khosravi () Quotients and Factorizations 1400 Summer 30 / 32



QUOTIENTS AND FACTORIZATIONS OF
NORMAL EDGE-TRANSITIVE CAYLEY GRAPHS |Benem Khostavi

Praeger determined quotients of normal edge-transitive
Cayley graphs which are again normal edge-transitive Cayley
graphs.

C. E. Praeger, Finite Normal Edge-transitive Cayley graphs, Bull.
Austral. Math. Soc. 60 (1999), 207-220.

Factorization?

B. Khosravi, B. Khosravi, and B. Khosravi, On reconstruction of normal
edge-transitive Cayley graphs, Annals of Combinatorics, 24 (2020),
791-807.

B. Khosravi, and C. E. Praeger, Normal edge-transitive Cayley graphs
and Frattini-like subgroups, Journal of Algebra, 607 (2022) 473-498.
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Behnam Khosravi

Thanks for your attention
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Behnam Khosravi

https://www.karnaval.ir/blog/chichen-itza-pyramid-maya-
civilization
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