Quotients and Factorizations

Behnam Khosravi

## QUOTIENTS AND FACTORIZATIONS

Behnam Khosravi

IASBS 1402 Spring

## 

**Subtraction** -: May be derived from a tilde written over m; or it may come from a shorthand version of the letter m itself.

**Multiplication**  $\times$  or  $\cdot$  or  $\prod$ : Napier, Oughtred and ?, Leibniz, Gauss.

Quotients and Factorizations

## DIVISION OF NUMBERS



De Morgan:

A/B

 $\frac{A}{B}$ 

Johann Heinrich Rahn:



Leibniz:

Quotients and Factorizations

**Euclid's lemma.** If a prime p divides the product ab of two integers a and b, then p must divide at least one of those integers a or b.

**Fundamental theorem of arithmetic.** Every integer greater than 1 can be represented uniquely as a product of prime numbers, up to the order of the factors.

Euclid's theorem. There are infinitely many prime numbers.

Quotients and Factorizations

# WHAT ARE BUILDING BLOCKS IN OTHER STRUCTURES?

Quotients and Factorizations

Behnam Khosravi



## How we can find building blocks?

If a prime number p divides a number n, then there exists  $m \in \mathbb{N}$  such that  $p = \frac{n}{m}.$ 

There is **NO** number m < m' < n such that

$$\frac{n}{m}=\frac{n}{m'}\times\frac{m'}{m}.$$

**Simplest Factors** 

### Factor?!!!

Behnam Khosravi ()

Quotients and Factorizations

## How we can find building blocks?

If a prime number p divides a number n, then there exists  $m \in \mathbb{N}$  such that  $p = \frac{n}{m}.$ 

There is **NO** number m < m' < n such that

$$\frac{n}{m}=\frac{n}{m'}\times\frac{m'}{m}.$$

## **Simplest Factors**

### Factor?!!!

Behnam Khosravi ()

Quotients and Factorizations

## How we can find building blocks?

If a prime number p divides a number n, then there exists  $m \in \mathbb{N}$  such that  $p = \frac{n}{m}.$ 

There is **NO** number m < m' < n such that

$$\frac{n}{m}=\frac{n}{m'}\times\frac{m'}{m}.$$

## **Simplest Factors**

## Factor?!!!

Behnam Khosravi ()

Quotients and Factorizations

If two integer numbers a and b have the property that their difference a - b is integrally divisible by a number m (i.e., (a - b)/m is an integer), then a and b are said to be "congruent modulo m" and we write  $a \equiv b \pmod{m}$ .

### Equivalence relation $a \sim b$ if and only if $a \equiv b$ .

The equivalence class of a:

$$\overline{a} = \{n \in \mathbb{Z} \mid n \equiv a\}$$

$$\mathbb{Z}_m = \{\overline{a} \mid a \in \mathbb{Z}\}$$

Behnam Khosravi ()

Quotients and Factorizations

 $(\mathbb{Z}_m, +)$  is a group;  $(\mathbb{Z}_m, \cdot)$  is a monoid,  $(\mathbb{Z}_m, +, \cdot)$  is a ring with identity  $\overline{1}$ . Quotients and Factorizations

 $(\mathbb{Z}_m, +)$  is a group;  $(\mathbb{Z}_m, \cdot)$  is a monoid,  $(\mathbb{Z}_m, +, \cdot)$  is a ring with identity  $\overline{1}$ . Quotients and Factorizations

 $(\mathbb{Z}_m, +)$  is a group;  $(\mathbb{Z}_m, \cdot)$  is a monoid,  $(\mathbb{Z}_m, +, \cdot)$  is a ring with identity  $\overline{1}$ . Quotients and Factorizations

(ℤ<sub>m</sub>, +) is a group; (ℤ<sub>m</sub>, ·) is a monoid, (ℤ<sub>m</sub>, +, ·) is a ring with identity Ī. Quotients and Factorizations

(ℤ<sub>m</sub>, +) is a group; (ℤ<sub>m</sub>, ·) is a monoid, (ℤ<sub>m</sub>, +, ·) is a ring with identity Ī. Quotients and Factorizations

(ℤ<sub>m</sub>, +) is a group; (ℤ<sub>m</sub>, ·) is a monoid, (ℤ<sub>m</sub>, +, ·) is a ring with identity Ī. Quotients and Factorizations

 $(\mathbb{Z}_m, +)$  is a group;  $(\mathbb{Z}_m, \cdot)$  is a monoid,  $(\mathbb{Z}_m, +, \cdot)$  is a ring with identity  $\overline{1}$ . Quotients and Factorizations

 $(\mathbb{Z}_m, +)$  is a group;  $(\mathbb{Z}_m, \cdot)$  is a monoid,  $(\mathbb{Z}_m, +, \cdot)$  is a ring with identity  $\overline{1}$ . Quotients and Factorizations

 $(\mathbb{Z}_m, +)$  is a group;  $(\mathbb{Z}_m, \cdot)$  is a monoid,  $(\mathbb{Z}_m, +, \cdot)$  is a ring with identity  $\overline{1}$ . Quotients and Factorizations

 $(\mathbb{Z}_m, +)$  is a group;  $(\mathbb{Z}_m, \cdot)$  is a monoid,  $(\mathbb{Z}_m, +, \cdot)$  is a ring with identity  $\overline{1}$ . Quotients and Factorizations

# Is it true for every equivalence relation on $\mathbb{Z}$ ?

Let the relation  $\rho$  be defined by

 $\rho = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid \text{both } a \text{ and } b \text{ are odd} \} \cup \{(a, a) \mid a \in \mathbb{Z}\}.$ 

$$[1]_{
ho} + [1]_{
ho} = \{2, 4, 6, \cdots\}$$

$$[1+1]_{\rho} = [2]_{\rho} = \{2\}.$$

### No!

Quotients and Factorizations

# Is it true for every equivalence relation on $\mathbb{Z}$ ?

Let the relation  $\rho$  be defined by

 $\rho = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid \text{both } a \text{ and } b \text{ are odd} \} \cup \{(a, a) \mid a \in \mathbb{Z}\}.$ 

$$[1]_{\rho} + [1]_{\rho} = \{2, 4, 6, \cdots\};$$

$$[1+1]_{\rho} = [2]_{\rho} = \{2\}.$$

### No!

Behnam Khosravi ()

1400 Summer 9 / 32

Quotients and Factorizations

# Is it true for every equivalence relation on $\mathbb{Z}$ ?

Let the relation  $\rho$  be defined by

 $\rho = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid \text{both } a \text{ and } b \text{ are odd} \} \cup \{(a, a) \mid a \in \mathbb{Z}\}.$ 

$$[1]_{\rho} + [1]_{\rho} = \{2, 4, 6, \cdots\};$$

$$[1+1]_{\rho} = [2]_{\rho} = \{2\}.$$

### No!

Behnam Khosravi ()

Quotients and Factorizations

For the equivalence relation  $\rho$ ,

- if the operation [a]<sub>ρ</sub> + [b]<sub>ρ</sub> = [a + b]<sub>ρ</sub> is well-defined, then [0]<sub>ρ</sub> is a subsemigroup of (Z, +) because [a + b]<sub>ρ</sub> = [0 + 0]<sub>ρ</sub> = [0]<sub>ρ</sub> for every a, b ∈ [0]<sub>ρ</sub>;
- if the operation −[a]<sub>ρ</sub> = [−a]<sub>ρ</sub> is well-defined too, then
   [0]<sub>ρ</sub> is a subgroup of (Z, +);

 $a
ho b \Leftrightarrow 0 = (a - a)
ho(b - a) \Leftrightarrow b - a \in [0]_{
ho}$ 

For the equivalence relation  $\rho$ ,

- if the operation [a]<sub>ρ</sub> + [b]<sub>ρ</sub> = [a + b]<sub>ρ</sub> is well-defined, then [0]<sub>ρ</sub> is a subsemigroup of (Z, +) because [a + b]<sub>ρ</sub> = [0 + 0]<sub>ρ</sub> = [0]<sub>ρ</sub> for every a, b ∈ [0]<sub>ρ</sub>;
- if the operation -[a]<sub>ρ</sub> = [-a]<sub>ρ</sub> is well-defined too, then
   [0]<sub>ρ</sub> is a subgroup of (Z, +);

$$a
ho b \Leftrightarrow 0 = (a-a)
ho(b-a) \Leftrightarrow b-a \in [0]_{
ho}$$

For the equivalence relation  $\rho$ ,

- if the operation  $[a]_{\rho} + [b]_{\rho} = [a+b]_{\rho}$  is well-defined, then  $[0]_{\rho}$  is a subsemigroup of  $(\mathbb{Z}, +)$  because  $[a+b]_{\rho} = [0+0]_{\rho} = [0]_{\rho}$  for every  $a, b \in [0]_{\rho}$ ;
- if the operation -[a]<sub>ρ</sub> = [-a]<sub>ρ</sub> is well-defined too, then
   [0]<sub>ρ</sub> is a subgroup of (Z, +);

$$a
ho b \Leftrightarrow 0 = (a-a)
ho(b-a) \Leftrightarrow b-a \in [0]_{
ho}$$

# SUBGROUPS AND WELL-BEHAVIOUR EQUIVALENCE RELATIONS

For the equivalence relation  $\rho$  on  $\mathbb{Z}$ ,  $\mathbb{Z}/\rho = \{[n]_{\rho} \mid n \in \mathbb{Z}\}$ with the addition defined by  $[a]_{\rho} + [b]_{\rho} = [a + b]_{\rho}$  is a group if and only if  $[0]_{\rho}$  is a subgroup of  $\mathbb{Z}$ . How about an arbitrary group? Quotients and Factorizations

## SUBGROUPS AND WELL-BEHAVIOUR EQUIVALENCE RELATIONS

For the equivalence relation  $\rho$  on  $\mathbb{Z}$ ,  $\mathbb{Z}/\rho = \{[n]_{\rho} \mid n \in \mathbb{Z}\}$ with the addition defined by  $[a]_{\rho} + [b]_{\rho} = [a + b]_{\rho}$  is a group if and only if  $[0]_{\rho}$  is a subgroup of  $\mathbb{Z}$ . How about an arbitrary group? Quotients and Factorizations

if the operation [a]<sub>ρ</sub> · [b]<sub>ρ</sub> = [ab]<sub>ρ</sub> is well-defined, then [0]<sub>ρ</sub> is a subsemigroup of (Z, ·) because [a · b] = [0 · 0] = [0] for every a, b ∈ [0].

if the operation [a]<sub>ρ</sub> · [b]<sub>ρ</sub> = [ab]<sub>ρ</sub> is well-defined too, then [0]<sub>ρ</sub> is a subring of (Z, +, ·).

Remember quotients of rings!

uotients and actorizations

- if the operation [a]<sub>ρ</sub> · [b]<sub>ρ</sub> = [ab]<sub>ρ</sub> is well-defined, then [0]<sub>ρ</sub> is a subsemigroup of (Z, ·) because [a · b] = [0 · 0] = [0] for every a, b ∈ [0].
- if the operation [a]<sub>ρ</sub> · [b]<sub>ρ</sub> = [ab]<sub>ρ</sub> is well-defined too, then [0]<sub>ρ</sub> is a subring of (Z, +, ·).

Remember quotients of rings!

Quotients and Factorizations

- if the operation [a]<sub>ρ</sub> · [b]<sub>ρ</sub> = [ab]<sub>ρ</sub> is well-defined, then [0]<sub>ρ</sub> is a subsemigroup of (Z, ·) because [a · b] = [0 · 0] = [0] for every a, b ∈ [0].
- if the operation [a]<sub>ρ</sub> · [b]<sub>ρ</sub> = [ab]<sub>ρ</sub> is well-defined too, then [0]<sub>ρ</sub> is a subring of (Z, +, ·).

Remember quotients of rings!

Quotients and Factorizations

For a group G and an equivalence relation  $\rho$  on it such that  $G/\rho$  is a group we have  $H = [1]_{\rho} \leq G$  and  $a\rho b$  if and only if aH = bH.

Furthermore, for every  $g \in G$  we have

$$H^{g} = gHg^{-1} = g\{x \in G \mid x\rho 1\}g^{-1} = \{gxg^{-1} \mid x\rho 1\}.$$

Since  $[gxg^{-1}]_{\rho} = [g]_{\rho}[x]_{\rho}[g^{-1}]_{\rho} = [g]_{\rho}[1]_{\rho}[g^{-1}]_{\rho} = [1]_{\rho}$ , *H* is a normal subgroup of *G*! Quotients and Factorizations

For a ring R and an equivalence relation  $\rho$  on it such that  $R/\rho$  is a ring we have  $I = [0]_{\rho} \leq R$  and  $a\rho b$  if and only if a + I = b + I. Furthermore, for every  $r \in R$  we have

$$rl = r[0]_{\rho} = \{rx \mid x\rho 0\} \text{ and } lr = \{xr \mid x\rho 0\}.$$

Since  $[rx]_{\rho} = [r]_{\rho}[x]_{\rho} = [r]_{\rho}[0]_{\rho} = [0]_{\rho}$ , *I* is an ideal of *R*! Quotients and Factorizations

# How about other algebraic structures?

Quotients and Factorizations

Behnam Khosravi

Modules or vector spaces. For an *R*-module *M* and an equivalence relation  $\rho$  on it such that  $M/\rho$  is an *R*-module with the following operations

$$[a]_{\rho} + [b]_{\rho} = [a + b]_{\rho} \text{ and } r[a]_{\rho} = [ra]_{\rho}.$$

Since  $[ra]_{\rho} = r[a]_{\rho} = r[0]_{\rho} = [0]_{\rho}$ , the class  $[0]_{\rho}$  is a submodule of M!

## CONGRUENCES

Roughly speaking, for every algebraic structure A, an equivalence relation  $\rho$  on A is called a congruence if natural operations on the set of equivalence classes of A are well-behaviour (e.g. if A is a group (ring), then  $A/\rho$  is a group (ring) with natural operations).

- ${\sf Groups} \ \rightarrow \ {\sf Normal \ subgroups}$ 
  - $\mathsf{Rings} \ \to \ \mathsf{Ideals}$
- R-modules  $\rightarrow$  Submodules
- ${\sf Vector} \; {\sf Spaces} \;\; \rightarrow \;\; {\sf Subspaces}$

?

IS THERE ALWAYS A BIJECTION BETWEEN CONGRUENCES AND A COLLECTION OF SUBALGEBRAS?

**Semigroups.** For  $(\mathbb{N}, +)$ , the equivalence relation  $\Delta = \{(n, n) \mid n \in \mathbb{N}\}$  is a congruence and every equivalence class of  $\Delta$  is not a subsemigroup.

Therefore the answer is **NO**!

Quotients and Factorizations

Behnam Khosravi

Let *I* be a subset of a semigroup *S* such that  $SI, IS \subseteq I$ . Then the relation  $\rho_I$  defined by  $\{(s,s) \mid s \in S\} \cup \{(a,a') \mid a,a' \in I\}$  is a congruence.

**Example.** For  $(\mathbb{N} \cup \{0\}, \cdot)$  we have  $\{(n, n) \mid n \in \mathbb{N} \cup \{0\}\} = \rho_{\{0\}}$ .

Quotients and Factorizations

Behnam Khosravi

Recall that in the group  $\mathbb{Z}_6$  the subgroups  $2\mathbb{Z}_6$  and  $3\mathbb{Z}_6$  have trivial intersection and  $\mathbb{Z}_6=2\mathbb{Z}_6+3\mathbb{Z}_6$  and in fact

$$\mathbb{Z}_6 \cong rac{\mathbb{Z}_6}{2\mathbb{Z}_6} imes rac{\mathbb{Z}_6}{3\mathbb{Z}_6}.$$

For an arbitrary group G, let  $N_1, N_2 \lhd G$  such that the following conditions hold.

(I) 
$$N_1 \cap N_2 = \{1\};$$

(II)  $G = N_1 N_2 (= N_2 N_1)$  (uniqueness:  $n = n_1 n_2$ ). Then

$$G\cong \frac{G}{N_1}\times \frac{G}{N_2}.$$

Recall that in the group  $\mathbb{Z}_6$  the subgroups  $2\mathbb{Z}_6$  and  $3\mathbb{Z}_6$  have trivial intersection and  $\mathbb{Z}_6 = 2\mathbb{Z}_6 + 3\mathbb{Z}_6$  and in fact

$$\mathbb{Z}_6 \cong rac{\mathbb{Z}_6}{2\mathbb{Z}_6} imes rac{\mathbb{Z}_6}{3\mathbb{Z}_6}.$$

For an arbitrary group G, let  $N_1, N_2 \lhd G$  such that the following conditions hold.

(I) 
$$N_1 \cap N_2 = \{1\};$$
  
(II)  $G = N_1 N_2 (= N_2 N_1)$  (uniqueness:  $n = n_1 n_2$ ).  
Then  
 $G = G$ 

$$G\cong rac{G}{N_1} imes rac{G}{N_2}.$$

Behnam Khosravi ()

1400 Summer 19 / 32

Quotients and Factorizations

Quotients and Factorizations

Behnam Khosravi

**Indecomposable groups** Groups without any pair of non-trivial normal subgroups which satisfies the conditions at the above.

**Example.**  $\mathbb{Z}_8$  (in general, every abelian group of order  $p^n$  for some prime number p)

**Krull-Schmidt theorem**. Every finite group can be uniquely written as a finite direct product of indecomposable subgroups.

**The fundamental theorem of finite abelian groups.** Every finite abelian group can be expressed as the direct sum of cyclic subgroups of prime-power order. **Indecomposable groups** Groups without any pair of non-trivial normal subgroups which satisfies the conditions at the above.

**Example.**  $\mathbb{Z}_8$  (in general, every abelian group of order  $p^n$  for some prime number p)

**Krull-Schmidt theorem**. Every finite group can be uniquely written as a finite direct product of indecomposable subgroups.

**The fundamental theorem of finite abelian groups.** Every finite abelian group can be expressed as the direct sum of cyclic subgroups of prime-power order.

**Indecomposable groups** Groups without any pair of non-trivial normal subgroups which satisfies the conditions at the above.

**Example.**  $\mathbb{Z}_8$  (in general, every abelian group of order  $p^n$  for some prime number p)

**Krull-Schmidt theorem**. Every finite group can be uniquely written as a finite direct product of indecomposable subgroups.

The fundamental theorem of finite abelian groups. Every finite abelian group can be expressed as the direct sum of cyclic subgroups of prime-power order. Quotients and Factorizations

## Natural numbers $\rightarrow$ prime numbers Finite groups $\rightarrow$ indecomposable finite groups

What are abelian groups of order less than 100 which have an element of order 5 and an element of order 7?

$$\mathbb{Z}_n \cong \mathbb{Z}_{p_1^{n_1}} \times \cdots \times \mathbb{Z}_{p_m^{n_m}}$$

## Natural numbers $\rightarrow$ prime numbers Finite groups $\rightarrow$ indecomposable finite groups

What are abelian groups of order less than 100 which have an element of order 5 and an element of order 7?

$$\mathbb{Z}_n \cong \mathbb{Z}_{p_1^{n_1}} \times \cdots \times \mathbb{Z}_{p_m^{n_m}}$$

## Natural numbers $\rightarrow$ prime numbers Finite groups $\rightarrow$ indecomposable finite groups

What are abelian groups of order less than 100 which have an element of order 5 and an element of order 7?

$$\mathbb{Z}_n \cong \mathbb{Z}_{p_1^{n_1}} \times \cdots \times \mathbb{Z}_{p_m^{n_m}}$$

Natural numbers  $\rightarrow$  prime numbers Finite groups  $\rightarrow$  indecomposable finite groups

What are abelian groups of order less than 100 which have an element of order 5 and an element of order 7?

$$\mathbb{Z}_n \cong \mathbb{Z}_{p_1^{n_1}} \times \cdots \times \mathbb{Z}_{p_m^{n_m}}$$

If  $G \cong \frac{G}{N_1} \times \frac{G}{N_2}$  under the map  $\phi(g) = (g_{N_1}, g_{N_2})$ , then for every  $x, y \in G$ , there exists  $z \in G$  such that  $\phi(z) = (xN_1, yN_2)$  and specially,

 $xN_1 \cap yN_2 \neq \emptyset.$ 

For every algebraic structure A let  $\rho_1$  and  $\rho_2$  be two congruences on A such that

(I) 
$$\rho_1 \cap \rho_2 = \Delta = \{(a, a) \mid a \in A\};$$
  
(II) for every  $x, y \in A$  there exist  $z, z' \in A$  such th  
 $(x, z) \in \rho_1$  and  $(z, y) \in \rho_2;$  and  
 $(x, z') \in \rho_2$  and  $(z', y) \in \rho_1.$ 

a pair of factor congruences

Behnam Khosravi ()

1400 Summer 22 / 32

Quotients and Factorizations

If  $G \cong \frac{G}{N_1} \times \frac{G}{N_2}$  under the map  $\phi(g) = (g_{N_1}, g_{N_2})$ , then for every  $x, y \in G$ , there exists  $z \in G$  such that  $\phi(z) = (xN_1, yN_2)$  and specially,

 $xN_1 \cap yN_2 \neq \emptyset.$ 

For every algebraic structure A let  $\rho_1$  and  $\rho_2$  be two congruences on A such that

(I) 
$$\rho_1 \cap \rho_2 = \Delta = \{(a, a) \mid a \in A\};$$
  
(II) for every  $x, y \in A$  there exist  $z, z' \in A$  such t  
 $(x, z) \in \rho_1$  and  $(z, y) \in \rho_2;$  and  
 $(x, z') \in \rho_2$  and  $(z', y) \in \rho_1$ 

a pair of factor congruences

Quotients and Factorizations

If  $G \cong \frac{G}{N_1} \times \frac{G}{N_2}$  under the map  $\phi(g) = (g_{N_1}, g_{N_2})$ , then for every  $x, y \in G$ , there exists  $z \in G$  such that  $\phi(z) = (xN_1, yN_2)$  and specially,

$$xN_1 \cap yN_2 \neq \emptyset.$$

For every algebraic structure A let  $\rho_1$  and  $\rho_2$  be two congruences on A such that

(I) 
$$\rho_1 \cap \rho_2 = \Delta = \{(a, a) \mid a \in A\};$$
  
(II) for every  $x, y \in A$  there exist  $z, z' \in A$  such that  $(x, z) \in \rho_1$  and  $(z, y) \in \rho_2$ ; and  $(x, z') \in \rho_2$  and  $(z', y) \in \rho_1$ .

a pair of factor congruences

Behnam Khosravi ()

1400 Summer 22 / 32

Quotients and Factorizations

If  $G \cong \frac{G}{N_1} \times \frac{G}{N_2}$  under the map  $\phi(g) = (g_{N_1}, g_{N_2})$ , then for every  $x, y \in G$ , there exists  $z \in G$  such that  $\phi(z) = (xN_1, yN_2)$  and specially,

$$xN_1 \cap yN_2 \neq \emptyset.$$

For every algebraic structure A let  $\rho_1$  and  $\rho_2$  be two congruences on A such that

(I) 
$$\rho_1 \cap \rho_2 = \Delta = \{(a, a) \mid a \in A\};$$
  
(II) for every  $x, y \in A$  there exist  $z, z' \in A$  such that  $(x, z) \in \rho_1$  and  $(z, y) \in \rho_2$ ; and  $(x, z') \in \rho_2$  and  $(z', y) \in \rho_1$ .

### a pair of factor congruences

Behnam Khosravi ()

Quotients and Factorizations

# QUOTIENTS AND FACTORIZATIONS OF FINITE ALGEBRAS

Quotients and Factorizations

Behnam Khosravi

An algebra A is (directly) indecomposable if A is not isomorphic to a direct product of two nontrivial algebras (equivalently, A has no pair of factor congruences  $\rho_1, \rho_2 \neq \Delta$ ). **Theorem.** Every finite algebra is isomorphic to a direct product of directly indecomposable algebras.

S. Burris, and H. P. Sankappanavar, A Course in Universal Algebra, Springer New York, 2011.

For every structure A let  $\rho_1$  and  $\rho_2$  be two compatible equivalence relation on A such that

(I) 
$$\rho_1 \cap \rho_2 = \Delta = \{(a, a) \mid a \in A\};\$$
  
(II) for every  $x, y \in A$  there exist  $z, z' \in A$  such that  $(x, z) \in \rho_1$  and  $(z, y) \in \rho_2$ ; and  $(x, z') \in \rho_2$  and  $(z', y) \in \rho_1$ .

## QUOTIENTS AND FACTORIZATIONS OF ORDERED STRUCTURES

Quotients and Factorizations

Behnam Khosravi

Order on Quotients Given a poset  $(P, \leq)$  and an equivalence relation  $\rho$ , let  $[p] \leq [q]$  if and only if there exists  $p' \in [p]$  and  $q' \in [q]$  such that  $p' \leq q'$ . An equivalence  $\rho$  on P is called compatible if  $P/\rho$  is a poset.  $(\mathbb{Z}, \leq)$ ?

Nicholas J. Williams, A survey of congruences and quotients of partially ordered sets, arXiv:2303.03765.

## QUOTIENTS AND FACTORIZATIONS OF ORDERED STRUCTURES

Order on Quotients Given a poset  $(P, \leq)$  and an equivalence relation  $\rho$ , let  $[p] \leq [q]$  if and only if there exists  $p' \in [p]$  and  $q' \in [q]$  such that  $p' \leq q'$ . An equivalence  $\rho$  on P is called compatible if  $P/\rho$  is a poset.  $(\mathbb{Z}, \leq)$ ?

Nicholas J. Williams, A survey of congruences and quotients of partially ordered sets, arXiv:2303.03765.

Quotients and Factorizations

## QUOTIENTS AND FACTORIZATIONS OF ORDERED STRUCTURES

Order on Quotients Given a poset  $(P, \leq)$  and an equivalence relation  $\rho$ , let  $[p] \leq [q]$  if and only if there exists  $p' \in [p]$  and  $q' \in [q]$  such that  $p' \leq q'$ . An equivalence  $\rho$  on P is called compatible if  $P/\rho$  is a poset.  $(\mathbb{Z}, \leq)$ ?

Nicholas J. Williams, A survey of congruences and quotients of partially ordered sets, arXiv:2303.03765.

Quotients and Factorizations

## QUOTIENTS AND FACTORIZATIONS OF ORDERED GROUP OR ORDERED SEMIGROUP

Let S be a set endowed with a law of composition that is written multiplicatively. By a compatible order on S we mean an order  $\leq$  with respect to which all translations  $y \rightarrow xy$  and  $y \rightarrow yx$  are isotone.

Example. By an ordered group we shall mean a group on which there is defined a compatible order.  $(\mathbb{Z}, +, \leq)$ ?

T.S. Blyth, Lattices and Ordered Algebraic Structures, Springer-Verlag London Limited 2005.

Quotients and Factorizations

# QUOTIENTS AND FACTORIZATIONS OF ORDERED GROUP OR ORDERED SEMIGROUP

Let *S* be a set endowed with a law of composition that is written multiplicatively. By a compatible order on *S* we mean an order  $\leq$  with respect to which all translations  $y \rightarrow xy$  and  $y \rightarrow yx$  are isotone.

Example. By an ordered group we shall mean a group on which there is defined a compatible order.  $(\mathbb{Z}, +, \leq)$ ?

T.S. Blyth, Lattices and Ordered Algebraic Structures, Springer-Verlag London Limited 2005.

# QUOTIENTS AND FACTORIZATIONS OF ORDERED GROUP OR ORDERED SEMIGROUP

Let *S* be a set endowed with a law of composition that is written multiplicatively. By a compatible order on *S* we mean an order  $\leq$  with respect to which all translations  $y \rightarrow xy$  and  $y \rightarrow yx$  are isotone.

Example. By an ordered group we shall mean a group on which there is defined a compatible order.  $(\mathbb{Z}, +, \leq)$ ?

T.S. Blyth, Lattices and Ordered Algebraic Structures, Springer-Verlag London Limited 2005.

# QUOTIENTS AND FACTORIZATIONS OF DIRECTED GRAPHS

**Remark.** The definition of the quotient also applies to arbitrary relations and directed graphs.

Quotient of a directed graph Given a directed graph  $\Gamma = (V, E)$  and an equivalence relation  $\rho$ , let  $([p], [q]) \in \tilde{E}$  if and only if there exists  $p' \in [p]$  and  $q' \in [q]$  such that  $(p', q') \in E$ .

W. Imrich, and S. Klavzar, Product graphs:structure and recognition, Wiley, 2000.

Quotients and Factorizations

# QUOTIENTS AND FACTORIZATIONS OF DIRECTED GRAPHS

**Remark.** The definition of the quotient also applies to arbitrary relations and directed graphs.

Quotient of a directed graph Given a directed graph  $\Gamma = (V, E)$  and an equivalence relation  $\rho$ , let  $([p], [q]) \in \tilde{E}$  if and only if there exists  $p' \in [p]$  and  $q' \in [q]$  such that  $(p', q') \in E$ .

W. Imrich, and S. Klavzar, Product graphs:structure and recognition, Wiley, 2000.

Quotients and Factorizations

A topological space X and an equivalence relation  $\rho$ 

Quotient topology induced by the natural projection  $\pi: X \to X/\rho.$ 

Quotient space

Hausdorff spaces???

 $\begin{aligned} & \mathsf{Fatorization?} \ X = X_1 \times X_2 \ \mathsf{and} \ \pi_i : X \to X_i \\ & \emptyset \subset \{(1,1)\} \subset \{(1,1),(1,2)\} \quad \subset \\ & \{(1,1),(1,2),(2,1)\} \quad \subset \quad \{(1,1),(1,2),(2,1),(2,2)\} \end{aligned}$ 

Quotients and Factorizations

A topological space X and an equivalence relation  $\rho$ 

Quotient topology induced by the natural projection  $\pi: X \to X/\rho.$ 

### Quotient space

Hausdorff spaces???

Fatorization?  $X = X_1 \times X_2$  and  $\pi_i : X \to X_i$  $\emptyset \subset \{(1,1)\} \subset \{(1,1), (1,2)\} \subset \{(1,1), (1,2), (2,1)\} \subset \{(1,1), (1,2), (2,1), (2,2)\}$  Quotients and Factorizations

A topological space X and an equivalence relation  $\rho$ 

Quotient topology induced by the natural projection  $\pi: X \to X/\rho.$ 

Quotient space

Hausdorff spaces???

 $\begin{array}{lll} \text{Fatorization?} & X = X_1 \times X_2 \text{ and } \pi_i : X \to X_i \\ \\ \emptyset \subset \{(1,1)\} \subset \{(1,1),(1,2)\} & \subset \\ & \{(1,1),(1,2),(2,1)\} & \subset & \{(1,1),(1,2),(2,1),(2,2)\} \end{array}$ 

Quotients and Factorizations

A topological space X and an equivalence relation  $\rho$ 

Quotient topology induced by the natural projection  $\pi: X \to X/\rho.$ 

Quotient space

Hausdorff spaces???

Fatorization?  $X = X_1 \times X_2$  and  $\pi_i : X \to X_i$  $\emptyset \subset \{(1,1)\} \subset \{(1,1), (1,2)\} \subset \{(1,1), (1,2), (2,1)\} \subset \{(1,1), (1,2), (2,1), (2,2)\}$  Quotients and Factorizations

A topological space X and an equivalence relation  $\rho$ 

Quotient topology induced by the natural projection  $\pi: X \to X/\rho.$ 

Quotient space

Hausdorff spaces???

 $\begin{array}{lll} \mbox{Fatorization?} & X = X_1 \times X_2 \mbox{ and } \pi_i : X \to X_i \\ \\ \emptyset \subset \{(1,1)\} \subset \{(1,1),(1,2)\} & \subset \\ & \{(1,1),(1,2),(2,1)\} & \subset & \{(1,1),(1,2),(2,1),(2,2)\} \end{array}$ 

Quotients and Factorizations

Algebraic topological structures and topological congruences?

Topological semigroup: A semigroup S with a topology on it is called a topological semigroup if its multiplication is continuous.

Topological congruence

Wallace A. D., On the structure of topological semigroups, Bull. Amer. Math. Soc., 61 (1955),95-112. Lawson, J. D. and Madison, B., On congruences and cones, Math. Z., 120 (1971), 18-24. Quotients and Factorizations

Algebraic topological structures and topological congruences?

Topological semigroup: A semigroup S with a topology on it is called a topological semigroup if its multiplication is continuous.

Topological congruence

Wallace A. D., On the structure of topological semigroups, Bull. Amer. Math. Soc., 61 (1955),95-112. Lawson, J. D. and Madison, B., On congruences and cones, Math. Z., 120 (1971), 18-24. Quotients and Factorizations

Algebraic topological structures and topological congruences?

Topological semigroup: A semigroup S with a topology on it is called a topological semigroup if its multiplication is continuous.

Topological congruence

Wallace A. D., On the structure of topological semigroups, Bull. Amer. Math. Soc., 61 (1955),95-112. Lawson, J. D. and Madison, B., On congruences and cones, Math. Z., 120 (1971), 18-24.

## QUOTIENTS AND FACTORIZATIONS OF NORMAL EDGE-TRANSITIVE CAYLEY GRAPHS

Praeger determined quotients of normal edge-transitive Cayley graphs which are again normal edge-transitive Cayley graphs.

C. E. Praeger, Finite Normal Edge-transitive Cayley graphs, Bull. Austral. Math. Soc. 60 (1999), 207-220.

Factorization?

B. Khosravi, B. Khosravi, and B. Khosravi, On reconstruction of normal edge-transitive Cayley graphs, Annals of Combinatorics, 24 (2020), 791–807.

B. Khosravi, and C. E. Praeger, Normal edge-transitive Cayley graphs and Frattini-like subgroups, Journal of Algebra, 607 (2022) 473-498.

Quotients and Factorizations

# QUOTIENTS AND FACTORIZATIONS OF NORMAL EDGE-TRANSITIVE CAYLEY GRAPHS

Praeger determined quotients of normal edge-transitive Cayley graphs which are again normal edge-transitive Cayley graphs.

C. E. Praeger, Finite Normal Edge-transitive Cayley graphs, Bull. Austral. Math. Soc. 60 (1999), 207-220.

Factorization?

B. Khosravi, B. Khosravi, and B. Khosravi, On reconstruction of normal edge-transitive Cayley graphs, Annals of Combinatorics, 24 (2020), 791–807.

B. Khosravi, and C. E. Praeger, Normal edge-transitive Cayley graphs and Frattini-like subgroups, Journal of Algebra, 607 (2022) 473-498.

Behnam Khosravi ()

**Quotients and Factorizations** 

Quotients and Factorizations

Quotients and Factorizations

Behnam Khosravi

### Thanks for your attention

Quotients and Factorizations

Behnam Khosravi

https://www.karnaval.ir/blog/chichen-itza-pyramid-maya-civilization