
logo-01

How to construct efficient solvers for nonlinear
equations?

Topics in Computational Mathematics

F. Soleymani

Presentation at the IASBS, Zanjan, Iran, October 2024

How to construct efficient solvers for nonlinear equations?

logo-01

Contents

An introduction to the concept of iterative methods
Efficiency index and other solvers
With memorization
Defining some self-accelerators
Basins of attractions
Some results

How to construct efficient solvers for nonlinear equations?

logo-01

Stating the problem and classifications

Following the classifications of Traub in [11], iterations to cal-
culate the solution of nonlinear equations the form

f (x) = 0,

are categorized into two major portions of ‘methods without
memory’ and ‘methods with memory’.

How to construct efficient solvers for nonlinear equations?

logo-01

A hypothesis

On the other hand, in 1974, Kung and Traub in [7] proposed a
hypothesis indicating that an iteration method without memory
consisting of m functional evaluations could get at most 2m−1

order of convergence to find simple zeros for general functions.
Taking this concept into account many iteration methods have
been developed and proposed to the literature, [1].

How to construct efficient solvers for nonlinear equations?

logo-01

Steffensen’s solver

For solving nonlinear scalar equations of the form f (x) = 0,
Steffensen in [10] proposed an iteration method (SM), which
does not consist of any derivative evaluations per cycle to
proceed as follows:

xk+1 = xk − f (xk)
f [xk , wk] , β ∈ R\{0}, k = 0, 1, 2, · · · , (1)

wherein wk = xk + βf (xk).
Though originally in [10], (1) does not contain a nonzero free
parameter β, its incorporation as in (1) preserves the rate
of convergence and gives us a family of iterations useful for
nonlinear problems, at which the computation of derivatives is
hard.
The iteration (1) satisfies Kung-Traub conjecture.

How to construct efficient solvers for nonlinear equations?

logo-01

Efficiency index

One of the ways in order to distinguish the best iteration schemes
for solving equations is to rely on the efficiency index given
by [8]:

EI = p
1
η , (2)

where p and η stand for the convergence speed and the evalua-
tions in terms of functions.
Furthermore, attraction basins give another criterion for choos-
ing the best iteration when the main concentration is to have
better convergence regions with less sensitive areas for selecting
the choices of the initial guesses.

How to construct efficient solvers for nonlinear equations?

logo-01

Another recent solver

A recently well–developed Steffensen–type scheme (HM) is given
by [5]:

wk = xk − βf (xk), β ∈ R\{0}, k ≥ 0,

xk+1 = xk − f (xk)
f [xk , wk]

(
1 + ξ f (wk)

f [xk ,wk]

)
, ξ ∈ R.

(3)

The method without memory (3) reaches the second order
convergence just like (1) but with one more free parameter.

How to construct efficient solvers for nonlinear equations?

logo-01

With memorization

The concept of methods with memory is to keep the number
of functional evaluations unchanged, but to also save the
computed values and apply them in an interpolation–based
process to accelerate the rate of convergence.
Thus, this acceleration is attained without any additional func-
tional evaluations, which make them not only interesting in
terms of the convergence speed but also in terms of the compu-
tational efficiency index, [2].

How to construct efficient solvers for nonlinear equations?

logo-01

Other state-of-the-art solvers

In [3], the author discussed a two–step method with memory
without the use of any functional derivatives as follows:

vk = xk − βk f (xk), βk = − 1
N ′(xk) ,

yk = xk − f (xk)
f [xk , vk] ,

xk+1 = yk − f (yk)
f [xk , vk] .

(4)

Here the function N ′(xk) is a suitable function. This methods
has two steps and include three functional evaluations per itera-
tion with 3.37 R–order of convergence.

How to construct efficient solvers for nonlinear equations?

logo-01

A pioneer solver

Speaking of methods with memory, Džunić in [4] proposed a one–step
iteration expression with memory (DM) including two parameters
and reaching 1

2(3 +
√

17) R–order of convergence as comes next:

wk = xk + βk f (xk),

βk = − 1
N ′

2(xk) , pk = − N ′′
3 (wk)

2N ′
3(wk) , k ≥ 1,

xk+1 = xk − f (xk)
f [xk , wk] + pk f (wk) , k ≥ 0,

(5)

wherein Nj(l) is the Newton’s interpolation function of j-th order
going through j + 1 nodes at the point l . As an illustration, we
may consider N3(t) as the Newton’s interpolation polynomial of 3rd
degree, setting through 4 existing estimates xk , wk , wk−1, xk−1.

How to construct efficient solvers for nonlinear equations?

logo-01

Another state-of-the-art solver

The author in [6] presented the following iterative scheme with
memory (KM):

βk = − 1
N′

4(xk) , pk = − N′′
5 (wk)

2N′
5(wk) , k ≥ 2,

wk = xk + βk f (xk),

xk+1 = xk − f (xk)
f [xk , wk] + pk f (wk) ,

(6)

which hits the convergence R–order 3.90057 and is a one–step
method.
To get the highest rate of convergence and efficiency index,
without any additional functional evaluation, we rely on intro-
ducing approximation for the involved parameters. Hence, the
increasing R–order is related to one or more accelerator parame-
ters in the error equation of the method.

How to construct efficient solvers for nonlinear equations?

logo-01

How to enhance the solvers?

We approximate the accelerator parameters in each cycle by Newton’s
interpolating polynomials passing through the best saved points.
Here, the rate of convergence is increased from 2 to roughly 4 and
the efficiency index is significantly optimized from 1.41421 to roughly
2, which is highest possible index of computational efficiency.

How to construct efficient solvers for nonlinear equations?

logo-01

How to enhance the solvers?

We investigate a modification of (1) so as to get the quadratical
convergence rate but with having two free nonzero parameters as
follows: 

wk = xk + βf (xk), β ∈ R\{0}, k ≥ 0,

xk+1 = xk − f (xk)
f [xk , wk]

(
1 − p f (wk)

f [xk ,wk]

)
, p ∈ R.

(7)

How to construct efficient solvers for nonlinear equations?

logo-01

A theorem

Theorem

If f (x) is sufficiently smooth in a neighborhood of its simple root
α and a starting guess x0 is close enough to α. Therefore, the
convergence speed of (7) without memory is quadratic.

ek+1 = (c2 + p) (βf ′(α) + 1)e2
k

+ O(e3
k).

(8)

The error equation (8) reveals that the convergence speed may pass
the quadratic level and even more than cubic, if we had the ability
to replace p = −c2 and β = −1/f ′(α).

How to construct efficient solvers for nonlinear equations?

logo-01

Self-accelerators

Although the value of the zero is not obvious/given, but through
the already computed values, we can approximate these parame-
ters as if the R–order of convergence increases. In fact, we now
develop a method with memory that uses the information not
only from the last step, but also from the previous iterations
(as much as needed).
This technique enables us to achieve the highest efficiency both
theoretically and practically. Accordingly, let us impose the
following approximations recursively for the free parameters:

β = βk , p = pk , (9)

as the iterative scheme goes on via βk = − 1
f̄ ′(α)

and pk = −c̄2,

wherein f̄ ′(α) and c̄2 are estimates to f (α) and c2, respectively.

How to construct efficient solvers for nonlinear equations?

logo-01

A method with memory

Now, we can propose an iteration schemes (PM1) with memory as
follows:

βk = − 1
N′

2(xk) , pk = − N′′
3 (wk)

2N′
3(wk) , k ≥ 1,

wk = xk + βk f (xk), k ≥ 0,

xk+1 = xk − f (xk)
f [xk , wk]

(
1 + pk

f (wk)
f [xk ,wk]

)
, k ≥ 0.

(10)

How to construct efficient solvers for nonlinear equations?

logo-01

Other variants

Similarly the following ones with better interpolation degrees:
βk = − 1

N′
4(xk) , pk = − N′′

5 (wk)
2N′

5(wk) , k ≥ 2,

wk = xk + βk f (xk), k ≥ 0,

xk+1 = xk − f (xk)
f [xk , wk]

(
1 + pk

f (wk)
f [xk ,wk]

)
, k ≥ 0,

(11)

and 
βk = − 1

N′
6(xk) , pk = − N′′

7 (wk)
2N′

7(wk) , k ≥ 3,

wk = xk + βk f (xk), k ≥ 0,

xk+1 = xk − f (xk)
f [xk , wk]

(
1 + pk

f (wk)
f [xk ,wk]

)
, k ≥ 0.

(12)

How to construct efficient solvers for nonlinear equations?

logo-01

Interpolation functions of different degrees

As an illustration, here we also can define:
N4(t) = N4(t; xk , xk−1, wk−1, xk−2, wk−2), as an interpolation
polynomial of fourth degree, passing through the best five
saved points xk , xk−1, wk−1, wk−2, xk−2, for any k ≥ 2.
N5(t) = N5(t; wk , xk , xk−1, wk−1, xk−2, wk−2), as an
interpolation polynomial of fifth degree, passing through the
best six saved points wk , xk , xk−1, wk−1, wk−2, xk−2, for any
k ≥ 2.

How to construct efficient solvers for nonlinear equations?

logo-01

The convergence order in with memorization scenario

Theorem

Consider the same assumptions as in Theorem 1. Then, convergence
R-order of the improved Steffensen’s method with memory (12) is
3.97609.

1 This shows that the one step scheme could reach the highest
possible R–order four using only two functional evaluations per
cycle by applying the approach of with memorization. This
means 100% improvement over the methods without memory.

How to construct efficient solvers for nonlinear equations?

logo-01

Observation for the enhancement

1 To manifest the improvement of (10)–(12) in terms of computa-
tional efficiency index, in Figure 1, a comparison among various
iterative schemes is provided. The improvement in R–order and
the efficiency indices for (10)–(12) is obvious.

How to construct efficient solvers for nonlinear equations?

logo-01

Results: parallelization

● ● ● ● ● ● ● ●■

■

■

■
■

■ ■ ■

◆

◆

◆

◆
◆

◆
◆ ◆

▲

▲

▲

▲

▲
▲

▲ ▲

0 2 4 6 8
Iteration number

1.4

1.5

1.6

1.7

1.8

1.9

Computational efficieny

▲ (11)

◆ (5)

■ (4)

● (3)

A comparison of various iteration methods in terms of the computational efficiency
indices after performing several cycles.

How to construct efficient solvers for nonlinear equations?

logo-01

An inquiry

A question may arise that how this procedure can be generalized
to produce a family of iteration methods with memory. To respond
this, we emphasize that the degree of the interpolation polynomial
can be increased two units if we make the updating process after
one more iterations. Hence, by increasing the interpolation degree,
the R–order will increase but never passes the quadratic speed of
convergence:

βk = − 1
N′

2l (xk) , pk = − N′′
2l+1(wk)

2N′
2l+1(wk) , k ≥ l ,

wk = xk + βk f (xk), k ≥ 0,

xk+1 = xk − f (xk)
f [xk , wk]

(
1 + pk

f (wk)
f [xk ,wk]

)
, k ≥ 0.

(13)

How to construct efficient solvers for nonlinear equations?

logo-01

Basins of attractions

When analyzing particular methods the structure has to be
taken into account, and the efficiency of iterations cannot be
reduced solely to convergence speed and informational volume,
[9]. Hence, it is necessary to study some other aspects of
iteration methods for such a task. An important criterion which
worth investigating is to show how the schemes are useful in
terms of the freedom in the choice of the starting guess.
To check the stability and usefulness of different iterative meth-
ods, investigating the dynamical behavior of such iterations is
necessary.

How to construct efficient solvers for nonlinear equations?

logo-01

Considerations 1

We used β0 = 10−6 whenever required unless stated clearly.
The attraction basins for several polynomials

f (z) = zn − 1, n = 2, 3, 4, 5,

having complex roots are furnished. The other involved parame-
ters are set to zero.

How to construct efficient solvers for nonlinear equations?

logo-01

Considerations 2

To calculate and plot the attraction basins for the roots of a
polynomial applying an iteration scheme, we consider a grid of
points in the rectangle

D = [−4.0, 4.0] × [−4.0, 4.0] ⊂ C,

and we use these points as z0. If the iterates produced via the
iteration scheme converges a zero α of the polynomial applying
the condition

|f (zk)| < 10−2,

and a maximum of 30 iterations, we decide that z0 is in the
attraction basin of the zero and we paint this point.

How to construct efficient solvers for nonlinear equations?

logo-01

Notes

Here, wherever fewer number of iterates are used to converge,
darker colors are applied. It means darker areas show conver-
gence in fewer iterates while lighter area show that for those
starting points, one need more number of iterates to converge.
Red color denotes lack of convergence to any of the roots (with
the maximum of iterations established) or convergence to the
infinity.
The dynamical results given here show that the convergence
radius of the proposed variants of the Steffensen’s method can
be improved by updating the self–accelerating parameters.

How to construct efficient solvers for nonlinear equations?

logo-01

Results and fractals 1

Attraction basins for (1) with β = 1 (left) and β = 10−6 (right) for a quartic polynomial.

Attraction basins for (7) with β0 = 10−6, p = 1 (left) and (7) with β0 = 10−6, p = 0.01
(right) for a quartic polynomial.

How to construct efficient solvers for nonlinear equations?

logo-01

Results and fractals 2

Attraction basins for (6) with β0 = 10−6, p0 = 0 (left) and (10) with β0 = 10−6, p0 = 0
(right) for a quartic polynomial.

Attraction basins for (1) with β = 1 (left) and β = 10−6 (right) for a quintic polynomial.

How to construct efficient solvers for nonlinear equations?

logo-01

Results and fractals 3

Attraction basins for (7) with β0 = 10−6, p = 1 (left) and (7) with β0 = 10−6, p = 0.01
(right) for a quintic polynomial.

Attraction basins for (6) with β0 = 10−6, p0 = 0 (left) and (10) with β0 = 10−6, p0 = 0
(right) for a quintic polynomial.

How to construct efficient solvers for nonlinear equations?

logo-01

Results

How to construct efficient solvers for nonlinear equations?

logo-01

Results

How to construct efficient solvers for nonlinear equations?

logo-01

Conclusions and discussions

The condition f ′(x) ̸= 0 in a neighborhood of the required root
is sometimes severe for convergence of Newton–type methods,
which accordingly restricts their implementations in some prac-
tical problems.
The improvement of the R–order for the proposed variant is
100%, which is the highest possible convergence acceleration
for iterative methods with memory.
The attraction basins showed not only the acceleration of the
convergence speed but also improved convergence radii.

How to construct efficient solvers for nonlinear equations?

logo-01

References I

F. Ahmad, E. Tohidi, M. Zaka Ullah, J.A. Carrasco, Higher order multi–step Jarratt–like method for solving
systems of nonlinear equations: Application to PDEs and ODEs, Comput. Math. Appl. 70 (2015), 624–636.

H. Arora, J.R. Torregrosa, A. Cordero, Modified Potra–Pták multi-step schemes with accelerated order of
convergence for solving systems of nonlinear equations, Math. Comput. Appl. 24 (2019), 1–15.

F.I. Chicharro, A. Cordero, N. Garrido, J.R. Torregrosa, Stability and applicability of iterative methods with
memory, J. Math. Chem., (2018), 1–19.

J. Džunić, M.S. Petković, On generalized biparametric multipoint root finding methods with memory, J.
Comput. Appl. Math., 255 (2014), 362–375.

F. Khaksar Haghani, A modified Steffensen’s method with memory for nonlinear equations, Int. J. Math.
Model. Comput., 5 (2015), 41–48.

F. Kiyoumarsi, On the construction of fast Steffensen–type iterative methods for nonlinear equations, Int. J.
Comput. Meth., 15 (2018), Art. ID: 1850002.

H.T. Kung, J.F. Traub, Optimal order of one–point and multi–point iteration, J. ACM, 21 (1974), 643–651.

A.M. Ostrowski, Solution of equations and systems of equations, Academic Press, New York, 1966.

J.R. Sharma, I.K. Argyros, S. Kumar, Ball convergence of an efficient eighth order iterative method under
weak conditions, Mathematics, 6 (2018), Article ID: 260, 1–8.

J.F. Steffensen, Remarks on iteration, Skand. Aktuarietidskr, 16 (1933), 64–72.

J.F. Traub, Iterative Methods for the Solution of Equations, Prentice Hall, New York, 1964.

How to construct efficient solvers for nonlinear equations?

logo-01

How to construct efficient solvers for nonlinear equations?

