A localization of Hilbert C^* -modules over C^* -algebras

R. Eskandari Farhangian University, Zanjan, Iran

19 November 2024

R. Eskandari Farhangian University, $^{\prime}$ A localization of Hilbert C^{*} -modules

19 November 20

L / 35

Abstract

We introduce the notion of the separated pair of closed submodules in the setting of Hilbert C^* -modules. We demonstrate that even in the case of Hilbert spaces this concept has several nice characterizations enriching the theory of separated pairs of subspaces in Hilbert spaces. Let \mathcal{H} and \mathcal{K} be orthogonally complemented closed submodules of a Hilbert C^{*}-module \mathcal{E} . We establish that $(\mathcal{H}, \mathcal{K})$ is a separated pair in \mathcal{E} if and only if there are idempotents Π_1 and Π_2 such that $\Pi_1 \Pi_2 = \Pi_2 \Pi_1 = 0$ and $\mathcal{R}(\Pi_1) = \mathcal{H}$ and $\mathcal{R}(\Pi_2) = \mathcal{K}$. We utilize the localization of Hilbert C^* -modules to define the angle between closed submodules. We prove that if $(\mathcal{H}^{\perp}, \mathcal{K}^{\perp})$ is concordant, then $(\mathcal{H}^{\perp\perp}, \mathcal{K}^{\perp\perp})$ is a separated pair if the cosine of this angle is less

than one.

Original papers

- W. L. Paschke. Inner product modules over B*-algebras. Trans. Amer. Math. Soc. 182 (1973), 443–468.
- M. A. Rieffel. Induced representations of C^{*}-algebras. Adv. Math. 13 (1974), 176–257.
- G. G. Kasparov. Hilbert C^{*}-modules: theorems of Stinespring and Voiculescu. J. Operator Theory 4 (1980), 133–150.

Textbooks

- E. C. Lance. Hilbert C*-modules a toolkit for operator algebraists. London Math. Soc. Lecture Note Series 210. Cambridge Univ. Press, Cambridge, 1995.
- N. E. Wegge-Olsen. K-Theory and C*-Algebras. A friendly approach. Oxford Univ. Press, Oxford, 1993.
- V. M. Manuilov, E. V.Troitsky. Hilbert C*-modules. Transl. Math. Monographs 226. Amer. Math. Soc. Providence, 2005.

Let A be a C^* -algebra.

Idea

Take the definition of a Hilbert space and replace the field of scalars by \mathcal{A} .

Note that scalars play a two-fold role for Hilbert spaces:

- Hilbert spaces are linear spaces (modules) over scalars.
- Inner product takes values in scalars.

Some basics from C^* -algebra theory

An involutive Banach algebra \mathcal{A} is called a C^* -algebra if the equality $||a^*a|| = ||a||^2$ holds for each $a \in \mathcal{A}$. Any C^* -algebra can be realized as a norm-closed subalgebra of the algebra of all bounded operators $\mathbb{B}(\mathcal{H})$ on a Hilbert space \mathcal{H} .

An element $a \in \mathcal{A}$ is positive $(a \ge 0)$ if it is selfadjoint and $Sp(a) \subseteq [0, 1)$.

 $a \ge 0$ iff $\phi(a) \ge 0$ for any positive linear functional ϕ on \mathcal{A} . We write

 $a \ge b$ if $a - b \ge 0$ is positive.

By $S(\mathcal{A})$ we denote the set of all states on \mathcal{A} .

Pre- Hilber C^* -modules over C^* -algebra \mathcal{A}

A pre-Hilbert C^* -module over a C^* -algebra \mathcal{A} is a right \mathcal{A} -module \mathcal{H} equipped with an \mathcal{A} -valued inner product $\langle \cdot, \cdot \rangle : \mathcal{H} \times \mathcal{H} \to \mathcal{A}$.

• $\langle x, x \rangle$ is a positive element in \mathcal{A} for any $x \in \mathcal{H}$.

•
$$\langle x, x \rangle = 0$$
 implies that $x = 0$.

•
$$\langle x, y \rangle = \langle y, x \rangle$$
 for any $x, y \in \mathcal{H}$.

⟨x, y.a⟩ = ⟨x, y⟩a for any x, y ∈ H and any a ∈ A. The map ⟨.,.⟩ is called an A-valued inner product.

If a pre-Hilbert C^* -module over a C^* -algebra $\mathcal{A} \mathcal{H}$ is complete with respect to the induced norm $||x|| = ||\langle x, x \rangle||^{\frac{1}{2}}$, then \mathcal{H} is called a Hilbert C^* -module.

Hilber C^* -modules over C^* -algebra \mathcal{A}

If \mathcal{H} is complete with respect to the induced norm $||x|| = ||\langle x, x \rangle||^{\frac{1}{2}}$, then \mathcal{H} is called a Hilbert C^* -module.

Adjointable Operators

We say that an operator $A : \mathcal{H} \to \mathcal{K}$ is adjointable if there is an operator $A^* : \mathcal{K} \to \mathcal{H}$ such that

$$\langle Ax, y \rangle = \langle x, A^*y \rangle, \quad x \in \mathcal{H}, y \in \mathcal{K}.$$

Let $\mathcal{R}(A)$ and $\mathcal{N}(A)$ denote the range and the null space of a linear operator A, respectively. Throughout this note, a capital letter means a linear operator.

Adjointable Operators

We assume that \mathcal{E} and \mathcal{F} are Hilbert C^* -modules over \mathcal{A} . The set of all adjointable operators from \mathcal{E} to \mathcal{F} is represented by $\mathcal{L}(\mathcal{E}, \mathcal{F})$, with the abbreviation $\mathcal{L}(\mathcal{E})$ if $\mathcal{E} = \mathcal{F}$. In the context of a Hilbert space \mathcal{H} , we denote $\mathcal{L}(\mathcal{H})$ by $\mathbb{B}(\mathcal{H})$. The identity element of an algebra is denoted by I.

Orthogonally Complemented Submodules

A submodule $\mathcal{M} \subseteq \mathcal{E}$ is said to be *orthogonally complemented* in \mathcal{E} if $\mathcal{M} \oplus \mathcal{M}^{\perp} = \mathcal{E}$, where $\mathcal{M}^{\perp} = \{x \in \mathcal{E} : \langle x, y \rangle = 0, \text{ for all } y \in \mathcal{M}\}$. In this case, \mathcal{M} is closed, and we refer to the projection from \mathcal{E} onto \mathcal{M} as $P_{\mathcal{M}}$. Unlike Hilbert spaces, a closed submodule is not necessarily orthogonally complemented. If $T \in \mathcal{L}(\mathcal{E}, \mathcal{F})$ has a closed range, then $\mathcal{R}(T)$ and $\mathcal{N}(T)$ are orthogonally complemented

Operator Range

A subspace \mathcal{M} of a Hilbert space \mathcal{E} is said to be an *operator range* if there exists a bounded linear operator A such that $\mathcal{M} = \mathcal{R}(A)$. The set \mathcal{L} of all operator ranges forms a lattice with respect to vector addition and set intersection. An operator range $\mathcal{R}(A)$ is complemented in the lattice \mathcal{L} if there exists an operator range $\mathcal{R}(B)$ such that $\mathcal{R}(A) \cap \mathcal{R}(B) = 0$ and $\mathcal{R}(A) + \mathcal{R}(B)$ is closed.

Theorem

An operator range $\mathcal{R}(A)$ is complemented in the lattice \mathcal{L} if and only if $\mathcal{R}(A)$ is closed, see [3, Theorem 2.3].

ovember 2024 1

It is clear that for any idempotent $\Pi \in \mathcal{L}(\mathcal{E})$,

$$\mathcal{R}(\Pi) \cap \mathcal{R}(I - \Pi) = 0 \quad \text{and} \quad \mathcal{R}(\Pi) + \mathcal{R}(I - \Pi) = \mathcal{E}.$$
 (1)

Motivated by this, we give the following key concept.

Definition

Let \mathcal{H} and \mathcal{K} be closed submodules of \mathcal{E} . Then, we say that $(\mathcal{H}, \mathcal{K})$ is a *separated pair* if

 $\mathcal{H} \cap \mathcal{K} = 0$ and $\mathcal{H} + \mathcal{K}$ is orthogonally complemented in \mathcal{E} . (2)

Lemma

Let $P, Q \in \mathcal{L}(\mathcal{E})$ be projections. Then, the following statements are all equivalent:

- (i) $\mathcal{R}(P+Q)$ is closed in \mathcal{E} ;
- (ii) $\mathcal{R}(P) + \mathcal{R}(Q)$ is closed in \mathcal{E} ;
- (iii) $\mathcal{R}(I-P) + \mathcal{R}(I-Q)$ is closed in \mathcal{E} ;
- (iv) For every complex numbers λ_1 and λ_2 , $\mathcal{R}(\lambda_1 P + \lambda_2 Q)$ is closed in \mathcal{E} .

In each case, we have

$$\mathcal{R}(P) + \mathcal{R}(Q) = \mathcal{R}(P + Q).$$

Lemma

Let \mathcal{E} be a Hilbert module over the C^* -algebra \mathcal{A} , and let $P, Q \in \mathcal{L}(\mathcal{E})$ be projections. Then, the following statements are equivalent:

(i)
$$||PQ|| < 1;$$

(ii) $\mathcal{R}(P) \cap \mathcal{R}(Q) = 0$ and $\mathcal{R}(P) + \mathcal{R}(Q)$ is closed
(iii) $\mathcal{R}(I - P) + \mathcal{R}(I - Q) = \mathcal{E}.$

Theorem

Let \mathcal{H} and \mathcal{K} be orthogonally complemented closed submodules of \mathcal{E} . The following statements are equivalent:

- (i) $(\mathcal{H}, \mathcal{K})$ is a separated pair.
- (ii) There exist idempotents Π_1 and Π_2 in $\mathcal{L}(\mathcal{E})$ such that $\Pi_1 \Pi_2 = \Pi_2 \Pi_1 = 0, \ \mathcal{R}(\Pi_1) = \mathcal{H}$ and $\mathcal{R}(\Pi_2) = \mathcal{K}$.
- (iii) There exists an idempotent $\Pi \in \mathcal{L}(\mathcal{E})$ such that $\mathcal{R}(\Pi) = \mathcal{H}$ and $\mathcal{K} \subseteq \mathcal{N}(\Pi)$.

Corollary

Let \mathcal{H} and \mathcal{K} be orthogonally complemented closed submodules of \mathcal{E} . The following statements are equivalent:

- (i) $(\mathcal{H}, \mathcal{K})$ is a separated pair.
- (ii) There exist constants $\alpha_1, \alpha_2 > 0$ such that

$$|x+y| \ge \alpha_1 |x|$$
 and $|x+y| \ge \alpha_2 |y|$ $(x \in \mathcal{H}, y \in \mathcal{K}).$

(iii) There exist constants $\alpha_1, \alpha_2 > 0$ such that

$$||x+y|| \ge \alpha_1 ||x||$$
 and $||x+y|| \ge \alpha_2 ||y||$ $(x \in \mathcal{H}, y \in \mathcal{K}).$ (3)

Given two arbitrary idempotents Π_1 and Π_2 on a Hilbert space, it is shown in [4] that the invertibility of the linear combination $\lambda_1\Pi_1 + \lambda_2\Pi_2$ is independent of the choice of λ_i , i = 1, 2, if $\lambda_1\lambda_2 \neq 0$ and $\lambda_1 + \lambda_2 \neq 0$. Such a result can be generalized as follows.

Theorem

Let $(\mathcal{H}, \mathcal{K})$ be a separated pair of orthogonally complemented submodules of \mathcal{E} . Let Π_1 and Π_2 be idempotents in $\mathcal{L}(\mathcal{E})$ such that $\mathcal{R}(\Pi_1) = \mathcal{H}$ and $\mathcal{R}(\Pi_2) = \mathcal{K}$. Then, the following assertions are equivalent:

- (i) $\mathcal{R}(\Pi_1 + \lambda \Pi_2)$ is closed in \mathcal{E} for every $\lambda \in \mathbb{C}$;
- (ii) $\mathcal{R}(\Pi_1 + \lambda \Pi_2)$ is closed in \mathcal{E} for some $\lambda \in \mathbb{C} \setminus \{0\}$;
- (iii) $\mathcal{R}(\Pi_1 + \Pi_2)$ is closed in \mathcal{E} .

As an application of the previous Theorem, we introduce the formulas for the Moore–Penrose inverse associated with a separated pair. We recall some basic knowledge about the Moore–Penrose inverse of an operator. Suppose that $T \in \mathcal{L}(\mathcal{H}, \mathcal{K})$. The *Moore–Penrose inverse* of T, denoted by T^{\dagger} , is the unique element $X \in \mathcal{L}(\mathcal{K}, \mathcal{H})$ satisfying

$$TXT = T$$
, $XTX = X$, $(TX)^* = TX$, and $(XT)^* = XT$. (4)

If such an operator T^{\dagger} exists, then T is said to be *Moore–Penrose invertible*.

Proposition

Let $\Pi_1, \Pi_2 \in \mathcal{L}(\mathcal{E})$ be idempotents satisfying $\Pi_1 \Pi_2 = \Pi_2 \Pi_1 = 0$. Then

$$(\Pi_1 + \lambda \Pi_2)^{\dagger} = (\Pi_1 + \Pi_2)^{\dagger} \left(\Pi_1 + \frac{1}{\lambda} \Pi_2\right) (\Pi_1 + \Pi_2)^{\dagger}$$
(5)

for every $\lambda \in \mathbb{C} \setminus \{0\}$.

The following example shows that there are idempotents Π_1 and Π_2 such that the pair $(\mathcal{R}(\Pi_1), \mathcal{R}(\Pi_2))$ is separated but $\mathcal{R}(\Pi_1 + \Pi_2)$ is not closed.

Example

Let \mathcal{K} be a separable Hilbert space and let $\{e_i : i \in \mathbb{N}\}$ be its usual orthonormal basis. Let U be the unilateral shift given by $Ue_i = e_{i+1}$ for $i \in \mathbb{N}$. Define $T \in \mathbb{B}(\mathcal{K})$ by

$$Te_i = \frac{2}{i}e_i \qquad (i \ge 1).$$

Put $\mathcal{H} = \mathcal{K} \oplus \mathcal{K}$ and set

$$\Pi_1 = \begin{pmatrix} I & -T \\ 0 & 0 \end{pmatrix} \text{ and } \Pi_2 = \begin{pmatrix} I & 0 \\ U & 0 \end{pmatrix}.$$

Then both Π_1 and Π_2 are idempotents in $\mathbb{B}(\mathcal{H})$ such that $\mathcal{R}(\Pi_1) \cap \mathcal{R}(\Pi_2) = 0.$

we have

$$\mathcal{R}(\Pi_1) + \mathcal{R}(\Pi_2) = \mathcal{K} \oplus \mathcal{R}(U),$$

which is obviously closed in \mathcal{H} . Thus, $(\mathcal{R}(\Pi_1), \mathcal{R}(\Pi_2))$ is a separated pair of subspaces in \mathcal{H} .

We claim that $\mathcal{R}(\Pi_1 + \Pi_2)$ is not closed. To see this, let

$$x_n = \sum_{i=1}^n \frac{1}{i} e_i$$
 and $y_n = \sum_{i=1}^n e_i$

for each $n \in \mathbb{N}$. Then

$$(\Pi_1 + \Pi_2)(x_n \oplus y_n) = 0 \oplus Ux_n \to 0 \oplus \sum_{i=1}^{\infty} \frac{1}{i} e_{i+1} := 0 \oplus \xi.$$

R. Eskandari Farhangian University, Δ localization of Hilbert C^* -modules 19 November 2024

We claim that $0 \oplus \xi \notin \mathcal{R}(\Pi_1 + \Pi_2)$. In fact, if there exist

 $x = \sum_{i=1}^{\infty} \alpha_i e_i, y = \sum_{i=1}^{\infty} \beta_i e_i \in \mathcal{K} \text{ such that } (\Pi_1 + \Pi_2)(x \oplus y) = 0 \oplus \xi,$ then

$$2x - Ty = 0$$
 and $Ux = \sum_{i=1}^{\infty} \alpha_i e_{i+1} = \sum_{i=1}^{\infty} \frac{1}{i} e_{i+1}.$

It follows that $\alpha_i = \frac{1}{i}$ and

$$\sum_{i=1}^{\infty} \frac{2\beta_i}{i} e_i = Ty = 2x = \sum_{i=1}^{\infty} \frac{2}{i} e_i.$$

Hence, $\beta_i = 1$ for all $i \in \mathbb{N}$, which gives a contradiction, since $\|y\|^2 = \sum_{i=1}^{\infty} |\beta_i|^2 < \infty$. Thus, $\mathcal{R}(\Pi_1 + \Pi_2)$ is not closed.

Note that if we set

$$\widetilde{\Pi_1} = \begin{pmatrix} I & -U^* \\ 0 & 0 \end{pmatrix}$$
 and $\widetilde{\Pi_2} = \begin{pmatrix} 0 & U^* \\ 0 & UU^* \end{pmatrix}$,

Then, it is seen that $\widetilde{\Pi_1}$ and $\widetilde{\Pi_2}$ are idempotents such that $\mathcal{R}(\widetilde{\Pi_1}) = \mathcal{R}(\Pi_1), \ \mathcal{R}(\widetilde{\Pi_2}) = \mathcal{R}(\Pi_2), \text{ and } \widetilde{\Pi_1}\widetilde{\Pi_2} = \widetilde{\Pi_2}\widetilde{\Pi_1} = 0.$ Theorem 16 guarantees the existence of these idempotents. In addition, we seen that $\mathcal{R}(\widetilde{\Pi_1} + \widetilde{\Pi_2})$ is closed.

5 / 3<u>5</u>

For a positive linear functional f on \mathcal{A} , we set

$$\mathcal{N}_f = \{ x \in \mathcal{E} : f(\langle x, x \rangle) = 0 \}.$$

Therefore, \mathcal{N}_f is a closed subspace of \mathcal{E} , and the quotient space $\mathcal{E}/\mathcal{N}_f$ is a pre-Hilbert space equipped with the inner product $\langle \cdot, \cdot \rangle_f$ defined by

$$\langle x + \mathcal{N}_f, y + \mathcal{N}_f \rangle_f = f(\langle x, y \rangle).$$

Let \mathcal{E}_f be the completion of $\mathcal{E}/\mathcal{N}_f$. Let $\iota_f : \mathcal{E} \to \mathcal{E}_f$ be the natural map, that is, $\iota_f(x) = x + \mathcal{N}_f$. If \mathcal{H} is a closed submodule of \mathcal{E} , then we consider \mathcal{H}_f as the closure of $\iota_f(\mathcal{H}) = \{x + \mathcal{N}_f : x \in \mathcal{H}\}.$ Let $PS(\mathcal{A})$ be the set of all pure states on \mathcal{A} .

Lemma

Let \mathcal{H} and \mathcal{K} be closed submodules of \mathcal{E} . Then, $\mathcal{H} = \mathcal{K}$ if and only if $\mathcal{H}_f = \mathcal{K}_f$ for each $f \in \mathcal{S}(\mathcal{A})$, if and only if $\mathcal{H}_f = \mathcal{K}_f$ for each $f \in \mathcal{PS}(\mathcal{A})$.

Proposition

Let \mathcal{H} be a closed submodule of \mathcal{E} . Then, the following statements are equivalent:

- (i) \mathcal{H} is orthogonally complemented in \mathcal{E} .
- (ii) $(\mathcal{H}_f)^{\perp} = (\mathcal{H}^{\perp})_f$ for each $f \in \mathcal{S}(\mathcal{A})$.
- (iii) $(\mathcal{H}_f)^{\perp} = (\mathcal{H}^{\perp})_f$ for each $f \in \mathrm{PS}(\mathcal{A})$.

Definition

The pair $(\mathcal{H}, \mathcal{K})$ of closed submodules of \mathcal{E} is said to be *concordant* if \mathcal{E} can be decomposed orthogonally as

$$\mathcal{E} = (\mathcal{H} \cap \mathcal{K}) \oplus \overline{\mathcal{H}^{\perp} + \mathcal{K}^{\perp}}.$$

(6)

R. Eskandari Farhangian University, Λ localization of Hilbert C*-modules 19 November 2024 29/35

Theorem

Let \mathcal{H} and \mathcal{K} be closed submodules of \mathcal{E} . Then, the following statements are equivalent:

- (i) The pair $(\mathcal{H}, \mathcal{K})$ is concordant.
- (ii) For every $f \in \mathcal{S}(\mathcal{A})$,

$$(\mathcal{H} \cap \mathcal{K})_f = \left((\mathcal{H}^{\perp})_f \right)^{\perp} \cap \left((\mathcal{K}^{\perp})_f \right)^{\perp}.$$
(7)

(iii) For every $f \in PS(\mathcal{A})$,

$$(\mathcal{H} \cap \mathcal{K})_f = \left((\mathcal{H}^{\perp})_f \right)^{\perp} \cap \left((\mathcal{K}^{\perp})_f \right)^{\perp}.$$
 (8)

Definition

Let \mathcal{H} and \mathcal{K} be closed submodules of \mathcal{E} . We define the *cosine of the local Friedrichs angle* between \mathcal{H} and \mathcal{K} by

$$\bar{c}(\mathcal{H},\mathcal{K}) := \sup_{f \in \mathcal{S}(\mathcal{A})} c(\mathcal{H}_f,\mathcal{K}_f).$$

Also, we define the *cosine of the local Dixmier angle* between \mathcal{H} and \mathcal{K} by

$$\overline{c_0}(\mathcal{H},\mathcal{K}) := \sup_{f \in \mathcal{S}(\mathcal{A})} c_0(\mathcal{H}_f,\mathcal{K}_f).$$

R. Eskandari Farhangian University, A localization of Hilbert C^* -modules 19 November 2024 31/35

Theorem

Let \mathcal{H} and \mathcal{K} be closed submodules of \mathcal{E} such that $(\mathcal{H}^{\perp}, \mathcal{K}^{\perp})$ is concordant. Then, $(\mathcal{H}^{\perp\perp}, \mathcal{K}^{\perp\perp})$ is a separated pair if $\overline{c_0}(\mathcal{H}^{\perp\perp}, \mathcal{K}^{\perp\perp}) < 1.$

R. Eskandari Farhangian University, λ localization of Hilbert C^* -modules 19 November 2024 32/35

References

- R. Haag and D. Kastler, An algebraic approach to quantum field theory, J. Math. Phys. 5 (1964), 848–861.
- J. Hamhalter, *Quantum measure theory*, Fundamental Theories of Physics, 134. Kluwer Academic Publishers Group, Dordrecht, 2003.
- P. A. Fillmore and J. P. Williams, *Operator ranges*, Advances in Math. 7 (1971), 254–281.
- H. Du, X. Yao, and C. Deng, *Invertibility of linear combinations of two idempotents*, Proc. Amer. Math. Soc. **134** (2006), no. 5, 1451–1457.
- H. Zettl, A Characterization of Ternary Rings of Operators, Adv. Math. 48 (1983), 117–143.

Selected Papers

- Rasoul Eskandari, Mohammad Sal Moslehian And Dan Popovici, Operaror Equalities and Characterizations of Orthogonality in Pre-Hilbert C*-modules, Proceedings of the Edinburgh Mathematical Society, volume 64, number 3 (2021), 594-61
- Rasoul Eskandari, Jan Hamhalter, Vladimir M. Manuilov, Mohammad Sal Moslehian, Hilbert C*-module independence, Mathematische Nachrichten, volume 297, number 2 (2024), 494-511.
- Rasoul Eskandari, Xiaochun Fang, Mohammad Sal Moslehian, Qing xiang Xu,Pedersen–Takesaki operator equation and operator equation AX = B in Hilbert C*-modules, Journal of Mathematical Analysis and Applications, volume 521, number 1 (2023),126878.

Selected Papers

- Rasoul Eskandari, Michael Frank, Vladimir M. Manuilov, Mohammad Sal Moslehian, B-spline interpolation problem in Hilbert C*-modules, Journal of Operator Theory, volume 86, number 2 (2021), 275–298.
- Rasoul Eskandari, Michael Frank, Vladimir M. Manuilov, Mohammad Sal Moslehian, Extensions of the Lax-Milgram theorem to Hilbert C^{*}-modules, **Positivity**, volume 24,(2020),1169-1180.
- Rasoul Eskandari, Xiaochun Fang, Mohammad Sal Moslehian, Qingxiang Xu, Positive solutions of the system of operator equations A₁X = C₁, XA₂ = C₂, A₃XA₃^{*} = C₃, A₄XA₄^{*} = C₄ in Hilbert C^{*}-modules, Electronic Journal of Linear Algebra, volume 34, (2018) 381-388. 4.

Thank you very much for your attention

R. Eskandari Farhangian University, A localization of Hilbert C^* -modules 19 November 2024