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General Overview

Mathematics and Physics (Mathematical Physics): Classical
Mechanics and Celestial Mechanics, Molecular Physics, etc.

Dynamical Systems
Lagrangian Mechanics, Hamiltonian Mechanics.
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General Overview

Lagrangian Mechanics: Historically, a formulation of Newton’s laws.

Hamiltonian Mechanics: Sympelctic Geometry and Dynamics.
Hamiltonian Dynamics: Classical Mechanics and Modern Mechanics
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General Overview

A Hamiltonian system is a dynamical system governed by Hamilton’s
equations. In physics, this dynamical system describes the evolution
of a physical system such as a planetary system, an electron in an
electromagnetic field, evolution of particles spatially, etc.
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Examples

Newtonian Systems such as Springs and Pendulum Problem; N-body
Problem (Specially 3-body Problem); Electromagnetic Forces; FPU
Chains; etc .
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Hamiltonian Systems: Canonical Definition

A dynamical system of 2n, first order, ordinary differential equations

ż = J∇H(z), J =
(

0 I
−I 0

)

is an n degree-of-freedom (d.o.f.) Hamiltonian system.

Here H is the “Hamiltonian”, a smooth scalar function of the
extended phase space variables z , the2n ×2n matrix J is the Poisson
matrix and I is the n × n identity matrix. The equations naturally
split into two sets of n equations for canonically conjugate variables,
z = (q, p), i.e.

q̇ = ∂H
∂p , ṗ = −∂H

∂q
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Canonical Definition

In Formulation: the n coordinates q represent the configuration
variables of the system (e.g. positions of the component parts) and
their canonically conjugate momenta p represent the impetus gained
by movement.
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Symplectic Structure

Much of the elegance of the Hamiltonian formulation stems from its
geometric structure. Hamiltonian phase space is an even dimensional
space with a natural splitting into two sets of coordinates, the
configuration variables q ∈ M and the momenta p. In this case the
Hamiltonian phase space is the cotangent bundle of the configuration
space P := T ∗M (Hamiltonian vector field as a Tangent vector field:
X : P → TP).
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Symplectic Structure

More abstractly, the phase space of a Hamiltonian system is an even
dimensional manifold T ∗M that is endowed with a closed
nondegenerate two-form, ω (symplectic manifold). This two-form
allows us to define a pairing between vectors and covectors. Given a
Hamiltonian function H : T ∗M → R, the Hamiltonian vector field
ż = X (z) is defined by iXω ≡ ω(X , .) = dH.

This is just a coordinate-free version of defined original case. Indeed,
a famous theorem of Darboux implies that near each point in T ∗M
there exists a set of canonical variables z = (q, p), such that
ω = dq ∧ dp, where ∧ is the “wedge product”. In terms of these
coordinates, the equations become Ẋ = J∇H, which is a restatement
of original case, where J is the Poisson matrix.
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Liouville-Arnold Theorem

Let there exists n functions (called integrals) F1 ≡ H,F2, · · · ,Fn such that
are constant along motions, functionally independent and
{Fi ,Fj} = 0, i 6= j(a Lagranjian set). Set

Mf = {(q, p) ∈ R2n : Fi (q, p) = fi , i = 1, . . . , n}

fi = constant, i = 1, . . . , n and a regular value of Fi .
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Liouville-Arnold Theorem

Mf is a manifold, as differentiable as the least differentiable integral,
and is invariant under the dynamics.
If Mf is compact and connected then it is diffeomorphic to the n
dimensional torus T n = {(φ1, · · · , φn) mod 2π}.
The flow generated gives rise to quasi periodic motion on T n, i.e. in
angular coordinates on Mf we have
dφ
dt = ω, ω(f ) = (ω1(f ), · · · , ωn(f )).
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Liouville-Arnold Theorem

Hamilton’s equations can be integrated by quadratures. More
precisely, in a neighborhood of Mf we can construct a symplectic
coordinate transformation (I, θ)→ (q(I, θ), p(I, θ)), where
I ∈ B ⊂ Rn, B is an open set, and θ ∈ T n. In these coordinates the
Hamiltonian takes the form H(q(I, θ), p(I, θ)) = K (I), with
Hamilton’s equations given by

İ = 0,
θ̇ = ω(I)

∗ Notice: This theorem is in a local theme. Global version is
investigated by Duistermaat (Hamiltonian Monodromy)
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Resonance and Nonresonance

Definition
The frequency vector ω is said to be resonant if there exists k ∈ Zn − {0}
such that < k, ω >= 0. If no such k ∈ Zn − {0} exists, ω is said to be
nonresonant.

n-dimensional nonresonant tori : Dense space;
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Resonance and Nonresonance

Theorem
(Foliation of Resonant Tori) Suppose the n-torus I = I∗ is resonant of
multiplicity m < n, i.e., ω(I∗) is a multiplicity m frequency vector. Then
the dynamics on the n-torus I = I∗ is such that it is foliated by invariant
tori of dimension n −m with trajectories densely filling out these lower
dimensional tori.
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Resonance and Nonresonance

Theorem

Suppose that det{ ∂2H
∂Ii∂Ij } 6= 0 in B. Then the nonresonant values of I are

dense in B and occupy a set of full measure. Moreover, the I values
corresponding to nonresonant tori of dimension n − k are also dense in B,
but occupy a set of zero measure, for k = 1, · · · , n − 1.
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Perturbations of Completely Integrable Hamiltonian
Systems: Near-integrable

Near-integrable systems:

H(I, θ, ε) = H0(I) + εH1(I, θ) + ε2H2(I, θ) + · · · .

Classical perturbation theory of Hamiltonian systems: Elimination of
angular variables, Small divisors, Poincar’e set and integrability .
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KAM theory
Diophantine frequencies: ω = ω(I0) if there exists c, γ, positive constants,

| < k, ω > | ≥ 1
c||k||γ , ∀k ∈ Zn − {0} .

Diophantine torus: If I = I0 is constant and ω(I0) is diophantine, then
torus NI0 is called diophantine.

Theorem
(Kolmogrov theorem) Let the integrable Hamiltonian H0 be real analytic
and nondegenerate, and consider the perturbed Hamiltonian
H = H0 + εH1 be sufficiently smooth. Then, the torus NI0 survives the
perturbation. It is slightly deformed and before carries quasiperiodic
motions with the frequencies ω.

Arnold: Proof for real-analytic H, Moser: Proof for reversible systems and
show that theorem remains true also in the case of sufficiently smooth
dependence of the Hamiltonian on phase variables.
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KAM tori: Cantor tori– Complement: O(
√
ε) or O(ε log ε) .
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Normal Forms Near Elliptic Fixed Points

H2(z , z̄) =
∑n

j=1
ωj
2 |zj |2 ∈ P2;

An elliptic fixed point is said to be resonant if there exists a nonzero
integer n-vector, i.e., k ∈ Zn−{0}, such that 〈k, ω〉 ≡

∑n
i=1 kiωi = 0;

The order of the resonance is defined to be |k| ≡
∑n

i=1 |ki |;
Ĥm(z , z̄) =

∑
|k|+ |l | = m,
〈k − l , ω〉 = 0

ckl zk z̄ l ;

no resonance: Birkhoff Normal Form(Birkhoff’s theorem);
possibly, for relations < k, ω >= 0, k ∈ K (a subgroup of Zn):
Hamiltonian is reduced to a K resonant normal form(Gustavson’s
theorem): depends only on the phases through the combinations k.φ,
with k ∈ K : order of resonance;
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Ĥm(z , z̄) =

∑
|k|+ |l | = m,
〈k − l , ω〉 = 0

ckl zk z̄ l ;

no resonance: Birkhoff Normal Form(Birkhoff’s theorem);
possibly, for relations < k, ω >= 0, k ∈ K (a subgroup of Zn):
Hamiltonian is reduced to a K resonant normal form(Gustavson’s
theorem): depends only on the phases through the combinations k.φ,
with k ∈ K : order of resonance;

Reza Mazrooei-Sebdani (Isfahan Uni. Tech. & IPM)Dynamics close to Hamiltonian resonances Jan 21, 2025 19 / 35



Detuning parameters

Our interest is in the dynamics of the normalized Hamiltonian in case
the resonance is not exact, but approximate:
ω1 + δ1:ω2 + δ2: · · · : ωn + δn resonance .

first order resonances: δj = O(ε) .
The parameters δ1, δ2, · · · , δn make a versal deformation (unfolding)
of the Hamiltonian.
Classic bifurcations of Hamiltonian systems (codimension 1):
saddle-center bifurcations, Hamiltonian period doubling bifurcations,
Hamiltonian pitchfork bifurcations, Hamiltonian flip bifurcations and
Hamiltonian Hopf bifurcations.
General diagram of bifurcations is the critical values of integral map
(energy momentum map) (F1, · · · ,Fn) : T ∗M → Rn, (Hamiltonian
monodromy may be detected).
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Fermi–Pasta–Ulam (FPU) chains

The Fermi–Pasta–Ulam (FPU) chain: A Hamiltonian model in
Statistical Mechanics.
It describes a nonlinear string of particles as well as a one dimensional
crystal.
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The FPU chain: Physicist and Nobel prize winner Enrico Fermi,
computer expert and physicist John Pasta and mathematician Stan
Ulam, in a scientific report with the title “Studies of nonlinear
problems” [Fermi et al. 1955].
Computer programmer for simulation “a one-dimensional continuum
... with forces acting on the elements of this string.” : Mary Tsingou
First application: a discretization of a nonlinear wave equation
Nowadays: crystals and DNA strands are also often modeled by the
FPU chain.
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–The aim of the 1955 numerical experiment: Investigation the statistical
properties of the chain, and in particular the question how fast a many
particle system reaches thermal equilibrium, as predicted by the
Boltzmann-Gibbs theory.
–Strong base of this theory: Ergodic hypothesis
–High surprising: The simulations of Fermi, Pasta and Ulam revealed that,
the FPU chain does not obey the Boltzmann-Gibbs laws.
–Even worse: instead of being ergodic, at low energy the FPU chain
displays strong recurrent behavior, which seems to prevent it from ever
reaching thermal equilibrium.
–Recurrent Poincar’e theorem
–FPU paradox: Inspiration for discoveries in Nonlinear Science.
–Highlights: KAM theory of quasi-periodic motion, the discovery of
integrable systems, developments in Chaos Theory, ...
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FPU chains

The Hamiltonian function of FPU chains is

H(p, q) =
N∑

j=1

(
p2

j
2mj

+ V (qj+1 − qj)
)

(1a)

with N the number of particles, masses mj positive constants and
nearest-neighbour potential

V (z) = 1
2z2 + α

3 z3 + β

4 z4 . (1b)

The potential V can be extended to higher powers in z .
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In the literature separate attention is often paid to the α–chain
(β = 0) and the β–chain (α = 0). As an extension of harmonic
oscillator interaction the β–chain is slightly more natural. The
dynamics defined by the Hamiltonian function (1a) is described by the
equations of motion

q̇j = ∂H
∂pj

= pj
m , ṗj = −∂H

∂qj
= V ′(qj+1−qj)−V ′(qj−qj−1) ,

for j = 1, . . . ,N and N particles under the force F = −V ′. The
convention qN+1 := q1 puts the N–degrees-of-freedom (dof) chain
into a circular configuration, one also speaks of the spatially periodic
-chain.
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Using the diagonal –symmetry

S× R2N −→ R2N

(θ, p, q) 7→ (p, (qj + θ)j)

enables us to reduce the equations of motion, thereby fixing the value
of the momentum mapping

(p, q) 7→
N∑

j=1
pj

corresponding with the linear momentum integral. This leads to a
Hamiltonian system with N − 1 dof.
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Resonances in FPU chains

[Rink, Symmetry and resonance in periodic FPU chains. Commun. Math.
Phys. 2001], [Rink & Verhulst, Near-integrability of periodic FPU chains.
Physica A 2000]
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Resonances in FPU chains

4 particles: [Bruggeman & Verhulst, 2017]
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Some of our results on FPU chains

passing through 1:2:4 resonance
Masses passing through 1:2:4 resonance [Hanßmann, Mazrooei-Sebdani,
Verhulst, 2020]: We consider four masses in a circular configuration with
nearest-neighbour interaction, generalising the spatially periodic
FPU-chain where all masses are equal. We identify the mass ratios that
produce the 1:2:4 resonance – the normal form in general is non-integrable
already at cubic order. Taking two of the four masses equal allows to
retain a discrete symmetry of the fully symmetric FPU-chain and yields an
integrable normal form approximation. The latter is also true if the cubic
terms of the potential vanish. We put these cases in context and analyse
the resulting dynamics, including a detuning of the 1:2:4 resonance within
the particle chain.
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Different masses passing through 1:2:4 resonance [Hanß mann,
Mazrooei-Sebdani, 2024] A 4–particle ring with different masses in
nearest-neighbour interaction generalizes the spatially periodic FPU chain
where all masses are equal. For appropriate mass ratios the system is in
1:2:4 resonance and the 4–particle ring provides for a versal detuning of
the 1:2:4 resonance. The normal form of the system is not integrable, but
can be reduced to two degrees of freedom. We determined the relative
equilibria and how these behave under detuning.
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The reduced phase space consists of a singular part in one degree of
freedom and a regular part in two degrees of freedom. On the latter the
normal form of the 4–particle ring has at most 4 relative equilibria as these
are given by the roots of a single quartic polynomial in one variable. We
found a rich bifurcation scenario, with relative equilibria undergoing
Hamiltonian flip bifurcations, centre-saddle bifurcations and Hamiltonian
Hopf bifurcations. These bifurcations are both approached from a
theoretical point of view for general detuned 1:2:4 resonances and
practically compiled to the set of local bifurcations for the normal form of
a 4–particle ring passing through the 1:2:4 resonance.
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Some of our results on FPU chains

passing through 1:2:3 resonance
[Mazrooei-Sebdani & Hakimi, 2023]: The 1:2:3 Hamiltonian resonance is
one of the four genuine first order resonances which is non-integrable. For
this resonance chaotic behaviour of the normal form has been shown due
to the existence of a transverse homoclinic orbit on the energy manifold.
Considering the detuning parameters, in the mirror symmetric cases of the
Poisson manifold by a reduction theory and computing the classical normal
form of non degenerate Hamiltonian Hopf bifurcation, we show there are
just non degenerate Hamiltonian Hopf bifurcations. However in the
general case by considering some case studies and specially of FPU chains
for a fiber passaging 1:2:3 resonance, we can deal with a complex of
bifurcations such as flip, centre-saddle and Hamiltonian Hopf bifurcation
in complicated regions graphically. Actually, we can see some special Krein
collisions in a complex region.
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Thank You
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Question?
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