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1. Introduction

Active agents that can convert a non-mechanical form of 

energy to mechanical work, exhibit a wide range of interesting 

dynamical behaviors when they form a suspension [1–6]. Both 

at the scales of macro and micro, there are many examples of 

such systems that have attracted enormous interests recently. 

Schools of �shes and birds [7–10], bacterial suspensions [11, 

12], gels of cytoplasmic polymers [13, 14], interacting active 

Janus particles [15] and swimmers in non newtonian �uids 

[16] are some relevant examples.

One of the main questions that needs to be answered, is the 

nature of ordered phases in such systems. In this article, we 

concentrate on the dynamics of micron-scale active agents. A 

wide class of works includes numerical simulations of micro-

suspensions, based on phenomenological and simpli�ed inter-

action terms between individual particles[17–22]. The well 

known model of Vicsek that can correctly account the local 

ordering of elongated objects, is the core of such studies [23]. 

Such simulations reveal how a local ordering rule can lead the 

system to reach a state with large scale ordered phases [24–28].

Continuum thermodynamic description of active suspensions, 

is another line of approach that can address some macroscopic 

features of the systems[29–34]. Dynamical equations  for the 

continuum �elds, derived by symmetry arguments or obtained 

from statistical averaging over microscopic forces, can capture 

the physics of ordered phases developed in such systems.

In contrast to the above works, only a few studies have inves-

tigated the role of long-range hydrodynamic interactions (HD) 

between the particles [35–38]. Effects of such interactions is 

essential, specially in the case of micro-scale examples sus-

pended in aqueous media. Fluid velocity produced by a moving 

particle, propagates instantaneously (a property of small scale 

hydrodynamic) through the medium and affects the motion of 

other particles. Some researchers, using a simple dipolar �ow 

interaction mechanism, have concluded that HD may prevent 

the emergence of long-range order [39]. Cluster formation in 

bacterial suspension and its promotion with hydrodynamic 

interactions are among important results in active suspensions 

that needs more insight [40–42]. The aim of this article is to 

improve our understanding of the ordering phenomena and col-

lective behavior in a suspension of active microscopic agents. 

To correctly account for such interactions, one needs to start 

from a hydrodynamic model that takes into account the internal 

structure of the swimmers. Starting from hydrodynamic inter-

actions obtained from a generic microscopic model, we numer-

ically study the statistical parameters, that can re�ect the nature 

of ordering in a suspension of such micron scale swimmers.
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2. Model

To study the dynamics of a two dimensional collection of N  

interacting self propelled objects, we assume that the inter-

action between swimmers can be obtained from two-particle 

interactions. One should note that this is an approximation that 

permits us to simplify the problem and proceed. Hydrodynamic 

interactions between colloidal particles have contributions in 

the form of many body interaction potential. Considering the 

two-body interaction means that we are neglecting 3-body and 

more than 3-body correlations. Figure 1, shows a schematic 

view of two swimmers that interact through both short and 

long-range interactions. The position and the orientation of 

the ith swimmer is shown by ri and ti
ˆ , respectively. In addition 

to position and orientation, the internal structure of the swim-

mers is also important. Each swimmer has an internal structure, 

that allows it to swim. To model the internal structure of the 

swimmers, we use a minimal model with two internal degrees 

of freedom, namely the three beads connected by two arms 

[43, 44]. This is a generic model that can correctly explain the 

far �eld of both dipolar and quadrupolar swimmers. Denoting 

the lengths of front and back arms of a swimmer by ℓ tf
i
( ) 

and ℓ tb
i
( ) and the spheres radius by a, we can seek internal 

motions that are able to propel the swimmer. As it is veri�ed 

experimentally, a simple harmonic undulating motion with a 

phase lag on arm lengths, is able to propel the swimmer at low 

Reynolds condition [44]. For identical swimmers, we choose 

an internal motion that is given by ω= +ℓ ℓt u tsinf
i
( ) ( ) and 

δ ω ϕ= + + +ℓ ℓt u t1 sinb
i

i( ) ( ) ( ), where ℓ and δ+ℓ 1( ) denote 

the average arm lengths, u denotes the undulation amplitude, 

the frequency is shown by ω and the phase difference between 

the arms is denoted by ϕi.

The orientation of a swimmer in a two dimensional refer-

ence frame can be represented by a single angle θi. In this case 

we have: θ θ=t cos , sini i i
ˆ (   ). Detail hydrodynamic calculations 

(see appendix), show that the velocity of ith swimmer, moving 

in the presences of jth swimmer, can be written as [45, 46]:

θ= + = ΩvV t V , ˙ ,i i ij i ij
ˆ   

where the intrinsic swimming velocity of a swimmer depends on 

its internal structure as: ω δ= ℓv v a u, , , ,( ) and, the interaction 

terms are functions of the distance = −r r rij i j and the orienta-

tion of swimmers: = vV V t t r, , ,ij ij i j ij( ˆ ˆ ) and Ω = Ω v t t r, , ,ij ij i j ij( ˆ ˆ ) 

(See appendix for details). The interaction terms, Vij and Ωij, 

obtained with this kind of modeling are valid only for very far 

swimmers: ≫ℓrij . Complexity of hydrodynamic equations, 

does not allow us to achieve analytical results for the short-

range part of the interactions between swimmers.

To overcome the complexity of short-range hydrody-

namic interactions, we approximate the short-range part 

of the interactions by a very well known model of Vicsek 

that is essentially a phenomenological short-range inter-

action [23]. This interaction enforces an elongated object 

(like what we have shown by ellipsoids in figure  1) to 

change its direction according to the average orientations 

of its neighbors. The Vicsek model does not fully con-

sider all features of the short-range hydrodynamic inter-

action, but as an approximation we neglect other details 

of short-range hydrodynamic interactions that are not 

included in Vicsek model. Vicsek’s model mainly takes 

into account the steric interaction between the elongated 

objects. To simplify our study, we assume that there is 

a crossover length Rc that separates the short and long-

range forces. Two objects with separation smaller than 

this crossover length, interact with short-range Vicsek 

model and beyond this length, the long-range hydrody-

namic interactions are present. In our numer ical scheme, 

we will assume that = ℓR 5c . Emergent collective motions 

of the Vicsek model are clearly known and our combined 

model here, will show how HD interaction can affect such 

collective motions.

In order to numerically study the dynamics of a suspen-

sion, we write the discrete dynamics of the ith swimmer as:

∑

∑

δ δ

θ δ θ θ ηξ δ

+ = + + Θ −

+ = + + + Θ − Ω

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟t t t t v r R

t t t t t r R

r r t V ,

,

i i i

j

ij c ij

i i i
V

i

j

ij c ij

ˆ( ) ( ) ( )

( ) ( ) ( ) ( )

where Heaviside step function is Θ =x 1( )  for x 0⩾  and it is 

0 for x  <  0. The short-range contribution to the dynamics is 

given by: ′θ = ∑
θarg ei

V
j

ti j( ), where the summation runs over 

all swimmers with <r Rij c. We assume that the �uctuations 

affect the dynamics of the swimmers, through a rotational 

noise represented by ηξ ti( ). Here ξ is a random number with 

uniform probability in the interval π π− ,[ ] and the strength of 

noise η, can take any positive value.

3. Two swimmer scattering

Before studying the case of many swimmers, it is instructive to 

start with two particles system. Rich behavior emerging from 

long-range hydrodynamic interaction, promises a non trivial 

behavior for the trajectories of two interacting swimmers. A 

plethora of behavior, repulsive, attractive and oscillating tra-

jectories can be observed. The details of such behavior has 

been studied extensively before [45, 46].

Figure 1. The geometry and internal structure of two interacting 
swimmers are shown. Each swimmer, with two internal degrees of 
freedom, has an intrinsic swimming direction denoted by t̂.
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An important feature that one can learn from the two 

body system, is the stability of isotropic phase in a many 

swimmer system. In an isotropic phase, all swimmers move 

in random directions and no direction is preferred. Using 

a kinetics theory approach with two body scatterings, it is 

shown that for a dilute system, the nature of two body scat-

tering is the essential mechanism that determines the sta-

bility of the isotropic state [47]. Denoting by P and δP, the 

initial total momentum and the change in total momentum 

after a binary scattering, we de�ne the average forward 

component of the momentum change in a binary scattering 

by: µ δ= ⋅P P 0⟨ ⟩ . Averaging is done over all impact param-

eters and as shown in �gure 2(inset), the incoming angular 

separation is shown by ∆. Neglecting the self diffusion, for 

µ> 0, the isotropic state is unstable and the interactions 

will eventually lead the system to reach a polar state [47]. 

For µ< 0, the interaction between particles is not able to 

develop a polar state.

Figure 2, shows the forward component of averaged change 

in momentum as a function of incoming angular separation 

∆. Here we have taken into account the HD interactions as 

described in the previous section. As one can see from this 

�gure, for small noises, µ is positive for all ∆, and it re�ects the 

instability of the isotropic state. Following such instability and 

for small noises, ordered state (anisotropis phase) emerges. In 

anisotropic phase, the rotational symmetry is spontaneously 

broken and all swimmers move in a preferred direction. Such 

an instability is a general feature of the Vicsek like interaction, 

and we see here that the long-range hydrodynamic interaction 

does not affect the instability. As one can see from the �gure, 

by increasing the noise, µ starts to have negative values that 

re�ects the stability of isotropic state. This means that, in the 

presence of HD, we expect to observe ordered (anisotropic) 

phase at small values of noise.

In the following parts we numerically investigate the detail 

role of HD in the ordering of a suspension.

4. Ordering

To investigate the role of hydrodynamic interaction in the 

long time behavior of a quasi 2D suspension, we proceed by 

numerically simulating the system. Along this path we study 

a set of order parameter and correlation functions. To quantify 

the polar order of the system, we de�ne the polar order param-

eter as: ψ = ∑ =N

N
V

v i i
1

1∣ ∣. Fully polarized state (anisotropic 

phase) is given by ψ = 1 and the isotropic state corresponds to 

ψ = 0. Velocity autocorrelation and velocity–velocity correla-

tion functions are de�ned as:

∑

∑∑

=
⋅

| | | |

=
−

⋅

| | | |

=

= ≠

N

N N

N

N N

C t
t

t

C r
t t

t t

V V

V V

V V

V V

1 0

0
,

1

1
.

a

i

i i

i i

vv

i j i

i j

i j

1

1

( ) ⟨
( ) ( )

( ) ( )
⟩

( )
( )

⟨
( ) ( )

( ) ( )
⟩

where ⋯⟨ ⟩ denotes averaging over all particles and also over 

time in a steady state regime. These two correlation func-

tions contain information about correlation time and corre-

lation length in a �uctuating system. Local spatial ordering 

and clustering in the system can be understood in terms of 

the radial distribution function g(r) that is de�ned by:

∑∑ δ=
−

−| |
= ≠

ℓ

N N

N N

g r r r
1

.
i j i

ij

2

1

( )
( )

⟨ ( )⟩

The number �uctuation, is the other quantity that we can 

study in our simulations. Denoting the average number of par-

ticles by n⟨ ⟩, we study its �uctuations: σ = −n n2 2⟨ ⟩ ⟨ ⟩ . This 

is a statistical parameter that includes information about the 

non-equilibrium nature of a �uctuating system. The practical 

method which we use to calculate the number �uctuations is 

as follows. For a given total number of swimmers N , we start 

by a small window in the middle of the simulation box and 

measure both average number of particles and its �uctuation 

inside this window. Then changing the size of this window 

will allow us to plot the number �uctuations as a function of 

average number.

De�ning all the required statistical parameters of our 

system, we will study the thermodynamic state of our system 

in the next section. In our numerical study, we consider a 

two dimensional suspension of N  particles in a square box 

of length L with periodic boundary condition. To make the 

equations non dimensional, we use ℓ and v as characteristic 

length and velocity. In simulations, we choose a square box of 

size ℓ50  and change the particle numbers from 100 to 2000. 

The time step in dimensionless units is δ =t 0.001 and a total 

number of  ∼ ×1.2 106 steps is necessary to reach steady state. 

To implement the periodic boundary conditions we use a 

single set of image particles beyond the walls of the box. The 

image system allows us to take into account the leading order 

contribution of the long-range hydrodynamic interaction.

Figure 2. Scattering of two individual swimmers are analyzed by 
their momentum change. Forward component of the change in total 
momentum, is plotted as a function of incoming angular separation 
∆ for different values of noise strength η. At very low noise, the 
isotropic state is not stable.

J. Phys.: Condens. Matter 29 (2017) 115102



H Behmadi et al

4

5. Results and discussions

Swarming behavior in our model, results from interplay 

between hydrodynamic interactions, noise strength and 

number density of particles. As our main goal here is to 

investigate the role of hydrodynamic interactions, we repeat 

all simulations with and without hydrodynamic interactions. 

In the �rst set of simulations, we perform the simulations 

only with the Vicsek interaction then for the second set, we 

include the long-range interactions as well. Comparison 

between the results of these two sets of results will provide 

an understanding of the role of hydrodynamic interaction. All 

results marked by NHD are obtained by taking into account 

the Vicsek interaction and the results marked by HD, denote 

the cases where both Vicsek and long-range hydrodynamic 

interactions are present.

Figure 3(left) shows the polarization order parameter, ψ, as 

a function of number of the swimmers (for �xed box size). As 

we have expected from two-body scattering results, the results 

that have been obtained at previous section, for a �xed noise, 

increasing the density will result instability in the isotropic 

phase and a stable anisotropic polarized phase will appear. 

This is consistent with the results of previous section where, 

as we discussed, it is the short-range part of the interaction 

that dominates the instability mechanism.

Let us study the number �uctuation in the presence of 

hydrodynamic interactions. For a system that is in thermal 

equilibrium, we expect to see a relation like σ∼ n
1
2⟨ ⟩ . 

Figure 3(right) shows the results of numerical simulations, that 

as a result of particle’s activity, deviate from equilibrium 
1

2
 

power law [48]. The results, indicate that by increasing the 

noise strength the system will tend to approach equilibrium 

power law (for larger noise, the slopes are smaller). But for a 

large and �xed noise strength, the HD curve has a slope smaller 

than the NHD curve. It turns out that for this condition, the 

HD interaction diminishes the out of equilibrium nature of the 

system. This result critically depends on the strength of noise, 

our simulations shows that for smaller noise the HD does not 

have any critical role in the behavior of number �uctuation.

Velocity auto-correlation function and velocity–velocity 

correlation function, are plotted in �gure 4(left) and (middle). 

As one can see from the results, for large number density 

=N 2000 and large noise η = 0.35, the HD interaction 

increases both the correlation time and correlation length. For 

small noise η = 0.15 (results are given only for autocorrela-

tion function), the increase in correlation time is very small. 

Figure 4(right), shows the results for radial distribution func-

tion g(r). The height of peak in g(r) re�ects the strength of 

two-particle pairing in the systems. As we can see from this 

�gure, the strength of peak strongly depends on the interaction 

between particles. HD interactions increase the pairing and 

clustering in the system. This result, again verify the idea that 

the long-range interactions, inject more order to the suspension.

Figure 3. Left: order parameter in terms of the number of swimmers. Right: density �uctuation as a function of average number is plotted 
for different strength of noise η. Results are compared for two cases where the hydrodynamic interaction is on or off (HD and NHD).

Figure 4. Velocity auto-correlation function Ca(t) (left), velocity–velocity correlation function Cvv (middle) and, radial distribution function 
g(r) (right) are plotted for a system with =N 2000 and η = 0.35. At large noises, both correlation time and correlation length and also the 
pairing strength are enhanced by HD interactions.
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Size distribution function of clusters is another important 

quantity that can help us in correctly analyzing the swarming 

behavior in a suspension. In a many body system of active 

agents, clusters of different sizes intermittently form and 

break. As a results of particle exchange between different clus-

ters, a power law distribution function can be expected [25]. 

Intuitively, if two particles are within the alignment zone, they 

are considered to belong to a same cluster. Size of a cluster 

n, is de�ned as the number of particles that belong to a same 

cluster. Examples of system snapshots, with and without HD 

interactions are shown �gure 5(up), left and right, respectively. 

In similar conditions, for the case where the HD interaction 

is on, the clusters are �nely distinguishable. Denoting by 

P(n), the probability to have a cluster with size n, we study 

this function for different values of number density and a �xed 

strength of noise η = 0.35 in �gure 5(down). Cluster forma-

tion in bacterial suspensions have been studied experimentally 

where, results similar to �gure 5(down) are reported [49, 50]. 

Having clusters with large sizes, depends strongly on the inter-

action and the number density. For larger densities, HD inter-

action increases the probability of �nding large clusters, but by 

decreasing the density of particles, the HD may change its role. 

Consistence with the previous result, at small densities, the 

hydrodynamic interactions do not show any observable effects 

in our simulations. Promotion of cluster formation by hydro-

dynamic interaction can be understood by studying the case 

of two swimmers. Extensive investigations have shown that 

depending on the conditions, such long-range interactions can 

mediate effective attraction between two hydrodynamic swim-

mers [45, 46]. Depending on initial conditions of two swim-

mers (their impact parameter and velocities), their scattering 

shows a rich behavior. Interestingly they can capture each 

other or show oscillatory trajectories. These are manifestations 

of such effective attraction. Such phenomena can be a potential 

description for the cluster formation in a many body system.

In conclusion, we have numerically studied the effects of long-

range hydrodynamic interactions in the ordering phenomena in 

an active suspension of micro-particles. The system that we have 

considered is quasi 2 dimensional in a sense that the swimmers 

are allowed to move in a two dimensional plane but the three 

dimensional �uid dynamic equations are used to derive the long-

range interactions. In active systems, one does not expect to see 

a sharp differences between the results of 2 and 3 dimensional 

systems similar to what have been seen in classical equilibrium 

systems. In equilibrium systems with short-range interactions, 

the �uctuations will destroy any order in 2D systems. The situa-

tion is different here, particles are active and their directed motion 

will allow them to move and see more particles and interact with 

them. This effect can be seen as an effective long-range interac-

tion and in such 2D systems ordered states can be formed. We 

have shown that depending on the strength of noise and number 

density of particles, the interactions have critical effects on the 

number �uctuations, correlation functions and clustering phe-

nomena. We should stress here that the value of order param-

eter shows some dependence to the hydrodynamic interactions. 

Simulations with a large number of particles are necessary to 

study the role of long-range interactions in the order parameter. 

Along this work, we are studying the effects of interplay between 

internal phases of the swimmers (here, we have assumed that all 

swimmer are in phase). Coherent effects observed in small sys-

tems [51], promise us to see interesting effects in suspensions.
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Appendix

In this appendix, we brie�y present the analytical results for 

the hydrodynamic interactions between two model micro-

swimmers. Following the method given in [45, 46], the 

intrinsic velocity of a single swimmer and it’s hydrodynamic 

interaction with second swimmer can be written as:

( ) ( )δ ω ϕ= +⎜ ⎟
⎛

⎝

⎞

⎠ℓ
v

a
u

7

24
1 sin ,i2

2

α α α

β β βΩ

= + +

= + +

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

ℓ ℓ

ℓ ℓ

r r
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F G H

,

.

ij
ij ij

ij
ij ij

1

2 3

2 3

1
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2 3

[ ]

[ ]

Figure 5. Up: two snapshots of the system for =N 1500 with (left) 
and without (right) hydrodynamic interactions. Different colors 
denote different cluster and one can distinguish that HD strongly 
enhances the clustering mechanism. Down: cluster size distribution 
function for various particle number and noise strengths. For a large 
number of particles, having large clusters are most frequent in the 
case of HD.
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The above results are obtained by averaging over a complete 

period of internal motion ( π ω2 / ). In terms of ω=
ℓ

ε u
a 2
2

 and 

ϕ ϕ ϕ= −ij i j, the parameters are given by:

α
δ

ϕ α δ ϕ

α δ ϕ δ ϕ ϕ

β
δ

ϕ β ϕ δ

β δ ϕ δ ϕ ϕ

= = − +

= + + + +

= − = −

= − + − +

ℓ

ℓ ℓ

ℓ

ε ε

ε

ε ε

ε

a

a

29

64
sin ,

4
2 sin ,

24
3 sin 3 2 sin sin ,

29

64
sin ,

3

8
sin 2 ,

7

48
3 sin 3 2 sin sin .

j j

i j ij

j j

i j ij

1 2

3

1 2 2

3

( )     ( )

[( ) ( ) ( )]

( )     ( ) ( )

( ) [( ) ( )( )]
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= −

= − +

= − +

= ×
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= − ×

M t t r

M t t t M t t t r

M t t t M t t t r

M t t t r t

M t t t t t M t t t t r t

M t t t t r t

T

D

E
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3

3
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3
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3 3

3 ,

5 ,

15

2
,

mn jm jn ij
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mnkl jm jn ik il ij i

[ ˆ ˆ ] ˆ

[ ˆ ˆ ] ˆ [ ˆ ˆ ˆ ] ˆ

[ ˆ ˆ ] ˆ [ ˆ ˆ ˆ ] ˆ

[ ˆ ˆ ˆ ] ( ˆ ˆ )
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where tî represents the director of ith swimmer and tikˆ  stands 

for its kth component. In above relations, summation over 

indices m n k l, , ,       are assumed. The symmetric and traceless 

tensors used at the above equations, are given by:

δ

δ δ δ

δ δ δ δ δ δ

δ δ δ δ δ δ

= −

= − + +

= + + +

− + + + + +

M r r r

M r r r r r r r

M r r r r r

r r r r r r r r r r r r

1

2
,

4 ,

6
1

4

.

ij i j ij

ijk i j k jk i ik j ij k

ijkl i j k l ij kl ik jl il jk

ij k l kl i j ik j l jl i k jk i l il j k

( ˆ) ˆ ˆ

( ˆ) ˆ ˆ ˆ ( ˆ ˆ ˆ )

( ˆ) ˆ ˆ ˆ ˆ ( )

( ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ )

The above equations  are valid for two swimmers that are 

moving inside a 2D plane. For numerical calculations we have 

set all phases to ϕ π= 2i /  and δ = 0.1.
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