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A three-dimensional model of a low-Reynolds-number swimmer is introduced and analyzed in this Brief
Report. This model consists of two large and small spheres connected by two perpendicular thin rods. The
geometry of this system is motivated by the microorganisms that use a single tail to swim; the large sphere
represents the head of microorganism and the small sphere resembles its tail. Each rod changes its length and
orientation in a nonreciprocal manner that effectively propels the system. Translational and rotational velocities
of the swimmer are studied for different values of parameters. Our findings show that by changing the
parameters we can adjust both the velocity and the direction of motion of the swimmer.
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I. INTRODUCTION

The propulsive motion of artificial and biological micron-
scale objects is an interesting problem at low-Reynolds-
number hydrodynamics. In this condition the dynamics is
dominated by viscous forces. Examples of these micron-
scale objects include biological microorganisms such as bac-
teria and also man made microswimmers, useful to operate at
microfluidic investigations [1].

Propulsive motion at low Reynolds number is subject to
the scallop theorem [2]. At small scales, where the Reynolds
number is very low, the governing hydrodynamic equations,
i.e., the Stokes and continuity equations, are linear and in-
variant under time reversal [3]. Any reciprocal shape defor-
mation retraces its trajectory and the system stays back at the
point where it started. In order to achieve a net translational
displacement, the system should perform the body deforma-
tions in a nonreciprocal manner. As mentioned by Purcell a
low-Reynolds-number propeller must have at least two inter-
nal degrees of freedom and he proposed a three-link swim-
mer. The detailed motion of Purcell’s swimmer was exam-
ined by Becker et al. where it was shown that Purcell’s
system could swim and its dynamical properties were calcu-
lated [4]. Inspired by Purcell’s system, a low-Reynolds-
number swimmer constructed by three linked spheres was
introduced and analyzed by Najafi ef al. [5] and experimen-
tally realized by Leoni er al. [6]. After Purcell’s proposal
there have been considerable scientific efforts in designing
artificial swimmers. Such swimmers would be useful in de-
veloping microfluidic experiments. Furthermore, progresses
in assembling microswimmers show the possibility of using
micromachines inside the biological cells for noninvasive
therapeutic treatments [7]. On the other hand, there are many
theoretical works devoted to the study of different aspects in
the motion of biological microorganisms at low-Reynolds-
number condition [8-12]. Such interests include sperm
swimming, metachronal waves in cilia, E. Coli chemotaxis,
and coupling mediated by hydrodynamic interaction between
nearby microorganisms [13,14]. For a review of recent
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progress on low-Reynolds-number hydrodynamics of micro-
organisms, see, for example, the review paper by Lauga and
Powers [15].

Our first aim in this Brief Report is to present a simplified
model that captures the characteristics of a swimming bio-
logical organism like a bacterium. Dipolar far velocity field
and asymmetric shape, corresponding to the head-tail geom-
etry of the organisms, are two important features of mi-
croswimmers. We model these systems by considering two
spheres with different radii that are changing their separa-
tion. We will study the translational and angular motions of
this system.

II. TWO-SPHERE MODEL

Figure 1 shows the schematic geometry of a model swim-
mer composed of two spheres. As shown in this figure two
small and large spheres with radii a and R are connected by
two perpendicular and negligible diameter rods. Let denote
the lengths of long and short rods by L and I, respectively.
The connection is established in a way that the angle be-
tween two rods is fixed to 7 while the relative angular posi-
tion of small rod with respect to the large sphere can be
varied. Additionally, we assume that the length of the long
rod can be dynamically changed. In this case, the system will
have two internal degrees of freedom: the length of the long
rod L(r) and the rotational angle of the short rod ¢(z).

The geometry which we are introducing here resembles
the body shape of a bacterium with a single flagellum or
cilium. Bacteria use beating patterns in their tails to move.
The small sphere in our two-sphere model acts as a beating
tail and the large sphere resembles the head of animal. The
minimum condition for swimming at low Reynolds number
can be achieved in our three-dimensional model. By chang-
ing the length of long rod and the angle of small one in a
prescribed form, we are able to choose the motion which
breaks the time-reversal symmetry, the necessary condition
for translational motion, and consequently propel the system.

As an example for the internal motion of the system, we
let the angle ¢(r) increase with constant angular velocity and
the length of long rod change periodically around an average
length. The explicit form of this motion is given by L(¢)
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FIG. 1. Schematic showing the geometry of a two-sphere swim-
mer. Two large and small spheres are connected through two per-
pendicular rods, one with fixed but the other with variable length.
The short rod is rotating around the long rod. This model system
resembles the motion of a bacterium that has a single tail.

=Ly+hy cos(wt—¢hy) and p(t)=wyt. In this case, the posi-
tion vector of the small sphere, seen in the reference frame
that is comoving with the large sphere, is given by

Xo = (I cos ¢(t),1 sin p(t),Lo+ h(1)), (1)

where [ is the length of the small rod and L represents the
average length of the long rod. Figure 2 shows a typical
real-space trajectory of the small sphere that is seen in the
reference frame comoving with the large sphere. Different
choices for w; and w, correspond to different forms of the
internal motion. For wy/w;,=m=p/q with p and q as two
positive integer numbers, we see that the paths in the (4, ¢)
space are closed loops. One should note that the phase space
of internal motion [(%, ¢) space] is the surface of a cylinder.
The axial direction on the cylinder represents the / direction
and the azimuthal angle is shown by the transverse direction
on the cylinder. For m <1, the phase-space trajectory is a
closed curve which traces exactly one complete turn around
the cylinder, while for m=1 the trajectory is a closed loop
that turns many times around the cylinder. In both cases, the
geometry of the closed curves in the cylindrical-shape phase
space is an example of nonreciprocal motion that can gener-
ate a net translational motion.

III. POINT FORCE NEAR A RIGID SPHERE

At zero Reynolds number the Stokes equations govern the
dynamics of fluid. The solution of the Stokes equation for a
point force singularity is formulated in terms of the Green’s
function and is called Stokeslet. For a point force singularity
with strength f located at point X, the velocity field gener-
ated in the fluid is given by u(X)=g5-G(X,X,)-f, where 7
is the viscosity of the fluid. Oseen derived the explicit form
of the Green’s function G for an infinite flow that is bounded
internally by a solid sphere with radius R [16]. For the ex-
plicit form of this solution, we refer to the original paper by
Oseen. As it is manifested by Oseen’s solution, the flow field
due to a point force in the presence of a solid sphere can be
regarded as the flow of the original point force and the flow
due to the singular parts that are located at an image position
inside the sphere. The location of the image point inside the
sphere is given by its position vector, X;=(R?/X3)X,, rela-
tive to the sphere’s center.

As argued by Higdon the total force acting by a point
force on fluid bounded by a no-slip sphere is equivalent to
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FIG. 2. Trajectory of the small sphere seen in the frame of
reference that is comoving with large sphere. Here, we chose A
=1 and wy/ 0 =2.

the total Stokeslet strength [17]. The total Stokeslet strength
includes the image point force inside the sphere. For a point
force f, the image point force is defined by f,=(c,f.+cf,)
where the radial and tangential components of this image
force are given by f,=f-X,/X,, f,=f—f,. Here, two coeffi-
cients ¢, and ¢, are given by

3R 1R’ 3R 1R’
C=—- 4T3, C=E—— - (2)
2X, 2X; 4X, 4X;
In the next section we will use these results for analyzing the
motion of two-sphere system.

IV. TWO-SPHERE DYNAMICS

In this section we will develop the dynamical equations
for two-sphere system. To simplify the equations We will
assume that the radius of small sphere is much smaller than
the radius of large sphere (a <<R). We further assume that a
is smaller than the characteristic distance between the
spheres. With this approximation the velocity field of the
system is described by the velocity field of a point force that
is moving near a rigid sphere. This simplification allows us
to use the results of the preceding section and derive simpler
dynamical equations of the system. However, one should
note that the finite-size effect of the small sphere can be
systematically considered by Faxen’s theorem [18].

To obtain the swimming velocity of the system we work
in the reference frame that is comoving and rotating with the
large sphere. In this coordinate system the velocity of the
fluid at infinity is the swimming velocity. Denoting the
swimming velocity of the system by V and its angular veloc-
ity by ), we can express the velocity field of the fluid at a
general point X as

uX)==-V-QOQ XX+M-V+OQ Xm+G-f, (3)

where the tensor M and vector m give the flow field due to
the translational and rotational motions of a moving sphere.
These quantities are given by

3R XX| 1R XX R3
==—|I+— |+-|1-3= |, m=3X. (4
4X X 4 X

X3
In the absence of external force and torque, the swimmer
is force and torque free. Therefore, we require the total force
and torque acting on the fluid by the system to be zero.
Including the point force and its image counterpart and add-
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FIG. 3. The trajectory of the swimmer in the (x,y,z) space is
plotted for two different values of ¢. Other parameters are R=1,
a=0.5, Ly=4, hy=0.1, [=0.3, and wy=2w;=1. Line shows the real
path of the large sphere. The swimmer starts its motion from the
initial state where the large sphere is located at the origin and the
long rod is orientated along the —Z direction. As one can see, the
overall swimming direction can be varied by changing the param-
eters of the system. Average orientation of the long rod which is not
shown here is along the average swimming direction.

ing the contributions due to the translational and rotational
motions of large sphere, we arrive at the following force and
torque balance equations:

f+f,+67myRV =0,

R3
X, X f, - ;xo X f,+87mpRQ = 0. (5)
0

The fluid velocity field at the location of small sphere is

subject to the boundary condition u(XO):XO. Together with
this boundary condition, the above equations make a com-
plete set of dynamical governing equations for the swimmer.

To solve the dynamical equations for the system, we can
use the force and torque balance conditions and obtain a set
of equations which relate the different components of the
translational or angular velocities of the system to the com-

ponent of the vector XO in the following matrix form:

V=AC"'X,,

Q=BC'X,, (6)

where the details for of the matrix elements [A];;=a;;, [B];;
=b;;, and [C];;=c;; are given in the Appendix.

V. RESULTS AND DISCUSSION

In this section we will present the numerical solution for
the governing equations and obtain the real-space trajectory
of the swimmer. For this purpose we plot the trajectory of
large sphere. For the prescribed internal motion given by Eq.
(1) and a special choice of parameters, we have plotted in
Fig. 3 the space trajectory of the large sphere. As one can
distinguish, the trajectory is a helical-shaped path with an
overall translational movement in each turn. The different
characteristics of the trajectory, preferred direction, average
swimming velocity, and the effective radius of the helix can

PHYSICAL REVIEW E 81, 067301 (2010)

0.006 - 1

0.005 - B

0.004 - + q

0.003 |- o, 1

0.002 I I L I I I I

FIG. 4. Average swimming velocity is plotted in terms of the
length of long rod. Other parameters are set to R=1, a=0.5, ¢,
=0, h0=0.1, l=0.3, and wd,:a),:l.

be controlled by the geometrical as well as dynamical param-
eters of the swimmer.

The average orientation of the long rod, which is not
shown in the figure, is in the direction of the longitudinal
axis of the helix. This is achieved by numerically solving for
the rotational velocity. Controlling and adjusting the dynami-
cal behavior of the swimmer are of prime importance in de-
signing artificial micromachines. Here, we see that by chang-
ing the parameters of the system we can do this favor. In Fig.
3, we have shown that the overall swimming direction is
sensitive to the initial phase ¢,. Additionally and as another
example, in Fig. 4, we have shown that by changing L, the
length of long rod, the average swimming velocity can be
changed.

As the geometry of the two-sphere swimmer is not sym-
metric, the far-field distribution of fluid velocity at the lead-
ing order of approximation resembles a velocity field of a
single force dipole. This is the main characteristic of most
swimming microorganisms with a dipolelike velocity
pattern.

In summary, inspired by bacterium swimming, we pro-
posed and analyzed a swimmer, constructed by two joint
spheres. We have shown that this simple three-dimensional
swimmer is a model for a low-Reynolds-number propeller
that captures a number of dynamical features in microorgan-
isms. It will be interesting to use this model swimmer and
study many interesting problems such as the hydrodynamic
interaction between such swimmers, the effects due to the
confinement in the bounded fluids, and also chemotaxis phe-
nomena. Inspired by the colonies of microorganisms, we are
extending our model to investigate the hydrodynamic inter-
action in an ensemble of two-sphere swimmers.

APPENDIX: MATHEMATICAL DETAILS

Here, we present the explicit form of the matrix elements
b;j, and c;; which were introduced in the text,

1 X2,
aj=—_—_ _ (1+CI)+(Cr_Ct)<_021> >
67 YR X5

1 X0iXoi
— — 0i+0; . .
= aj; == o . (cr—c,)< 2 ) for i # j,

Aij, Dijs
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by=0,

12

1 R’ .
bij:_bji:SWﬂR3 1—)?8 Xo for i#j#k,

e =My - ay, + M yay + M az + (m_—z0)b

- (my - yO)b3l + Gxx’
cip= (M= Dayp + M yan + M az — (m,—yo)bsy + Gy,
c13= (M= D)ayz+ Myars + M a3+ (m,— 20)bys + G,

Cr = Myxall + (Myy - 1)6121 + Myza31 + (mx —xo)b31 + ny,
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cn=Myap,+ My, —1)axy+M,.az + (m,—xo)bs,

- (m,—z0)b1n+ Gy,
c3=Myap+ My, = ay+ M,.azy;— (m,—z0)b13+ G,
ey =M ay + M yar + (M, — 1)az — (m, = x0)by + Gy,
=M a;+ M ay+ (M~ 1)as, + (my,—yo)bi; + G

2y

c3=M api+ M ax+ (M.~ Dasz + (my = Yo)bi3

- (mx = X0)byz + G.
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