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Self-propulsion in a low-Reynolds-number fluid confined by two walls of a microchannel
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The problem of hydrodynamic interactions with confining walls is examined for a model of a microswimmer
composed of three connected beads. Two parallel walls of a narrow microfluidic channel confine the fluid
flow. We show that different trajectories for this linear swimmer emerge because of long-range hydrodynamic
interactions with the walls of the channel. The possibility of space-spanning trajectories for this swimmer can
potentially introduce it as a candidate for constructing a mixing device for working at the laminar flow conditions
in microfluidic channels.
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I. INTRODUCTION

Dissipation-dominated dynamics of a fluid medium on
a micrometer scale is an old but still interesting area in
physics [1–3]. Because of the hydrodynamic peculiarity in the
low Reynolds condition, the study of propulsion mechanisms
and pumping methods in this condition has attracted a great
deal of interest recently [4]. Studying and understanding
the dynamics of swimming micro-organisms and artificial
microswimmers are important motivations for such studies.
In the case of swimming micro-organisms, it is a well known
fact that long-range hydrodynamic interactions with confining
walls will lead to a class of interesting phenomena [5–10].
The attraction and consequent adhesion of certain individual
micro-organisms to surfaces in biofilms [11], the boundary
effects on the dynamics of swimming suspensions [12], and
the large circular trajectories for E. coli in the presence of
walls [7,13] are among the biologically relevant examples.

In addition to the physics of swimming micro-organisms,
applications of artificial swimmers in microfluidic experiments
are also interesting [14–16]. In these systems, one needs
to increase the rate of chemical reactions by mixing the
components [17,18]. Laminar flow at the microfluidic channels
does not allow turbulent mixing of the liquid. On the other
hand, the large time scale of the diffusion process, i.e., the
fluctuation-based mixing mechanism, makes it impractical at
the micrometer scale. Passive and active scenarios have been
proposed to enhance the diffusion process and subsequently
increase the mixing efficiency [19]. Periodic stretching and
folding the flow inside a channel increase passively the
interface between the inlet flows and provide a greater
opportunity for mixing [20]. Energy injection into the system
through actuating magnetic colloids [21,22], artificial cilia,
bubbles, etc., is among the active methods for achieving rapid
mixing [23–25].

In this article, we theoretically study the dynamics of a
microswimmer inside a channel that can be an active mixing
device. Among all the proposed molecular machines [27–29],
we study the simplest one. Our system is made up of
a collection of three micron-scale beads manipulated by
external forces. The hydrodynamics of this model, without
taking into account any confining effects, has been studied
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previously [30,31]. It is theoretically and experimentally
shown that the three-bead system can either work in swimming
or pumping mode [26]. A single confining wall has been
investigated before [6]; two-wall confinement shows a number
of interesting behaviors.

II. RESULTS

We consider the three-bead swimmer consisting of three
rigid microspheres of equal radii a that are aligned linearly by
means of external forces. The average distances between the
adjacent beads are fixed to �. As shown in Fig. 1, the swimmer
is located in the (x,z) plane and its direction is denoted by
a unit vector t̂. To complete the mathematical description of
the kinematics, we denote the position vectors of the spheres
by rα , with α ∈ {M,R,L} denoting the middle, right, and left
beads.

To model a microfluidic channel, we consider a special
and simplified case in which the fluid is confined between two
infinite and parallel walls. Two rigid, parallel, and no-slip walls
are placed at positions z = 0 and z = H . The internal motion
of the swimmer that can be induced by external fields is given
by the following constraints:

rR,L = rM±[� + u cos(ωt + φR,L)]t̂. (1)

Here u, ω, and φR,L stand for the amplitude, frequency, and
phases for the internal motion. In the case of experimental
realization, three different optical tweezers manipulate the
bead position [26]. We study the problem at a very low value
of dimensionless Reynolds number Re = ρ�uω/η, where ρ

and η show the density and viscosity of the fluid [32]. This is
the condition of a microfluidic medium [14]. Because of the
symmetry considerations and neglecting thermal orientational
fluctuations, we can quickly conclude that the initial director
of the swimmer and a unit vector perpendicular to the walls
will construct a two-dimensional plane [here an (x-z) plane]
inside which the motion should take place.

For a very wide channel, H � �, and a swimmer moving
near the middle of the channel, z ≈ H/2, the walls have no
perceivable hydrodynamic effects on the swimmer, and the
swimmer continues on its initial orientation. Considering the
case in which u � �, the average velocity of the swimmer
and the average hydrodynamic forces applied on the beads are
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FIG. 1. (Color online) The geometry of a microfluidic channel
and a low Reynolds number three-sphere swimmer. We assume that
the channel is wide and long so that only the effects of two upper and
lower walls of the channel are considered.

given by [31]

〈ṙM〉 = V t̂, fR = fL = −(1/2)fM = 15
7 πηaV t̂, (2)

where the unit vector t̂ shows the direction of this linear
swimmer and V = (7/24)(u2/�2)aω sin(φL − φR). An imme-
diate and interesting conclusion from Eq. (2) is that the
self-propulsion is possible only when a nonzero phase lag
between the two lateral distances is applied. This is the content
of Purcell’s famous scallop theorem [1].

However, inside a channel, the backscattering of the fluid
flow from the walls dynamically changes the velocity and
orientation of the swimmer. As a result of the initial conditions
of the swimmer, the scattered flow can have different effects
on the swimmer. Figure 2 summarizes the results of our

FIG. 2. (Color online) A phase diagram representing the overall
hydrodynamic influences of a microchannel on a microswimmer.
Thick (blue) arrows show the intrinsic direction of the swimmer
while curved arrows (red) show the rotational velocities due to the
interaction with walls. No other phase changes occur at the omitted
parts of the phase diagram. The geometrically inaccessible region
of the phase diagram (z/� < sin θ ) is not shown in this logarithmic
scale. The numerical parameters are H/� = 30, u/� = a/� = 0.4,
(φL − φR) = π/2, and ω = 1.

FIG. 3. (Color online) An example showing the trajectory of a
swimmer interacting with two walls of a microchannel. Numerical
parameters are similar to Fig. 2.

numerical integration of the dynamical equations of motion
for a swimmer moving inside the channel and interacting with
the walls. In this phase diagram, the horizontal axis denotes
the initial angle θ that the swimmer’s direction makes with the
x axis (cos θ = t̂ · x̂), and the vertical axis shows the initial
perpendicular distance between the swimmer (middle bead)
and the wall located at z = 0. The straight arrows show the
velocity direction and the curved arrows mimic the rotational
velocity of the swimmer. At small z, the hydrodynamic effects
of the lower wall dominate, while at large z (z ≈ H/2) the
effects due to both walls are presented. In either case, i.e.,
motion near the walls of the channel or motion near the middle
of the channel, the hydrodynamic interactions have a tendency
to separate different swimmers that have positive and negative
directions by reorienting them to different directions.

In this phase diagram, we have studied the cases with the
initial direction in the interval −π/2 < θ < π/2. The case
with 0 < θ < π/2 corresponds to a swimmer that initially
starts to move toward the middle of the channel, while −π/2 <

θ < 0 represents the motion toward the nearby wall. As one can
see from this phase diagram, clockwise and counterclockwise
tendencies for rotation due to the channel’s effects depend
strongly on the initial position and orientation of the system.

As an example, Fig. 3 shows the trajectory of a swimmer
that has a positive but small initial angle and that is located near
the lower wall (z = 0) of the channel. Here θ > 0 and V > 0
mean that the swimmer is moving toward the middle of the
channel. The orientational dynamics of the swimmer shows
two timing characteristics, namely short-time oscillations and
nontrivial long-time behavior. The short-time oscillation is
mainly due to the forcing mechanism that makes the system
active. The average- and long-time orientation of this example
swimmer change in the clockwise direction to eventually make
the swimmer parallel to the walls (θ = 0).

A very interesting feature of the trajectories of swimming
inside the channel is reflected in the above example: the
trajectory has an oscillatory and space-scanning feature. It
is interesting that an active but linear swimmer changes
its direction periodically and navigates in such a way that
it can scan a finite area inside the fluid. This capability
emerges essentially because of the presence of channel walls.
It is reasonable to expect that the oscillatory nature of the
swimmer’s trajectory may lead to an enhanced mixing. The
pumping mode of the three-bead system is also interesting [26].
One can argue that in the pumping mode, the above results are

045001-2



BRIEF REPORTS PHYSICAL REVIEW E 88, 045001 (2013)

also applicable. Similar to the case of the swimming mode,
here we might expect an enhanced mixing.

III. DETAILS OF THE HYDRODYNAMICS

At the very low Re condition, the Stokes and the continuity
equations govern the dynamics of the fluid. For such a fluid
that is under the action of hydrodynamic forces from the beads,
we can write the Stokes and continuity equations as

η∇2u(x) − ∇p(x) =
∑

α

fαδ(r − rα), ∇ · u(x) = 0, (3)

where α ∈ {R,M,L}. The velocity of the spheres and the
velocity of the fluid satisfy the boundary conditions: ṙα =
u(rα). We treat the external manipulation mechanism as
constraining equations. In this case, the total hydrodynamic
forces and torques acting on the whole system should vanish.
Here we have assumed that each bead acts as a singular
point force. This assumption is valid for very small beads
where a � �. Linearity of the Stokes equation leads to linear
relations between the velocities and hydrodynamic forces in
the following form:

ui(r) =
∑

α

∑
j

O2w
ij (r − rα)fα,j , (4)

where O2w represents the hydrodynamic interaction tensor.
An essential difficulty in this problem comes from the no-
slip boundary condition on the walls: u(r ∈ wall) = 0. The
superscript 2w for the hydrodynamic interaction reflects the
fact that the velocity field decays to zero on the walls. As
shown by Liron et al. [33], the hydrodynamic interaction of
a single point force moving between two parallel walls can
be constructed by a set of an infinite number of image point
forces as

O2w
ij =

±∞∑
n=0,±1

[
O0

ij (r − r+
n ) − O0

ij (r − r−
n )

] + �(r − rα), (5)

where the unbounded (in the absence of any wall) hydrody-
namic interaction tensor in Oseen’s approximation is given
by O0

ij (r) = (δij + r̂i r̂j )/(8πηr) [34]. The positions of image
sources are given by r±

n = rα + [2nH + (−1 ± 1)zα]ẑ, where
zα = rα · ẑ is the distance between the point force and the
lower wall. Extending the idea of the image source in the case
of a single wall [35] to the case of two walls, it is shown in [33]
that the series of image forces do not completely satisfy the
boundary condition on the walls, and a term � is necessary to
satisfy the boundary condition; the cumbersome structure of
this function is not given here [33]. Numerical integration of
the dynamic equations, taking into account the complete and
detailed structure of the hydrodynamic interactions, leads us
to the trajectories that are summarized in Figs. 2 and 3 and
discussed before.

IV. ASYMPTOTIC RESULTS

To gain more insight into the underlying hydrodynamics
of the system, we present an asymptotic picture of the system
that is valid in the limit of �/H � 1 and a/� � 1. As pointed
out before, for a very wide channel (free swimmer), the force

distribution for the swimmer moving near the middle of the
channel is a force quadrupole as follows:

f(r) = f [−(1/2)δ(r) + δ(r − �t̂) + δ(r + �t̂)]t̂, (6)

where f = (15/7)πηaV . In the region very far from this free
swimmer, the velocity field corresponds to the velocity field
of a force quadrupole and is given by [34]

u
Q
i (r) =

∑
j lm

S
Q
ijlm(r)Tjlm, (7)

where the quadruple strength and field are given by

Tjlm = (1/2)
∫

dr′fj r
′
l r

′
m = f �2 t̂j t̂l t̂m,

(8)
S

Q
ijlm = (∂/∂rl)(∂/∂rm)O0

ij (r).

Collecting these results, we can write the velocity field of a
free swimmer as

uQ(r) = f �2

8πηr3
{[1 − 3(t̂ · r̂)2]t̂ + 3(t̂ · r̂)[5(t̂ · r̂)2 − 3]r̂}. (9)

Now to obtain the hydrodynamic influences of the wall, we
should solve a Stokes equation for a velocity of the scattered
flow u2w as η∇2u2w − ∇p2w = 0. The scattered flow is subject
to the following boundary condition: u2w(r2w) = −uQ(r2w).
This condition ensures us that the total flow, the flow due to a
free swimmer, and the scattered flow vanish on the wall. In this
case, the complete velocity field of a swimmer in the presence
of two no-slip walls can be written as u(r) = uQ(r) + u2w(r).
What we are interested in is the dynamic influence of the
walls on the orientational velocity of the swimmer. The
angular velocity of the swimmer due to the interaction with
the walls can be obtained as θ̇ = − 1

2 ŷ · [∇ × u2w(r)]. For a
swimmer located at a position near the lower wall z/H ≈ 0,
one can expect to obtain the dynamics of the swimmer
by considering only the system of images from the nearby
wall. For the quadrupole free swimmer defined by the force
distribution Eq. (8), a single image quadrupole with T I

jlm =
−f �2m̂j t̂l t̂m produces a first approximation to the scattered
flow. Here the unit vector m̂ is obtained from t̂ by applying 2θ

rotation around the y axis (mirror image with respect to the
wall located at z = 0). The velocity field of such a nondiagonal
force quadrupole reads

u2w ≈ f �2

8πηr3
{[2mt − 6mr (t̂ · r̂)]t̂ + [−1 + 3(t̂ · r̂)2]m̂

+ [−6mt (t̂ · r̂) − 3mr + 15mr (t̂ · r̂)2]r̂}, (10)

where mt = t̂ · m̂ and mr = r̂ · m̂. Now having in hand the first
approximation to the scattered flow, we can obtain an analytic
relation for the swimmer’s angular velocity as

θ̇ = − 3

8πη

f �2

z4
cos3 θ. (11)

According to this approximate result, for a swimmer moving
in the direction t̂ with V > 0, the wall will rotate it in such a
way that θ̇ < 0. So this swimmer will reorient to decrease its
angle with the x axis. Comparing with the full numerical phase
diagram in Fig. 2, we see that this approximate analytical result
is valid only in a very small part of the phase diagram where

045001-3



BRIEF REPORTS PHYSICAL REVIEW E 88, 045001 (2013)

(z/H ) and θ are very small parameters. It is interesting that
even for small z but for larger θ , one needs to include more
images to overcome the no-slip boundary and get the overall
correct orientational behavior of the swimmer.

V. SUMMARY AND DISCUSSION

In summary, we have theoretically considered the hydrody-
namics of a model active three-bead swimmer moving inside
a microfluidic channel. Different types of trajectories for the
swimmer are analyzed. The phase diagram for microchannel
confinement is in agreement with our previous results for
single-wall confinement [6]. Inside the channel, for θ > 0,
θ < 0 (but small), and near the wall (small z/H ), we recover

the same phase behavior as for a single wall. However, for
motion far from the channel walls, we can see the effects due
to both walls.

It is seen that the hydrodynamic interactions with the
walls will eventually lead to nontrivial trajectories for the
swimmer. Space-scanning trajectories strongly suggest using
the three-bead low Reynolds swimmer as an active mixing
device. Flow patterns produced by the motion of this swimmer
are also examined by studying the streamlines. Enforcing the
system to work in pumping mode does not change the overall
face of our results. Mathematically, the difference between the
pumping and swimming mode is a change in reference frames.
A swimming trajectory in swimming mode corresponds to a
far velocity field pattern produced in pumping mode.
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