
OFFPRINT

Rheological properties of a dilute suspension of
self-propelled particles

Moslem Moradi and Ali Najafi

EPL, 109 (2015) 24001

Please visit the website
www.epljournal.org

Note that the author(s) has the following rights:
– immediately after publication, to use all or part of the article without revision or modification, including the EPLA-

formatted version, for personal compilations and use only;
– no sooner than 12 months from the date of first publication, to include the accepted manuscript (all or part), but

not the EPLA-formatted version, on institute repositories or third-party websites provided a link to the online EPL
abstract or EPL homepage is included.
For complete copyright details see: https://authors.epletters.net/documents/copyright.pdf.



A LETTERS  JOURNAL  EXPLORING  
THE  FRONTIERS  OF  PHYSICS

AN INVITATION TO 
SUBMIT YOUR WORK

www.epljournal.org

The Editorial Board invites you to submit your letters to EPL

EPL is a leading international journal publishing original, innovative Letters in all 

areas of physics, ranging from condensed matter topics and interdisciplinary 

research to astrophysics, geophysics, plasma and fusion sciences, including those 

with application potential. 

The high profile of the journal combined with the excellent scientific quality of the 

articles ensures that EPL is an essential resource for its worldwide audience.  

EPL offers authors global visibility and a great opportunity to share their work  

with others across the whole of the physics community.

Run by active scientists, for scientists 

EPL is reviewed by scientists for scientists, to serve and support the international 

scientific community. The Editorial Board is a team of active research scientists with 

an expert understanding of the needs of both authors and researchers.

A LETTERS  JOURNAL  EXPLORING  

THE  FRONTIERS  OF  PHYSICS

Volume 105  Number 1 

January  2014

ISSN 0295-5075 www.epl journal.org

A LETTERS  JOURNAL  EXPLORING  

THE  FRONTIERS  OF  PHYSICS

Volume 103  Number 1 

July 2013

ISSN 0295-5075 www.epl journal.org

A LETTERS  JOURNAL  EXPLORING  

THE  FRONTIERS  OF  PHYSICS

Volume 104  Number 1 

October 2013

ISSN 0295-5075 www.epl journal.org

www.epljournal.org



 www.epljournal.orgA LETTERS  JOURNAL  EXPLORING  

THE  FRONTIERS  OF  PHYSICS

Quality – The 50+ Co-editors, who are experts in their field, oversee the 

entire peer-review process, from selection of the referees to making all 

final acceptance decisions.

Convenience – Easy to access compilations of recent articles in specific 

narrow fields available on the website.

Speed of processing – We aim to provide you with a quick and efficient 

service; the median time from submission to online publication is under  

100 days.

High visibility – Strong promotion and visibility through material available 

at over 300 events annually, distributed via e-mail, and targeted mailshot 

newsletters.

International reach – Over 2600 institutions have access to EPL,  

enabling your work to be read by your peers in 90 countries.

Open access – Articles are offered open access for a one-off author 

payment; green open access on all others with a 12-month embargo.

Details on preparing, submitting and tracking the progress of your manuscript  

from submission to acceptance are available on the EPL submission website 

www.epletters.net.

If you would like further information about our author service or EPL in general, 

please visit www.epljournal.org or e-mail us at info@epljournal.org.

Six good reasons to publish with EPL
We want to work with you to gain recognition for your research through worldwide 

visibility and high citations. As an EPL author, you will benefit from:560,000
full text downloads in 2013

OVER

24 DAYS

10,755

average accept to online 

publication in 2013

citations in 2013

1

2

3

4

5

6

www.epljournal.org

EPL is published in partnership with:

IOP PublishingEDP SciencesEuropean Physical Society Società Italiana di Fisica

“We greatly appreciate 

the efficient, professional 

and rapid processing of 

our paper by your team.”

Cong Lin

Shanghai University



January 2015

EPL, 109 (2015) 24001 www.epljournal.org

doi: 10.1209/0295-5075/109/24001

Rheological properties of a dilute suspension of self-propelled

particles

Moslem Moradi and Ali Najafi(a)

Physics Department, University of Zanjan - Zanjan 45371-38791, Iran

received 13 October 2014; accepted in final form 5 January 2015
published online 23 January 2015

PACS 47.57.-s – Complex fluids and colloidal systems
PACS 47.63.Gd – Swimming microorganisms
PACS 47.50.-d – Non-Newtonian fluid flows

Abstract – With a detailed microscopic model for a self-propelled swimmer, we derive the rhe-
ological properties of a dilute suspension of such particles at small Peclet number. It is shown
that, in addition to Einstein’s like contribution to the effective viscosity, that is proportional to
the volume fraction of the swimmers, a contribution due to the activity of self-propelled particles
influences the viscosity. As a result of the activity of swimmers, the effective viscosity would be
lower (higher) than the viscosity of the suspending medium when the particles are pusher (puller).
Such activity-dependent contribution will also result a non-Newtonian behavior of the suspension
in the form of normal stress differences.

Copyright c© EPLA, 2015

Introduction. – Dynamical properties of bacterial
suspensions and suspensions of artificially designed self-
propelled micro-particles have been the subject of many
recent experimental and theoretical investigations [1–4].
In addition to the self-organized behavior which have been
observed in such active suspensions [5–12], it is an essen-
tial task to understand how such active suspensions re-
spond to external forces and what rheological behavior
they have [13–15]. Rheology of active biological matter
composed of self-propelled particles is important and in-
teresting from a fundamental point of view, as in such
systems the particles inject mechanical energy into the
ambient fluid without applying any net hydrodynamical
forces. Understanding the physics behind such phenom-
ena is important for micro-fluidic experiments that ma-
nipulate samples of microorganisms and also it could be
relevant for micro-robots that are artificially developed.

Among all macroscopic rheological parameters of the
system, the effective viscosity of such complex fluids is
the main core of current investigations [16,17]. It is a
known experimental fact that the effective viscosity shows
different behavior for active suspensions containing swim-
mers whose motion is generated by head (puller) or tail
(pusher). A recent experiment on suspension of motile al-
gae Clomydomonas shows that puller particles increase the
effective viscosity [18]. The effects of pusher particles are

(a)E-mail: najafi@znu.ac.ir

examined in an experiment performed on bacterium Bacil-

lus subtilis [19]. It is shown that at small volume fraction
of swimmers, the effective viscosity is smaller than the vis-
cosity of the ambient fluid, but at large volume fraction,
the viscosity would be larger than the bare viscosity. In
another experiment on E. coli, it is shown that at small
Peclet number, the effective viscosity of pushers is smaller
than the bare viscosity of the fluid [20].

Most of the theoretical and numerical works which have
been done so far are theories with phenomenological ori-
gin [14,16,21,22]. In this letter, we use a microscopic model
for pusher and puller particles and investigate their influ-
ence on the rheology of the suspension. This kind of de-
scription will allow us to have a detailed insight into the
role of the microscopic parameters of the swimmer in the
rheological properties.

To study the rheological properties of a dilute suspen-
sion of microswimmers, we first study the dynamics of
a single swimmer suspended in a Newtonian fluid with
viscosity η0 that is subject to an external shear. This
will allow us to eventually achieve the response of the
fluid to the external forces. As a mathematical model, a
three-sphere swimmer can model the general hydrodynam-
ical characteristics of most low Reynolds swimmers [23,24]
and it captures the peculiarities at low Reynolds hydro-
dynamics [25–27]. Figure 1 shows a schematic view of
a three-sphere swimmer immersed in a purely straining
shear flow. The swimmer consists of three spheres with
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Fig. 1: (Colour on-line) Geometry of a low Reynolds swimmer
immersed in a shear flow. For an asymmetric swimmer whose
back and front arms have different sizes, the three-sphere swim-
mer can capture the hydrodynamics of both pusher and puller
active particles. A puller, e.g., Clomydomonas, corresponds to
〈Lf −Lb〉t > 0, and a pusher, e.g., Bacillus subtilis, corresponds
to 〈Lf − Lb〉t < 0.

radii a linked by two front and back arms with variable
lengths Lf (t) = L + u1(t) and Lb(t) = (1 + δ)L + u2(t).
Here L and (1 + δ)L, denote the mean arm lengths and
u1(t) and u2(t) are two periodic functions of time with
same amplitudes u0. We further assume that these peri-
odic functions average to zero. By considering an asymme-
try parameter δ, we will show how the asymmetry of the
swimmer is essential in the overall dynamics of the system.
The instantaneous orientation of the swimmer is denoted
by a unit vector t̂ that points from the swimmer’s back
to its front side. In terms of polar variables, this vector
can be written as t̂ = (sin θ cosϕ, sin θ sin ϕ, cos θ), where
θ and ϕ are the polar variables. The externally applied
shear flow is given by u

s(r) = Γ · r, with Γ = γ̇ ẑ x̂, where
γ̇ represents the shear rate. In the presence of the swim-
mer, the velocity field of the fluid will change. To express
the velocity field in the presence of the swimmer, we con-
sider that the sphere’s diameter a is much less than the
arm’s lengths. Denoting the force exerted on fluid from
the j-th sphere that is located at position rj by fj , the
velocity field at a given point r reads as

u(r) =
3

∑

j=1

O(r − rj) · fj + Γ · r + C(r) : Γ, (1)

where O(r) = (1/8πη0r)(I + r̂r̂) is the Green’s function
of the Stokes equation [28]. Note that the Green’s func-
tion regularizes to O(0) = (1/6πη0a)I. The third-rank
disturbance tensor C represents the hydrodynamic inter-
action of two spheres in a shear flow and for sphere i this
disturbance matrix is given by [29]

C(ri) =
∑

j �=i

(

−
5

2

a3

|rij |
3 +

20

3

a5

|rij |
5

)

rijrijrij

|rij |
2

−
4

3

a5

|rij |
5

[

Irij + (Irij)
†
]

−
25

2

a6

|rij |
6

rijrijrij

|rij |
2 ,

(2)

where rij = ri − rj , and r̂ij = (ri − rj)/|ri − rj |. We are
seeking the autonomous net swimming motion of the sys-
tem. Denoting the velocity of the i-th sphere by vi, the
no-slip boundary condition on the spheres requires that
u(ri) = vi. The internal dynamics of the arms are im-
posed by the following geometrical constraints:

r2 − r1 = Lf(t) t̂, r1 − r3 = Lb(t) t̂. (3)

As there is no externally applied force or torque on the
swimmer, the system should be force and torque free in
the sense that f1+f2+f3 = 0 and r21×f2+r31×f3 = 0. Now
we can eliminate the dynamics of the background fluid and
study the dynamics of the swimmer. We make a further
mathematical simplification by assuming that the changes
in the arm lengths are small: Li ≫ u1, u2, a (i = f, b).
Throughout what follows, we will keep only the leading-
order terms in terms of these small quantities. One note
that this Taylor expansion is performed to simplify the
mathematical analytical results and it does not change
the generic features of the results. We can express the
overall dynamics in terms of the internal motions given
by u1(t) and u2(t). The time-averaged linear velocity of
the swimmer’s center up to the leading order of the small
quantities u1/L, u2/L and a/L reads

〈Vs〉t = γ̇ z î +
(

V 0 + V γ̇
)

t̂. (4)

Here, V 0 = − 7
24

a
L2 (1 − δ)Φ is the swimming speed of a

swimmer in a quiescent flow, and V γ̇ = − 7
4a γ̇ λ δ repre-

sents the velocity changes due to the presence of a shear
flow. Here Φ = 〈u1u̇2 − u2u̇1〉t and λ = sin θ cos θ cosϕ.
We have further assumed that the asymmetry parameter δ
is also very small. Externally applied shear flow, tends to
rotate the swimmer. The angular velocity of the swimmer
in polar coordinates can be written as 	ω = θ̇ θ̂ + ϕ̇ sin θ ϕ̂,
with

θ̇ = γ̇ cos2 θ cosϕ, ϕ̇ = −γ̇ cot θ sin ϕ. (5)

This is the same result which is obtained for the rotational
velocity of a slender body immersed in an external shear
flow, namely the well-known Jeffery orbits [30]. In addi-
tion to the swimming velocity, we can calculate the hy-
drodynamic forces exerted on the fluid by the spheres. To
express the forces, we decompose all forces as fi = f

0
i + f

γ̇
i

where the contribution due to the shear flow is explicitly
separated from the terms that are present for a swimmer
moving in a quiescent flow. Time averaged forces for a
swimmer moving in a quiescent flow are given by

〈f02〉t = −
5

8
πη0

( a

L

)2

(1 +
7

5
δ)Φ t̂,

〈f03〉t = −
5

8
πη0

( a

L

)2

(1 −
17

5
δ)Φ t̂,

and the contributions due to the shear flow are given by

〈fγ̇2 〉t = −6πη0 a L λ γ̇ (1 +
1

3
δ) t̂,

〈fγ̇3 〉t = 6πη0 a L λ γ̇ (1 +
2

3
δ) t̂.
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We will use the above results to extract the rheological re-
sponse of a fluid containing a collection of such swimmers.
But before studying the properties of a suspension, we
note that the force-dipole tensor for a swimmer moving in
a quiescent flow can be written as D = 6πη0(a/L)2δLΦt̂t̂.
It is shown that the far-field velocity of a swimmer can be
expanded in terms of the moments of the force [31]. As one
can see for an asymmetric swimmer with δ �= 0, the force
dipole velocity field dominates the far-field behavior. An
intuitive classification of the swimmers is based on the ob-
servation of how the driving force of the motion is located
at the head or at the tail of the swimmer. For pushers, the
driving force sits on the tail while for pullers, the driving
force sits on the head. Referring to fig. 1, for Φ < 0, the
intrinsic velocity of the swimmer is in the direction given
by t̂, and it is the sign of δ which determines whether the
swimmer is puller or pusher. For δ > 0 (< 0) the swimmer
is pusher (puller).

After calculating the forces exerted by the spheres to the
fluid, the contribution to the stress tensor of the fluid from
a single swimmer can be obtained. For a dilute suspension
of N objects (swimmers) moving in an ambient fluid with
viscosity η0, the stress tensor averaged over the surface of
objects can be written as σ = σ0 + N

V
S [32], where σ0

represents the stress tensor if all the objects are removed
from the fluid. The tensor S is the extra stress due to the
presence of a single object and it reads

S = −

∫ [

1

2

(

rσ · n̂ + σ · n̂r
)

−
1

3

(

r · σ · n̂
)

I

]

dA,

where the integral is over the surface of the body and σ · n̂
is the stress at any point r on the body. In the present
case, each object is a collection of three connected spheres
and in the limit of approximations performed before, they
are replaced by point forces. In terms of the forces exerted
by spheres, this stress tensor reads S = −r21f2 − r31f3.
Inserting the results given before and averaging over time
we can keep the leading-order terms:

〈S〉t = −
29

4
πη0

a2

L
Φ δ t̂ t̂ + 12πη0 aL2 γ̇ (1 + δ)λ t̂ t̂.

The first part in the above stress is independent of the
shear rate (γ̇). We call this part as active contribution to
the stress tensor, in the sense that it depends on the inter-
nal activity of the swimmer. The second part of the stress
tensor reflects a shear-rate–dependent contribution that is
a passive part. There is no cross-term in the stress tensor
with simultaneous dependence both on the swimmer’s ac-
tivity and the shear rate. This is due to the linearity of the
Stokes equation that does not allow any direct combina-
tion between the external stress and the internal activity
of the swimmer. As one can distinguish, the stress contri-
bution from a swimmer depends crucially on the angular
direction of the swimmer. Assuming that our system con-
tains a collection of randomly orientated swimmers, we
can average the stress tensor over all swimmers to reach

the following result for the off-diagonal elements of the
total stress tensor:

σij =
ηeff

2
γ̇(δi,xδj,z + δj,xδi,z).

Comparing this result with the corresponding components
of the stress tensor for a simple shear flow, we can easily
conclude that a dilute suspension of swimmers behaves
like a Newtonian fluid where its viscosity is replaced by
ηeff. The effective viscosity of a homogeneous and dilute
suspension of passive swimmers is obtained as

ηeff = η0

(

1 +
5

2
c

(

L

5a

)2
)

,

where c = 4πa3 N
V

is the volume fraction of N swimmers
distributed in a fluid with volume V . This result is compa-
rable with Einstein’s relation for the effective viscosity of
a dilute suspension of objects [32]. The original Einstein’s
relation is valid for spherically symmetric objects. Here
the term ( L

5a
)2 shows that a single swimmer is not spher-

ically symmetric. However if we want to think about an
effective volume fraction for the swimmers, because of the
elongational asymmetry, the effective volume fraction will
be much larger than the real volume fraction of isolated
swimmers that are composed of three spheres. Such a
similar result for the effective viscosity of a dilute suspen-
sion of asymmetric particles was observed for ellipsoidal
particles [33]. It should be noted that the contribution
from the swimmer’s activity (the active part in the stress
tensor) averages to zero and it does not have any influ-
ence on the effective viscosity of the suspension. This is
understandable in the sense that the viscosity measures
the linear response of the fluid to an externally applied
shear, and the active term in the stress does not depend
on the shear rate at all. The appearance of any cross-
term in the stress tensor would cause the suspension to
have an effective viscosity proportional to the activity of
swimmers. But here, linearity of the Stokes equation does
not allow any such contribution. Please note that this
point of view is in contrast with the phenomenology that
is used in previous works [34].

Our central question in this work is the influence of the
swimmers activity on the fluid rheological properties. Here
we will show that, taking into account the thermal fluctua-
tions of the swimmers, we will introduce a mechanism that
can couple the internal activity of the swimmers to the ex-
ternally applied shear rate. This will result in a non-trivial
non-Newtonian behavior for the fluid. To study the ther-
mal fluctuations of the swimmers, we denote the angular
distributions of such swimmers by F (θ, ϕ). In addition to
time averaging over the internal motion of an individual
swimmer, we need to average over the angular distribu-
tion as well. Having in hand the distribution function, we
can perform the averaging procedure for a function δS as
follows:

〈δS〉t,e =

〈
∫

dΩ F (θ, ϕ) δS

〉

t

, (6)
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where the integral should be taken over the polar an-
gles. The distribution function obeys the following Fokker-
Planck equation:

∂F

∂t
= Dr∇

2F − ∇ · (F 	ω), (7)

where ∇2 is the angular part of the Laplacian opera-
tor and the velocity in the angular space is given by
	ω = θ̇ θ̂ + ϕ̇ sin θ ϕ̂. Here Dr (in s−1) stands for the rota-
tional diffusion coefficient of the swimmers and it depends
both on the thermal energy kBT and on the rotational fric-
tion coefficient of the swimmer ξr by Dr = kBT/ξr. The
rotational friction coefficient is a hydrodynamical quantity
that measures the response of the swimmer to an exter-
nally applied torque. Direct calculations for a three-sphere
system immersed in a quiescent fluid and subject to an ex-
ternal torque, reveals that ξr = 4πη0a(L2

b + L2
f + LbLf ).

In terms of small dimensionless Peclet number Pe :=
(γ̇/kBT )ξr, we can set up a perturbation steady-state so-
lution for the above Fokker-Planck equation as

F (θ, ϕ) =
1

4π

[

1 +
Pe

2

(

sin 2θ cosϕ
)

+
Pe

2

280

(

(

7 − 35cos4θ
)

+
(

35 sin2θ cos2θ + 5 sin2θ
)

cos 2ϕ

)

+ · · ·

]

. (8)

The Peclet number is essentially the ratio between the dif-
fusion time τD = D−1

r and the time scale of the applied
shear flow τs = γ̇−1. Using the above distribution func-
tion, we can calculate all statistical variables up to the sec-
ond order of small parameter Pe. To obtain the rheological
properties of the suspension, we should repeat calculations
similar to what we have done before eq. (6). Along such
calculations we should perform an ensemble averaging fol-
lowed by the time average over the internal configuration.
We will need the following ensemble averages:

〈t̂ t̂〉t,e =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1

3
+

1

105
Pe

2 0
1

15
Pe

0 −
1

120
Pe

2 0

1

15
Pe 0

1

3
−

23

840
Pe

2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

and

〈λt̂ t̂〉t,e =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1

35
Pe 0

1

15
+

52

315
Pe

2

0
1

105
Pe 0

1

15
+

52

315
Pe

2 0
1

35
Pe

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Using the above results, it is straightforward to calculate
the rheological properties of the dilute suspension of swim-
mers. The effective viscosity of the suspension is the first
and most important quantity that we can address here.
For a dilute suspension of swimmers with volume fraction

c, that was defined before, the effective viscosity reads

ηeff = η0

[

1 + c

(

5

2

(

L

5a

)2

−
W

kBT
δ

(

L

a

)

)]

, (9)

where W = 213π
14 η0 L2 v̄, and v̄ = − 7

24
a

L2 Φ. At a very high
value of temperature, where the effects of thermal fluctu-
ations dominate, we can recover the previous Einstein’s
like behavior for the viscosity of suspension. The main
result that we obtain here is the influence of the swim-
mer’s activity on the viscosity. The activity of the swim-
mer contributes to the viscosity through the function W .
The asymmetry parameter δ appears in the above result,
this is another important feature of our results which re-
flects the fact that the viscosity for pushers or pullers is
different. For pushers (pullers), δ > 0 (δ < 0) and one
can easily see that ηeff < η∗ (ηeff > η∗), where η∗ is
the viscosity of the suspending fluid enhanced by the pas-
sive contribution from swimmers. Such viscosity reduc-
tion and enhancement for a suspension of active particles
are in clear agreement with the experiments that have
been performed recently in the limit of small volume frac-
tion [18–20,35]. In addition to the effective viscosity of the
suspension, the fluctuation of the active particles will me-
diate an asymmetric behavior for the fluid. Normal stress
differences quantify this non-Newtonian behavior of the
suspension. Normal stress differences, up to second order
in Peclet number, read

N1 = σxx − σyy = −W ′

(

1

3
+

1

56
P2

)

−
8

35
(πη0 aL2γ̇)P ,

N2 = σxx − σzz =
31

840
W ′P2, (10)

where W ′ = (a/L)δW . Note that these normal stress dif-
ferences have different signs for pushers and pullers. This
may reflect in standard rheological experiments, for exam-
ple in the Weisenberg effect.

We should emphasize that thermal fluctuations and
elongated geometry of the swimmer have crucial impor-
tance in the underlying physics presented here. Both
these phenomena have been considered in phenomenolog-
ical descriptions which are based on symmetry considera-
tions [14]. The resident time of an elongated object in the
preferred direction of the shear flow will be modified by
the fluctuations and then, as predicted by phenomenologi-
cal models, the effective viscosity changes. Here, by taking
into account microscopic qudrapolar details for the swim-
mers, we obtained the results. The microscopic derivation
of the results will allow us to have insights into the ef-
fects and roles of internal dynamical and geometrical pa-
rameters of the swimmer in the macroscopic rheological
properties of the suspension.

To have an intuition about the mathematical results
that we have obtained so far, we can think about the nu-
merical values of the parameters. The diffusion time scale
τD, the time scale for shear flow τs, and the internal time
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scale for an individual swimmer given by τi = u2
0/|Φ|,

are three different time scales that characterize our sys-
tem. τD is a passive parameter that crucially depends on
the size of the swimmer. For a swimmer with the largest
length L ∼ 1 μm and the smallest length a ∼ 0.1 μm, we
see that τD ∼ 1 s. For a real microswimmer, for example
spermatozoa, the undulation frequency of flagellum that
is about 10 Hz, sets the internal time scale that is greater
than the diffusion time. How important is the activity con-
tribution to the effective viscosity? To answer this ques-
tion, one can see from eq. (9), that the ratio between the
active and passive correction to the viscosity is given by
δ(a/L)(W/kBT ). Assuming that δ ∼ a/L ∼ 0.1 and at
room temperature, for a typical swimmer with swimming
velocity v̄ ∼ 1 μm/s, the above ratio is of the same order
as the passive part.

To summarize, we have shown how a collection of
thermally fluctuating swimmers can mediate an effective
viscosity for the suspension. Depending on the type of in-
dividual swimmers, either pushers or pullers, the effective
viscosity would be smaller or larger than the viscosity of
the ambient fluid. In addition to the effective viscosity,
the normal stress differences are also calculated for such
suspension.

A natural extension of our work is the generalization to
the systems with larger volume fractions. Active and pas-
sive hydrodynamic interactions between swimmers [36–38]
may influence the viscosity for systems that are beyond the
dilute regime considered here. One may imagine that in a
suspension of microorganisms, another mechanism related
to the internal feedback of the organism may provide an
additional source of viscosity change. If we assume that
an organism can change its internal undulation propor-
tional to the rate of external shear, this scenario also will
mediate an effective contribution to the viscosity.

∗ ∗ ∗

AN would like to acknowledge ICTP for hospitality
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