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We study the influence of a wall on the dynamics of a low-Reynolds-number three-sphere swimmer. A far
swimmer whose arm makes an angle � with the horizon experiences the wall presence as an angle-dependent
quadrupole force proportional to �a /L�2�L /z�2cos �, where a, L, and z are the radius of spheres, the arm length,
and the swimmer distance to the wall, respectively. The wall-induced translational velocity of swimmer is
perpendicular to the arms. A far swimmer prefers to orient its arms parallel to the plate. This state is stable.
Remarkably, the parallel state is unstable when the swimmer is close to the wall. In this regime, the velocity of
swimmer decreases as �z /L�2. Numerical solution of the equations of motion for arbitrary initial z /L and �
reveals four different phases of locomotion.
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I. INTRODUCTION

Design and fabrication of artificial molecular machines
are the subject of growing experimental and theoretical in-
vestigations �1,2�. Such machines with their ability to trans-
port, mix, and sort materials are involved in biophysical and
microfluidic applications �3�. Smart nanocarriers can deliver
and trigger the release of active agents in the cellular envi-
ronments �4�. In microfluidic devices with their crucial ap-
plications in drug discovery �5�, nanopumps and nanomotors
are the basic elements �6�.

A simple design of a nanomachine favors its realization
with the currently available technologies. In nature, biologi-
cal microorganisms, such as bacteria, have fascinating
mechanisms to swim at very low Reynolds number �7�.
Thus, biologically inspired propellers are the basic proposal
for locomotion in fluids.

In his pioneering work, Taylor �8� modeled the microor-
ganism propulsion by a train of two-dimensional sinusoidal
waves traveling across an inextensible sheet. Purcell in his
seminal work proposed the simplest swimmer with two in-
ternal degrees of freedom �9�. The propulsion velocity of
Purcell’s three-link swimmer is calculated recently �10�.
Stroke patterns of this swimmer are optimized to achieve
maximum efficiency �11�. There are also many works de-
voted to microswimmers based on nonreciprocal deforma-
tions �12,13�, phoretic effects, and chemical reactions �14�
and linked magnetic beads controlled by an external mag-
netic field �15�.

A simple swimmer, which is a different geometrical ver-
sion of Purcell’s system, is introduced in Ref. �16�. The
swimmer consists of a central sphere that is connected to two
other spheres with straight rods �17�. The system moves by
varying the length of arms in a periodic but time irreversible
manner. The three-sphere swimmer has attracted much atten-
tion since it captures almost the whole characteristics of a
low-Reynolds-number propeller, and it consists of spherical
objects whose hydrodynamic interactions are extensively

studied. N-sphere swimmers that can change both the length
of their arms and the angle between them �18�, mutual hy-
drodynamic interactions between two three-sphere swimmer
�19�, the role of noise and coherence in the stroke cycle �20�,
a conformation kinetic model to drive the deformation cycle
�21�, and a swimmer with one of the spheres having a larger
radius �22� are thoroughly studied. Recently, Leoni et al.
experimentally realized the three-sphere low-Reynolds-
number swimmer �23�.

Swimming in a geometrically confined environment is a
subject of growing interest �24–29�. A plethora of fascinating
phenomena emerges due to hydrodynamic interactions of the
swimmer with solid surfaces. Even for a single sphere, the
diffusion parallel to the wall is always bigger than the per-
pendicular diffusion �30�, which has been verified experi-
mentally �31�. Experiments also show that microorganisms,
e.g., E. coli �32�, bull spermatozoa �33�, and human sperma-
tozoa �34� swimming in confined geometries are attracted by
surfaces. Apparently, understanding the migration of infec-
tious bacteria along medically implanted surfaces such as
catheters and prostheses �35�, the movement of bacteria
through the pores of saturated soil �36�, the migration of
bacteria through small-diameter capillary tubes �37� are im-
portant. In the realm of microfluidics, walls are expected to
have a profound effect on the motion of fluids and propellers.

Inspired by the above-mentioned systems and in view of
designing a drug carrier moving in small-diameter capillar-
ies, we study the mutual interaction between the three-sphere
low-Reynolds-number swimmer and a rigid wall. The advan-
tage of focusing on this model propeller is that hydrody-
namic interactions between a sphere and a wall and between
two spheres are known. Our study paves the way for under-
standing hydrodynamic interactions between a propeller and
walls of a channel of rectangular cross section. Our results
can be examined by a simple extension of the recent experi-
ment of Leoni et al.

The rest of the paper is organized as follows. In Sec. II we
introduce the three-sphere swimmer near a wall. Section III
is devoted to the formulation of the problem. The results of
two different cases, where swimmer is far from and close to
the wall, are presented in Sec. IV. Concluding remarks are
given in Sec. V.
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II. MODEL: A THREE-SPHERE SWIMMER
NEAR A WALL

To quantify the relative importance of the inertial and
frictional effects, Reynolds has introduced a dimensionless
number. The Reynolds number R in terms of typical length
scale l, typical velocity v, fluid density �, and fluid viscosity
�, which are characteristics of the flow, is R=�vl /�. For an
artificial propeller swimming in water, l�1–10 �m, v
�1–10 �m /s, ��1000 kg /m3, and ��10−3 Pa s; thus,
R�10−6–10−4 is quite low.

Propulsive motion in the highly viscous conditions, where
the viscous effects dominate over the inertia effects, is not a
trivial task �9�. Under these conditions, any swimming
mechanism should involve a nonreciprocal cyclic motion.
The nonreciprocal motion breaks the time-reversal symmetry
and is of prime importance in swimming.

Figure 1 shows a schematic view of a simple three-sphere
swimmer moving in a fluid medium bounded by a wall. The
swimmer consists of three spheres linked by two arms of
negligible diameter. The length of arms denoted by h�t� and
g�t� varies in a nonreciprocal manner to have a net displace-
ment. We use the internal deformation space �h ,g� to draw a
simple picture of the possible swimming mechanisms. Any
closed path in this space involves a sequence of body defor-
mations, which propels the system. In particular, a simple
elliptic path in this space is a periodic variation in the arm
lengths, with a constant phase difference between the defor-
mations of two arms.

xi and ẋi are the position vector and velocity of the ith
sphere �i=1,2 ,3�, respectively, that characterize the space
configuration and dynamical behavior of the three-sphere
system. Because of the symmetry considerations and with no
loss of generality, we analyze the motion of swimmer in a
two-dimensional space �x ,z� �see Fig. 1�. In the following,
we first set up low-Reynolds-number hydrodynamic descrip-
tion of the system and then solve the equations of motion.

III. HYDRODYNAMIC INTERACTIONS BETWEEN
THE SWIMMER AND WALL

Stokes equation describes the fluid motion at zero Rey-
nolds number. Denoting the fluid velocity field by u�r�, the

pressure by p�r�, and the force density acting on the fluid by
f�r�, the Stokes equation reads as −��2u�r�+�p�r�= f�r�
�30�. The conservation of mass for the incompressible fluid
can be expressed as � ·u�r�=0. The velocity field is also
subject to a no-slip boundary condition on rigid surfaces.

One of the elementary solutions to the Stokes equation is
the velocity field of a point force f�r�=b��r−r0� embedded
in the infinite space and this solution is called Stokeslet or
Oseen-Burgers tensor. The velocity field of the Stokeslet can
be written as u�r�=G�r−r0� ·b, where the free space Green’s
function of the Stokes equation reads as

G��
F �r − r0� =

1

8	�
����

x
+

x�x�

x3 � , �1�

here x=r−r0 and � ,�=1,2 ,3.
In 1971, Blake obtained the velocity field due to a point

force in the vicinity of a stationary plane boundary �38�.
Since the no-slip condition should be satisfied on the plane,
the influence of the boundary on the flow is deep. Assuming
that the wall is located at z=0 and the point force resides in
r0, the following form for the Green’s function can be writ-
ten as

G��
B �r − r0� =

1

8	�
�����

x
+

x�x�

x3 � − ����

R
+

R�R�

R3 �
+ 2z0

2�1 − 2��z�����

R3 −
3R�R�

R5 � − 2z0�1 − 2��z�


�Rz

R3��� −
R�

R3 ��z +
R�

R3 ��z −
3R�R�Rz

R5 �	 . �2�

Here x=r−r0, z0= ẑ ·r0, R=r−r0
i , and r0

i represents the im-
age point of r0 with respect to the wall.

Let us assume that a collection of N spherical objects are
moving inside the fluid. We denote by fi the hydrodynamic
force acting on the ith sphere moving with velocity vi. The
force and velocities of spheres obey the equations

vi = 

j=1

N

Mij · f j , �3�

where the mobility tensors Mij express the response of the
ith sphere to the force acting on the jth sphere. We can use
Faxén’s theorem for spherical objects with radius a to ex-
press the mobility tensor in terms of the Green’s function of
Stokes equation �30,39�,

Mij
�� = �1 +

a2

6
�ri

2 ��1 +
a2

6
�rj

2 �G���ri,r j� . �4�

If we assume that the radius a is smaller than the distance
between spheres then Mij

��=G���ri ,r j� up to the second or-
der in a. It follows immediately that the Green’s function
G��

B �ri ,r j� introduced by Blake is the first approximation for
the mobility tensor of spheres moving in a fluid bounded by
a wall.

Another point to mention is the self-mobility of a sphere
moving near a wall. Assuming that the distance z between
sphere and wall is greater than the sphere radius a, the com-
ponents of self-mobility tensor are �30,39�

h

g n̂ t̂

θ

1

2

3

g(t)

h(t)2a

��������������������������������������������������������������������
��������������������������������������������������������������������
��������������������������������������������������������������������
��������������������������������������������������������������������

z

x

z

FIG. 1. �Color online� Schematic view of a three-sphere swim-
mer near a wall. The unit vector t̂ shows the arm direction. Top left:
an admissible nonreciprocal motion in the �h ,g� space.
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Mii
xx = �0�1 −

9

16

a

z
� ,

Mii
zz = �0�1 −

9

8

a

z
� , �5�

where �0=1 / �6	�a�.

IV. INFLUENCE OF WALL ON THE KINEMATICS
OF THREE-SPHERE SWIMMER

In this section, we describe equations governing the dy-
namics of a three-sphere swimmer adjacent to a plane. The
hydrodynamic force and torque acting on the ith sphere are
denoted by fi and �i, respectively. Equation �3� relates the
velocity ẋi of the ith sphere to the forces,

ẋ1 = M11 · f1 + M12 · f2 + M13 · f3,

ẋ2 = M21 · f1 + M22 · f2 + M23 · f3,

ẋ3 = M31 · f1 + M32 · f2 + M33 · f3. �6�

In the above set of equations, the key role of mobility tensor
�2� and self-mobility tensor �5� is quite manifest. As long as
no external force or external torque is applied to the system,
the swimmer is force and torque free. Thus,

f1 + f2 + f3 = 0,

�1 + �2 + �3 = 0, �7�

where �1=0, �2= �x2−x1�
 f2, �3= �x3−x1�
 f3, and 
 de-
notes the outer product.

To make a complete system of equations, geometrical
constrains describing the internal motion of the swimmer
should be considered. Time-dependent functions g�t� and
h�t� show the arm length dynamics. Thus,

x1 − x3 = h�t�t̂ ,

x2 − x1 = g�t�t̂ , �8�

where the arm direction is denoted by the unit vector t̂
=cos �x̂+sin �ẑ. � denotes the direction of swimming �see
Fig. 1�.

In the following, we study the swimmer motion when the
arm lengths change around a mean value L, i.e.,

g�t� = L + u1�t� ,

h�t� = L + u2�t� . �9�

The average of periodic functions u1�t� and u2�t� is zero. We
will express the overall dynamics of swimmer in terms of the
internal motions given by u1�t� and u2�t�. The average trans-

lational velocity v and angular velocity �̇=d� /dt of swimmer
are of particular interest,

v = M11 · f1 + M12 · f2 + M13 · f3,

�̇ =
1

h
n̂ · ��M11 − M31� · f1 + �M12 − M32� · f2

+ �M13 − M33� · f3� , �10�

where n̂=−sin �x̂+cos���ẑ is a unit vector perpendicular to
the arms.

Governing Eqs. �6�–�8� can be written in the following
form:

a11f2x + a12f2z + a13f3x + a14f3z = ġ ,

a21f2x + a22f2z + a23f3x + a24f3z = ḣ ,

a31f2x + a32f2z + a33f3x + a34f3z = 0,

a41f2x + a42f2z + a43f3x + a44f3z = 0. �11�

Matrix elements aij are given in the Appendix. Note that f1

=−f2− f3, v, and �̇ are already expressed in terms of the
above force components. Matrix elements aij have a strong
nonlinear dependence on coordinates xi, zi, and angle �.
However, in two limiting cases, we can provide analytical
expressions for the force and velocity vectors.

A. Swimming far from the wall

In the limit z→�, we are dealing with a swimmer in free
space �16�. To study swimming far from the wall, i.e., quite
farther than the largest length of swimmer, it is advisable to
introduce the small dimensionless parameter �=L /z and ex-
pand forces, velocities, and so on, in powers of �,

fi = fi
�0� + fi

�1� + fi
�2� + O��3� . �12�

We also expand matrix A= �aij� in powers of � and solve Eq.
�11� using the standard perturbation methods.

We duplicate the results known for a free swimmer at the
zeroth order of �. Following �16,20�, we do further simplifi-
cations by assuming that all the arm length variations u1 and
u2 and sphere size a are much smaller than the average arm
length L. Thus, we only keep leading terms. Averaging the
final results over a complete period of deformations, we find
that

f1
�0� =

5

4
	�� a

L
�2

t̂ ,

f2
�0� = −

5

8
	�� a

L
�2

t̂ ,

f3
�0� = −

5

8
	�� a

L
�2

t̂ , �13�

where
 = ��u1u̇2 − u2u̇1�� . �14�

Here � � denotes averaging over a complete period of defor-
mations.  is proportional to the area enclosed by the path
corresponding to the nonreciprocal internal motion �see Fig.
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1�. For a simple elliptic path in the deformation
space, u1�t�=u10 cos��t�, u2�t�=u20 cos��t+��, and 
=−�u10u20 sin���.

Equation �13� shows that the hydrodynamic forces ex-
erted on free swimmer are along the arm direction t̂. The
force distribution on the spheres represents a force quadru-
pole. This observation means that the far-field distribution of
fluid velocity resembles the velocity field of a single force
quadrupole. This is believed to be a universal nature of sym-
metric low-Reynolds-number swimmers �19�.

We also find that

v�0� = −
7

24

a

L2t̂ ,

�̇�0� = 0. �15�

The free swimmer moves in the direction determined by both
the initial angle � and phase difference � between arm de-
formations. Note that two swimmers, one with parameters �
and  and another with the same labels for its spheres but
with parameters �+	 and − are equivalent. Equations �15�
demonstrate this equivalence.

The influence of wall on a far swimmer is represented in
the higher-order terms of the expansion �12�. Quite remark-
ably, all corrections of the first order in �=L /z, i.e., fi

�1�, v�1�,

and �̇�1� are zero. The second-order correction of hydrody-
namic forces are given by

f1
�2� =

3

16
	�� a

L
�2�L

z
�2

 cos �n̂ ,

f2
�2� = −

3

32
	�� a

L
�2�L

z
�2

 cos �n̂ ,

f3
�2� = −

3

32
	�� a

L
�2�L

z
�2

 cos �n̂ . �16�

Thus, the effect of a distant wall appears as a quadrupole
force distribution with an angle-dependent strength. A swim-
mer moving parallel to the wall experiences a large force
quadrupole, while one moving perpendicular to the wall ex-
periences no force quadrupole. Remarkably, the wall-induced
forces are perpendicular to the arms of swimmer. Note that a
free swimmer experiences hydrodynamic forces parallel to
its arms.

Now we focus on swimmer’s translational and angular
velocities. After expanding our results for small radius limit
and averaging over a complete period of internal motion, we
find

v�2� =
1

8

a

L2�L

z
�2

 cos �n̂ ,

�̇�3� =
1

128

a

L3�L

z
�3

�18 sin�2�� + sin�4��� . �17�

We define the intrinsic direction of swimmer as the direction
of motion in the absence of wall. The intrinsic direction is t̂

when �0. In this case, ��0 ���0� means that the swim-
mer is moving toward �away from� the z=0 plane. In the

presence of wall, �̇�1�= �̇�2�=0, but �̇�3��0. However, Eq.
�17� reveals that �=0 is a stable configuration. In other
words, the swimmer prefers to reorient itself and move par-
allel to the wall. Equation �17� also shows that the wall-
induced translational velocity of swimmer is angle dependent
and perpendicular to the arms. Note that the velocity of free
swimmer is angle independent and parallel to the arms. We
also note that Eq. �17� demonstrates the equivalence between
two swimmers: one with parameters � and  and other with
parameters �+	 and −.

B. Swimming close to the wall

In view of designing a robust drug carrier moving in cap-
illaries, we pay attention to the three-sphere swimmer near a
wall. In this limit, the distance z to the wall is less than the
arm length L �see Fig. 1�. However, we assume that z
�L sin �, i.e., the swimmer does not touch the wall. In order
to have clear and illuminating results, it is quite appropriate
to expand expressions in powers of z /L and keep only lead-
ing terms. Notably, the mobility matrix assumes a simple
form,

Mij =
3

2	�

zizj

�xi − xj�3�1 0

0 0
� . �18�

As before, we rely on the plausible assumption that u1�t�,
u2�t�, and a are much smaller than L. Expanding expressions
in powers of a, we deliberately treat �0 as a constant since
the term proportional to a /z exhibits the distance dependence
of self-mobility tensor �5�.

For small values of �, i.e., when the swimmer is almost
parallel to the wall, we find

f1x =
9

8
	�� a

L
�2�−

2

6
�2 + 17� z

L
�2	 ,

f1z = 0,

f2x =
9

8
	�� a

L
�2�1

6
�2 + 19�

z

L
−

17

2
� z

L
�2	 ,

f2z = 0,

f3x =
9

8
	�� a

L
�2�1

6
�2 − 19�

z

L
−

17

2
� z

L
�2	 ,

f3z = 0. �19�

Since t̂� x̂ and n̂� ẑ for small values of �, we observe that
the wall-induced forces are parallel to the arms of swimmer.
Moreover, f2x� f3x, i.e., the force distribution on the spheres
represents a force dipole. Note that in the far regime, the
force distribution represents a force quadrupole.

We also find
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vx = −
1

16
� a

L2���2 + 93� z

L
�2	 ,

vz =
3

16
� a

L2���3 − �� z

L
�2	 ,

�̇ =
105

16
� a

L3��2� z

L
� . �20�

The swimmer velocity vector has a big �small� component
parallel �perpendicular� to its arm. Note that when the swim-
mer is far from �close to� the wall, the velocity is propor-
tional to 1 /L2 �1 /L4�. The increase in arm length in fact
reduces the swimmer’s speed near the wall. Equations �15�
and �20� also show that vclose=19.93�z /L�2vfree when �=0,
i.e., the velocity decreases quadratically on approaching the
wall.

Now assume that �0 and t̂ represents the intrinsic di-
rection of swimmer. The above dynamical equations show
that the angle � decreases in the presence of wall. Moreover,
on decreasing the angle � below zero, the distance z between
swimmer and wall increases. In other words, a swimmer
whose arms make a slight positive �negative� angle with the
horizon tends �does not tend� to make itself parallel to the
plate. This clearly shows that a swimmer near to the wall is
sensitive to external noise and perturbations.

Note that to have a better picture of the swimmer’s insta-
bility and to investigate its collision with the wall, the self-
mobility tensors �5� should be refined when z and a are com-
parable �30�.

V. DISCUSSION AND CONCLUDING REMARKS

In this paper, we investigate the influence of a rigid wall
on the dynamics of a low-Reynolds-number three-sphere
swimmer. We present analytical results for hydrodynamic
forces, translational, and angular velocities of a swimmer
distant from or close to the wall.

A far swimmer whose arm makes an angle � with the
horizon experiences the wall presence as an angle-dependent
quadrupole force proportional to �a /L�2�L /z�2cos �. The
wall-induced forces and translational velocity are perpen-
dicular to the arms of swimmer. A far swimmer prefers to
orient its arms parallel to the plate. This state is stable. Quite
remarkably, the parallel state is unstable when the swimmer
is close to the wall. The swimmer orients its head toward the
wall when the initial angle � is slightly negative. For small
values of �, the wall-induced forces are parallel to the arms
and make a force dipole.

For a swimmer at an arbitrary distance from the wall, we
perform a numerical analysis of the governing Eq. �11�,
keeping the whole terms of matrix elements Mij and aij
quoted in the Appendix. The obtained numerical results con-
firm our analytical findings for swimming far from or close
to the wall. Moreover, the numerical analysis reveals that for
which initial values of scaled distance z /L and angle ��0,
the swimmer is in the far phase F or near phase N. For z
�3L, it is plausible to assume that the swimmer is far from

the wall �see Fig. 2�. For most initial conditions ��0, a
swimmer far from or close to the wall orients itself parallel
to the wall. This positive angle phase P is delineated in Fig.
2. Our numerical analysis also shows the existence of an
intermediate phase I. The swimmer has a complicated and
even chaotic behavior. Depending on the initial angle �, the
distance z between swimmer and wall either increases or
decreases �see Fig. 3�. Note that in the phase N, the distance
z always increases. Long dashed lines in Fig. 2 show the
region z�L sin � where the swimmer touches the wall.
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FIG. 2. �Color online� Phase diagram for a low-Reynolds-
number three-sphere swimmer moving adjacent to a wall. Phase F:
a far swimmer prefers to orient its arms parallel to the plate. Phase
N: when a swimmer is close to the wall, � decreases but z increases.
Phase P: a swimmer far from or close to the wall orients itself
parallel to the wall. Phase I: depending on the initial angle �, the
distance z between swimmer and wall either increases or decreases.
Long dashed lines show the region z�L sin �, where the swimmer
touches the wall.
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FIG. 3. �Color online� Trajectory of a swimmer when a /L
=0.01, u10 /L=u20 /L=0.1, �=	 /2, and initial conditions are
z�0� /L=0.7 and ��0�=−0.3 in radian. Note that the distance z be-
tween swimmer and wall decreases as � decreases. On approaching
the wall, the swimmer’s fluctuation along the vertical axis increases.
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Our work can be extended in many directions. Our results
can be examined by a simple extension of the recent experi-
ment of Leoni et al. �23�. Swimming in a complex geometry,
e.g., a microchannel of rectangular or circular cross section is
of immediate interest. Inspired by the colonies of swimming
bacteria near biological membranes, we are investigating
many propellers adjacent to a wall.

APPENDIX: HYDRODYNAMIC MOBILITY TENSORS

The hydrodynamic mobility tensors appearing in Eq. �6�
are

Mij
xx =

1

8	�
�1

r
−

1

R
+ �xi − xj�2� 1

r3 −
1

R3� + 2zj
2� 1

R3

−
3�xi − xj�2

R5 � − 2zj� �zi + zj�
R3 −

3�xi − xj�2�zi + zj�
R5 �	 ,

Mij
xz =

1

8	�
� �xi − xj��zi − zj�

r3 −
�xi − xj��zi + zj�

R3

+ 6zj
2 �xi − xj��zi + zj�

R5

+ 2zj� �xi − xj�
R3 −

3�xi − xj��zi + zj�2

R5 �	 ,

Mij
zx =

1

8	�
� �xi − xj��zi − zj�

r3 −
�xi − xj��zi + zj�

R3

− 6zj
2 �xi − xj��zi + zj�

R5

+ 2zj� �xi − xj�
R3 +

3�xi − xj��zi + zj�2

R5 �	 ,

Mij
zz =

1

8	�
�1

r
−

1

R
+

�zi − zj�2

r3 −
�zi + zj�2

R3 − 2zj
2� 1

R3

−
3�zi + zj�2

R5 � + 2zj� �zi + zj�
R3 −

3�zi + zj�3

R5 �	 ,

where r2= �xi−xj�2+ �zi−zj�2 and R2= �xi−xj�2+ �zi+zj�2.
We define

S1 = M12 + M21 − M11 − M22,

S2 = M13 + M21 − M11 − M23,

S3 = M12 + M31 − M11 − M32,

S4 = M13 + M31 − M11 − M33.

Now the matrix elements appearing in Eq. �11� can be intro-
duced as

a11 = − cos �S1
xx − sin �S1

zx,

a12 = − cos �S1
xz − sin �S1

zz,

a13 = − cos �S2
xx − sin �S2

zx,

a14 = − cos �S2
xz − sin �S2

zz,

a21 = cos �S3
xx + sin �S3

zx,

a22 = cos �S3
xz + sin �S3

zz,

a23 = cos �S4
xx + sin �S4

zx,

a24 = cos �S4
xz + sin �S4

zz,

a31 = cos ��hS1
zx + gS3

zx� − sin ��hS1
xx + gS3

xx� ,

a32 = cos ��hS1
zz + gS3

zz� − sin ��hS1
xz + gS3

xz� ,

a33 = cos ��hS2
zx + gS4

zx� − sin ��hS2
xx + gS4

xx� ,

a34 = cos ��hS2
zz + gS4

zz� − sin ��hS2
xz + gS4

xz� ,

a41 = g sin � ,

a42 = − g cos � ,

a43 = − h sin � ,

a44 = h cos � .
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