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1. Introduction

Construction of micro-machines with the ability of performing 

directed motion toward a speci�c target at micrometer length 

scales, attracts many interests in recent years [1–3]. Devising 

smart cargo carriers and drug delivery systems in cellular 

environments, constructing ef�cient mixers in micro�uidic 

and cell motility experiments are among the potential applica-

tions of such molecular machines [4–6].

From the physical principles, the inertia-less condition 

and also the presence of thermal �uctuations arising from 

impacts of �uid molecules, are the most important chal-

lenges that limit possible proposals for the engineering of 

micrometer scale motors. This means that the motion in 

micron scale is totally dominated by viscous forces and 

inertia has no effect in the motion at all [7, 8], one should 

note that at daily life we always bene�t the inertia to pro-

duce ef�cient movements. In addition to overcoming this 

hydrodynamic peculiarity, any ef�cient search machine 

needs a kind of memory to compare its current position 

with its position at the previous step(s) to �nd and navigate 

through correct route.

Chemotaxis is a mechanism that microscopic organisms 

use to detect the right way toward their targets [9–12]. In this 

article, we bene�t from the chemotaxis and propose a func-

tional molecular machine. The phenomenon of chemotaxis 

has inspired extensive research both due to its direct biolog-

ical relevance [13–15] and also because of the practical needs 

for designing arti�cial nano-robots that can sense the direc-

tion [16]. Random walk, is the traditional mathematical tool 

that can describe the �uctuating trajectories of a chemotactic 

bacterium [17–22]. True mathematical description of chemo-

taxis in terms of random walk, requires knowledge about the 

amount of jumping displacements, rotations and their trans-

ition probabilities. So far, theoretical studies on random walk 

modeling for microorganisms, do not consider both the hydro-

dynamical details and the mechanism of chemotactic memory 

in a uni�ed model. In this article, we aim to construct a model 

that takes into account the details of hydrodynamical dis-

placements, mechanism of chemotaxis memory and also the 

physics of �uctuations. We �rst introduce the hydrodynamical 

details of the system, then de�ne the memory mechanism and 

�nally the statistical properties of the model will be studied 

using numerical calculations.
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2. Hydrodynamical model

Our goal in this article is to combine the idea of chemical 

memory with a hydrodynamical model of a walker. Now let us 

introduce the hydrodynamical details of our system. Inspired 

by a bacterium, �gure 1(a) shows the body of our walker that 

is modeled by a sphere of radius R. The driving force is mod-

eled by a mobile small sphere with radius a. To simplify the 

mathematical details, we can assume that ≪a R. These two 

spheres are connected by an arm with negligible diameter. 

This model resembles the geometry of a bacterium with a 

single tail. As shown in this �gure, and in a reference frame 

connected to the large sphere, jumps of this small sphere 

between 4 vertices of a pyramid will construct all internal dis-

continues jumps of our machine. The apex of this pyramid 

is a point with a distance L apart from the large sphere and 

is chosen as state (1). The other 3 states are located on the 

base of this pyramid. The apex angle is φ2  and the apex sides 

are ε. The base of this pyramid is an equilateral triangle with 

sides ε φ2 sin . The angle ϕ may resemble the amplitude of �a-

gellum undulations. The hydrodynamic question that we need 

to address here, is the differential change of the position and 

orientation of the system for an internal jump. For a �uid with 

viscosity η and at the condition of micron scale, the inertia-

less stokes equation  η∇ −∇ =Pu 02 , written for the �uid 

velocity u and pressure P, describes the dynamics. The condi-

tion of incomprehensibility, should also be considered. A pre-

scribed motion corresponding to a jump of the small sphere, 

will enter to the dynamics through the boundary conditions. 

Solving the Stokes equation with the corresponding boundary 

conditions would result the dynamical properties of the large 

sphere during an internal jump. Calculations similar to the 

details presented elsewhere, reveals the dynamical results [23, 

24]. To summarize the hydrodynamical results, let’s denote 

the relative speed of small sphere with respect to the large 

sphere in each jump by v. Now the differential displacement 

and rotation of the large sphere in the laboratory frame for a 

jump from state (i) to state ( j ) read:

( ˆ)    ˆ ( ˆ) ˆ
→ → →

δ δω∆ = ∆ = ×R Rr n x n n n, ,ij
H

ij ij
H

ij

where n̂ represents the directer vector of the walker and ( ˆ)R n  

is an appropriate rotation matrix that transform the co-moving 

frame of reference to the frame of laboratory. The co-moving 

frame is shown in �gure 1(a). The differential rotations and 

displacements in the co-moving frame are given by:
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Please note that the results are presented for a walker with 

ε≪ L. The differential changes are given only for two jumps, 

a jump started from the apex and a jump in the base face of 

the pyramid. Other jumps can be obtained from these two 

special jumps by applying the appropriate rotation matrices. 

Symmetry requires that 
→ →

ω ω= −ij ji and 
→ →

δ δ= −x xij ji. A hydro-

dynamic time scale can be de�ned as: /τ ε= vH . This is the 

time for all the jumps that start from the apex of pyramid. The 

time for other jumps (all jumps in the base of pyramid) are 

given by: τ ϕ2 sinH .

General hydrodynamic arguments show that for an object 

with internal cyclic motions, a minimum number of two 

internal degrees of freedom, is necessary to achieve net pro-

pulsion at low Reynolds number (inertia-less) condition [7]. 

According to this so called Scalop theorem in low Reynolds 

hydrodynamics, Scalop (a system with one internal degree 

of freedom) is not able to swim. One should note that as 

our hydrodynamical system has a single internal degree of 

freedom (the distance between two spheres), there is no way 

to break the time reversal symmetry and achieve a �nite pro-

pulsion during a full cycle of periodic motion. Any motion 

corresponding to a closed cycle along pyramid, will recover 

the initial state of the system.

In the next section we introduce the chemotactic memory 

of a bacterium then show how can we combine the idea of 

chemotactic memory with the above introduced hydrodynam-

ical walker and construct a system with one internal degree of 

freedom that can move and �nd its target.

3. Chemotactic memory

To have a plan for internal jumps, we use the chemotactic 

strategy that bacteria use to navigate. Among different micro-

organisms, the chemical network responsible for chemotactic 

Figure 1. (a) A sphere with radius R models the body of a 
bacterium and a moving small sphere in resemblance with 
�agellum, provides the driving force. The hydrodynamical 
calculations are done in a co-moving frame of reference. (b) Amon 
all 12 possible internal transitions, we denote 4 of them as CW 
rotations. The rate of this CW rotations are determined by the 
chemotactic response function while the rate for other jumps are 
given randomly.
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signaling is well understood and studied in Escherichia coli 

[25–28]. Running state of this bacterium is due to the CCW 

(counter clockwise) rotation of �agella and changing the �a-

gellar rotational state to CW (clockwise) will result a tumble. 

A set of chemical processes inside the cell provide a kind of 

chemical memory for the cell. These chemical signals, control 

the frequency of running and tumbling states. As a result of 

such memory, the organism can record a history of the food 

concentration along its trajectory. Depending on the condi-

tions, a bacterium with this sort of memory will have chance 

to �nd a way to reach a point with maximum value of food 

concentration.

Now we want to combine the idea of chemotactic memory 

with the details of hydrodynamic jumps of the walker. Our 

modeling is based on stochastic jumps. Let denote the trans-

ition probability for jump from state (i) to state ( j ) by Pij. In 

the case with Pij  =  1/3, we will have a random walker that has 

no chance to sense the direction of gradient. What we want to 

consider, is a sort of an intelligent walker that can dynamically 

change its jumping probabilities. In comparison with E. coli, 

we �rst de�ne a set of jumps that corresponds to a CW rota-

tion. We de�ne all the following jumps as CW jumps:

     →   →   →   →CW jumps : 1 2, 2 3, 3 4, 4 2.

Please note that this de�nition for the CW rotations is not 

unique and other choices can work as well. In �gure 1(b), all 

these CW jumps, are shown. After de�ning CW rotations, we 

assume that the probability for any CW jump is given by a 

signal ( )
→

S r t,  from a chemotactic memory, and other jumps are 

determined randomly so that:

( )        

( )
     

→

→

⎧

⎨
⎪
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= −P

S r t

S r t
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1 ,

2
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Here 
→

r , is the position of the walker at time t. Similar to the 

chemotaxis signaling network of E. coli, we assume that the 

signal S, is connected to the source c (the local concentra-

tions of food) through an intermediate dimensionless memory 

function m as: ( ) /( [ ( ) ( )])
→ → →

ξ= + −S r t m r t v c r, 1 exp , 0  

[27]. The dynamics of memory function is given by: 

( ) ( / )( ( ) / )
→ →

τ τ ξ= −m r t S r t˙ , , 3H
ch , where the dimensionless 

time scale of the adaptation is given by /τ τH
ch  and v0 is a con-

stant that has the dimension of volume. For a uniform pro�le 

of the concentration, this system reaches a steady state with 

( ) /
→

ξ=∗S r t, 3. Here ξ is a parameter in the interval [0,1] and 

it shows how the internal jumps of the walker is anisotropic 

in the absence of any food gradient. Throughout this paper we 

will choose ξ = 0.95. For a nonuniform concentration pro�le, 

there is no static steady state solution and the system evolves 

in time by continuously adjusting its relative position and ori-

entation with respect to the concentration pro�le.

To have more insights on the concept of memory time, we 

can introduce a quantitative measure for it. How much time 

does the system need to reach its equilibrium value /ξ=S 3, 

when we make a sudden change in the concentration pro�le? 

This time would be a good choice for memory time. In �gure 2, 

we have studied the response of the above chemical system 

to a sudden change in concentration. For time in the interval 

/τ< <t0 5H , the concentration is given by v0c  =  0 and the 

system is in its stationary state. On /τ =t 5H , we suddenly 

change the concentration pro�le to v0c  =  100 and keep it on 

till /τ =t 10H  then suddenly turn it off. As one can see, after 

any change in concentration, the signal function S(t) will start 

to deviate from its stationary value. The memory time is the 

time that this deviation persists before reaching steady state. 

As it is evident from �gure 2, the memory time shows dif-

ferent values when we turn the gradient on or off. This simple 

example shows that, the exact memory time, in principle is 

a complicated function of the different parameters of the 

system. The width of �rst non stationary plateau (t  =  5 to 7)  

is smaller than the second plateau (t  =  10 to 13). By plateau 

we mean a time interval that the signal S is different from its 

stationary value. This means that the chemical response time 

(memory time) for the cases when system feels an increase or 

a decrease in concentration are different. The memory time 

for a process with increasing food is much longer and for 

/τ τ< <0 1H
ch , the system can remember only the direction 

of food reduction and it will move toward the points with less 

food.

Throughout this paper, and for nonuniform food concentra-

tion, we choose a linear gradient �eld of the food concentra-

tion given by ( ) α= +c x c x0 . In non-dimensional units, the 

slope is given by:

( )α = |∇ |R v c .0

The statistical properties of this swimmer will be studied in 

details in the next section.

4. Results and discussions

We use a Monte Carlo like algorithm to simulate the dynamics 

of the walker. We put the walker at the origin with orienta-

tion along x-direction and choose a random internal stale for 

it then, try to generate its stochastic trajectory in space. As the 

Figure 2. To study the dose-response curve of our system, 
the signal function S(t), is plotted as a function of time. The 
concentration strength suddenly tune from zero to v0C  =  100 at 
time /τ =t 5H  and it turned off at time /τ =t 10H . Memory time is 
the time that system needs to reach its stationary state (S  =  1/3), 

after a sudden change in concentration pro�le. Here /τ τ = 100H
ch .
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system move in discrete jumps, its trajectory is also discrete. 

Let us assume that in step i, the walker is located in position 

xi, its orientation given by ni and its internal state is given by 

αi. For example if the state α = 1i , then three jumps →1 2, 

→1 3 and →1 4 are possible. Now to �nd its next state, using 

a random number routine, we generate a uniformly distributed 

random number in the interval [0,1]. As for any initial state αi, 

there are three possible states, we divide the interval [1,0] into 

three distinct intervals [0,A], [A,B], [B,1]. We assume that, if 

the chosen random number belongs to the �rst interval ([0,A]) 

then the walker performs the jump: →1 2. If the random 

number lies in the interval [A,B] then the walker performs 

the jump →1 3 and �nally if the random number lies in the 

third interval the walker perform the third transition. This is 

similar to Monte Carlo algorithm for simulating stochastic 

systems. Corresponding to each internal transition, we have 

their hydrodynamic movements that are given analytically in 

hydrodynamic section. Using the hydrodynamic movements, 

we can now calculate the new position and orientation of the 

walker. In this scheme, the most important part is the method 

with which we determine the numbers A and B. The length 

of the intervals should be proportional to the corresponding 

transition probabilities. For example, in the special example 

that we are using here, we choose P12  =  A, P13  =  (B  −  A), 

P14  =  (1  −  B). Using similar rules all internal jumps can 

happen with their appropriate probabilities.

Figure 3(a) shows a typical trajectory of the walker in a 

uniform concentration pro�le of food molecules. It repre-

sents the trajectory of a random walker. Typical trajectories 

for the walker moving in this concentration �eld is shown in 

 �gures 3(a) and (b), where the concentration is either uniform 

or nonuniform. As one can see, the subsequent tumbles bias 

the trajectory toward the place with larger concentration of 

food molecules. In the literature of chemotaxis, CI the chemo-

tactic index is an important quantity that shows how accurate 

is a direction sensing mechanism [29]. It is de�ned as the ratio 

of the walking displacement along the concentration gradient 

to the total length of the walking trajectory. Depending on the 

dynamical variables of the system, CI belongs to the interval 

[−1,1]. In �gure 4, CI is plotted in terms of the dimensionless 

memory time /τ τH
ch . Here τch is a parameter that comes from 

the chemical dynamics and τH is a geometrical parameter. For 

large memory times ( ⩾τ τ
H

ch ), the chemotactic index is posi-

tive. This is a signature saying that the chemotactic mechanism 

has a positive result and the walker can successfully reach  

the target, the place of more food. As we discussed before, the 

chemotactic index for /τ τ< <0 1H
ch  is negative, denoting the 

fact that the system goes to region with less food.

As the time scale for a single jump is given by τH, this 

proves that τch plays the role of a memory time. The memory 

time should be greater than the individual jumping time and 

this is the only condition required to have a successful gra-

dient sensing walker.

The CI is calculated for two different values of the apex 

angle. It is seen that the result of the searching mechanism is 

not so sensitive to this angle. Now we can study the statistical 

properties of the system for ⩾τ τ
H

ch . One should note that 

due to small undulations approximation in our model, CI is 

very small and not comparable to real E. coli. To have a better 

understanding of the role of �uctuations, we repeat the simula-

tions for an ensemble of walkers and have studied the average 

statistical properties of the system. Mean displacement (MD), 

mean square displacements (MSD) and correlation functions 

are the statistical variables that we consider. To quantify the 

results of MSD, we de�ne the diffusion exponents as:

⟨ ⟩ ⟨ ⟩   ⟨ ⟩ ⟨ ⟩ ⟨ ⟩ ⟨ ⟩∥− ∼ − = − ∼
ν ν⊥x x t y y z z t, ,2 2 2 2 2 2

where ∥ν  and ν⊥ are the diffusion exponents along the gradient 

and along a direction perpendicular to the gradient, respec-

tively. For a symmetric and normal random walker we have: 

∥ν ν= =⊥ 1. MD for a random walker moving in uniform and 

nonuniform concentration pro�les are presented in �gure 5(a). 

As we expect, for uniform concentration the characteristics 

of a random walker is recovered, but for a nonuniform con-

centration with a gradient in x direction, the walker is biased 

toward the positive x direction. For nonuniform concentration, 

MD in the perpendicular directions (⟨ ⟩y , ⟨ ⟩z )are zero but it is 

not zero in the direction of gradient (⟨ ⟩x ).

MSD in terms of time, in logarithmic scale, shows a non-

linear crossover from a short time to long time behavior. 

Figures 5(b) and (c) show the short and long time MSD results 

R

y
(a) (b)

( )
R

y
( )

R
z( ) R

z( )

R
x( ) R

x( )

Figure 3. Two different trajectories for the walker are shown. Part 
(a) corresponds to a walker moving in a uniform concentration 
and (b) a linear concentration. Other numerical parameters are: 

a  =  0.2R, L  =  6.1R, ε = R0.6 , /ϕ π= 6, τ = 0.02H , τ τ= 100 H
ch , 

α = 100.

Figure 4. Chemotactic index in terms of the memory time is 
investigated for two walkers with different geometrical values. The 
positive result of the chemotactic mechanism is not sensitive to the 
geometrical parameter.
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for this walker. This crossover is a result of the hydrodynamical 

anisotropy of the system. Please note that our system, spherical 

body with a connected tail, is anisotropic. A similar crossover 

is recently observed for a diffusing object with boomerang 

geometry [30]. Short time behavior for a walker moving in a 

linear concentration corresponds to ∥ν ν≈ ≈⊥ 1.7. Long time 

behavior of the walker moving in a uniform concentration 

with ( )|∇ |=R v c 00 , shows ∥ν ν= =⊥ 1.0, that characterizes a 

normal random walker (�gure 5(c)). For a walker moving in 

a nonuniform concentration with α = 100, the exponents are 

given by ∥ν = 1.2 and ν =⊥ 1.4. The walker performs a super 

diffusion in all directions with an asymmetry in the direction 

parallel to the gradient concentration. Such a super diffusion 

motion in bacterial motion also has been observed [31]. In 

�gure 6, we have studied the effects of the gradient strength 

on the diffusion exponents. As one can see, at larger gradient 

the diffusion exponents reach a constant values. To have more 

insights about the role of the geometry, we have studied the 

orientational correlation function ⟨ ( ) ( )⟩θ θ t0x x  where ( )θ tx  rep-

resents the angle that the director of the walker makes with x 

axis (parallel to the concentration gradients). Figure 7, shows 

the features of the correlation function for walkers moving in 

uniform and nonuniform concentrations. Correlation time, the 

decay time for the correlation, is sensitive to the apex angle. 

For larger apex angles, the correlation time is also larger. This 

graph shows that the crossover time is essentially the time that 

orientational correlation washes out.

Figure 5. Statistical properties of walkers moving in either a 
uniform concentration or a concentration with a linear gradient. 
Part (a) shows average position of the walker as a function 
of time. As one can see a concentration with gradient in the x 
direction will result an average swimming to the positions with 
higher concentration of food. (b) shows the short time behavior 
of mean square displacement in terms of time and (c) shows the 
corresponding behavior at large time scales. The chemotaxis 
memory shows positive results only at large time scales. For a 
walker moving in uniform concentration, the long time and short 
time behaviors are separated by a nonlinear crossover. This re�ects 
the non symmetric nature of our passive walker. The numerical 
parameters are as in �gure 3 and α = 100.

Figure 6. Long and short time behavior of diffusion exponents in 
terms of the concentration gradient. The numerical parameters are 
as in �gure 3.

Figure 7. Orientational correlation function is plotted as a function 
of time. Here ( )θ tx , is the angle that the director vector of walker 
makes with the x axis of the laboratory frame. Correlation time is 
sensitive on the geometrical variable (here ϕ) of the walker. For 
larger apex angle, the correlation function for a nonuniform gradient 
is larger than the corresponding value in uniform concentration. The 
dashed line shows the complete uncorrelated state with correlation 

/π 42 . The numerical parameters are as in �gure 3.
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In conclusion, we have proposed a hydrodynamical micro-

machine and have studied its statistical properties in a gradient 

�eld produced by a target. Nontrivial coupling of geometrical 

parameters with dynamical characteristics, results interesting 

statistical properties of the machine. The memory time that is 

used in chemotactic mechanism, induces superdiffusion prop-

erties for the walker. A crossover from a short time to long 

time behavior of MSD is observed and the crossover time is 

the orientational correlation time. The hydrodynamic interac-

tion between different walkers, is shown to have interesting 

features [32]. Along the extension of this work, we are con-

sidering the role of hydrodynamic couplings in the physics of 

interacting many walkers.

Acknowledgment

AN acknowledges the Abdus Salam international center for 

theoretical physics for hospitality during the �nal stage of this 

work.

References

 [1] Kay E R, Leigh D A and Zerbetto F 2007 Synthetic molecular 
motors and mechanical machines Angew. Chem., Int. Ed. 
46 72–191

 [2] Kinbara K and Aida T 2005 Toward intelligent molecular 
machines: directed motions of biological and arti�cial 
molecules and assemblies Chem. Rev. 105 1377–400

 [3] Willemsen J F 2010 Anomalous invasion in a 2D model of 
chemotactic predation Physica A 389 3484–95

 [4] Dittrich P S and Manz A 2006 Lab-on-a-chip: micro�uidics in 
drug discovery Nat. Rev. Drug Discovery 5 210–8

 [5] Balzani V, Credi A, Raymo F M and Stoddart J F 2000 
Arti�cial molecular machines Angew. Chem., Int. Ed. 
39 3348–91

 [6] Irons C, Plank M J and Simpson M J 2016 Lattice-free models 
of directed cell motility Physica A 442 110–21

 [7] Purcell E M 1977 Life at low Reynolds number Am. J. Phys. 
45 3–11

 [8] Huber G, Koehler S A and Yang J 2011 Micro-swimmers 
with hydrodynamic interactions Math. Comput. Modelling 
53 1518–26

 [9] Berg H C 1975 Chemotaxis in bacteria Annu. Rev. Biophys. 
Bioeng. 4 119–36

 [10] Adler J 1966 Chemotaxis in bacteria Science 153 708–16
 [11] Van Haastert P J M and Devreotes P N 2004 Chemotaxis: 

signalling the way forward Nat. Rev. Mol. Cell Biol. 
5 626–34

 [12] Kaupp U B, Kashikar N D and Weyand I 2008 Mechanisms of 
sperm chemotaxis Annu. Rev. Physiol. 70 93–117

 [13] Bray D 2001 Cell Movements: From Molecules to Motility 
(New York: Garland Science)

 [14] Berg H C 2008 E. coli in Motion (Berlin: Springer)
 [15] Friedrich B M and Jülicher F 2008 The stochastic dance of 

circling sperm cells: sperm chemotaxis in the plane  
New J. Phys. 10 123025

 [16] Dittrich P, Ziegler J C and Banzhaf W 2001 Arti�cial 
chemistries? A review Artif. Life 7 225–75

 [17] Codling E A, Plank M J and Benhamou S 2008 Random walk 
models in biology J. R. Soc. Interface 5 813–34

 [18] Berg H C 1993 Random Walks in Biology (Princeton, NJ: 
Princeton University Press) p 30

 [19] Stevens A and Othmer H G 1997 Aggregation, blowup, and 
collapse: the ABC’s of taxis in reinforced random walks 
SIAM J. Appl. Math. 57 1044–81

 [20] Lovely P S and Dahlquist F W 1975 Statistical measures of 
bacterial motility and chemotaxis J. Theor. Biol. 50 477–96

 [21] Hill N A and Häder D-P 1997 A biased random walk model 
for the trajectories of swimming micro-organisms J. Theor. 
Biol. 186 503–26

 [22] Howse J R, Jones R A L, Ryan A J, Gough T, Vafabakhsh R 
and Golestanian R 2007 Self-motile colloidal particles: 
from directed propulsion to random walk Phys. Rev. Lett. 
99 048102

 [23] Naja� A and Zargar R 2010 Two-sphere low-Reynolds-
number propeller Phys. Rev. E 81 067301

 [24] Naja� A 2011 Hydrodynamics of a microhunter: a 
chemotactic scenario Phys. Rev. E 83 060902

 [25] Bren A and Eisenbach M 2000 How signals are heard during 
bacterial chemotaxis: protein–protein interactions in 
sensory signal propagation J. Bacteriol. 182 6865–73

 [26] Falke J J, Bass R B, Butler S L, Chervitz S A and 
Danielson M A 1997 The two-component signaling 
pathway of bacterial chemotaxis: a molecular view of signal 
transduction by receptors, kinases, and adaptation enzymes 
Annu. Rev. Cell Dev. Biol. 13 457

 [27] Vladimirov N, Løvdok L, Lebiedz D and Sourjik V 2008 
Dependence of bacterial chemotaxis on gradient shape and 
adaptation rate PLoS Comput. Biol. 4 e1000242

 [28] Vladimirov N and Sourjik V 2009 Chemotaxis: how bacteria 
use memory Biol. Chem. 390 1097–104

 [29] Endres R G and Wingreen N S 2008 Accuracy of direct 
gradient sensing by single cells Proc. Natl Acad. Sci. 
105 15749–54

 [30] Chakrabarty A, Konya A, Wang F, Selinger J V, Sun K and 
Wei Q-H 2013 Brownian motion of boomerang colloidal 
particles Phys. Rev. Lett. 111 160603

 [31] Taktikos J, Stark H and Zaburdaev V 2013 How the motility 
pattern of bacteria affects their dispersal and chemotaxis 
PloS One 8 e81936

 [32] Naja� A and Golestanian R 2010 Coherent hydrodynamic 
coupling for stochastic swimmers Europhys. Lett. 90 68003

J. Phys.: Condens. Matter 29 (2017) 015102


