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In this article, we address the problem of Euler’s buckling instability in a charged
semi-flexible polymer that is under the action of a compressive force. We consider
this instability as a phase transition and investigate the role of thermal fluctuations
in the buckling critical force. By performing molecular dynamic simulations, we show
that the critical force decreases when the temperature increases. Repulsive electrostatic
interaction in the finite temperature is in competition with thermal fluctuations to
increase the buckling threshold.
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1. Introduction

Microtubules and actin filaments are important biopolymers that construct the

mechanics of the eukaryotic cells.1–3 Microtubules the most rigid biopolymers of

the cellular cytoplasm, organize to form asters and mitotic spindle inside the cells.

The dynamics of these structures are essential in most of the physical processes of

the cell cycle.4,5 The actin filaments, the other less rigid biopolymers of the cell

with rigidity of about 0.01 times that of the microtubules also play various roles in

the cell.6 The functioning of these filaments in the cell includes the stability of the

cell shape, crawling and the cell movements. Understanding the overall mechanical

structure of a cell in terms of the behavior of the individual constituent polymers

is of prime importance in cell mechanics. In addition to the bending properties, the

buckling instability of the biopolymers in response to the pushing forces is being also

observed.7,8 In the case of microtubules, two types of the forces initiate the buckling,

the forces due to the polymerization when an astral microtubule reaches the cell

cortex and the forces associated with the active molecular motors those are binding

the different microtubules to each other or binding an individual microtubule to

the cell cortex.9,10 Actin filaments also experience the buckling instability because

of the interaction with miosin motors.6

The buckling of the biopolymers are subject to either equilibrium or non-

equilibrium fluctuations. Equilibrium fluctuations due to the thermal equilibration
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Fig. 1. Schematic of a polymer that is under the action of a compression force f , at one of its
ends. To investigate the stability of this polymer under this compressional force, we impose a
transverse force f⊥, at the midpoint of the polymer.

with the ambient cytoplasmic fluid and the non-equilibrium processes of the binding

and unbinding of molecular motors to the filaments, enhance the buckling transition.

In addition to the fluctuations, the other important effect that can change the

buckling point, is the electrostatic interactions in a charged biopolymer.

These observations show that a complete understanding of the mechanics at the

cellular scale needs a detail knowledge of the mechanical properties of an individual

filament. There are some efforts in considering the buckling of either charged or

neutral filaments taking into account the fluctuation effects.11–16 Hereby using the

ESPRESSO package,17 we perfom the molecular dynamic simulations and focus on

the numerical simulation for the buckling instability of either a charged or neutral

filament that is subject to equilibrium thermally fluctuations.

The rest of this article is organized as follows. In Sec. 2, we introduce the model

with its free energy and physical parameters. In Sec. 3, some known analytic mean

field results for neutral and charged polymers are summarized. We present the

numerical results for a fluctuating filament in Sec. 4.

2. The Model

Let us consider a stiff polymer with contour length L and bending modulus

κ embedded in a solution (Fig. 1). The space configuration of this polymer is

characterized by the position vector r(s) of a general points on the chains with

contour distance s from one end. There is a uniform distribution of electric charges

on this polymer. The free energy of this system has two important counterpart, the

bending energy which is due to the chemical bonds between the adjacent monomers

and the electrostatic repulsion between charges. The free energy of this system

reads:

G =
κ

2

∫ L

0

ds
∂2r

∂s2
·
∂2r

∂s2
+

1

2

∫ L

0

∫ L

0

dsds′V (|r(s)− r(s′)|) +Gext , (1)

where Gext is the contribution to the free energy due to the external forces acting

on the chain and V (r(s)− r(s′)) represents the electrostatic repulsion between the

charges on the polymer. The electrostatic interaction is screened by the mobile
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counter ions in the solution and is given by18

l20V (r) =
q2

ǫ

e−r/λD

r
, (2)

where q represents the charge of the ions on the chain that are distributed uniformly

with a minimum distance l0, ǫ stands for the dielectric constant of the solution and

λD is the Debye–Huckel screening length. The dynamics of this chain in the over

damped, low Reynold’s number condition is given by the following equation:

∂

∂t
r(s, t) =

(

1

ξ‖
t̂t̂+

1

ξ⊥
n̂n̂

)

·

(

−
δG

δr(s)
+ ς(s, t)

)

, (3)

where G is the free energy density and the details of the hydrodynamics interactions

in a simplified model are collected in two friction coefficients ξ‖ and ξ⊥. Here ξ‖ is

the friction coefficient for a small and cylindrical segment of the chain moving along

the local tangent t̂, and ξ⊥ denotes the corresponding friction for the motion along

n̂, the unit vector that is locally normal to the polymer. The effects of thermal

fluctuations are modeled by a random force ς(s, t) with Gaussian distribution. This

means that the correlation function for this noisy force reads:

〈ς(s, t)ς(s′, t′)〉 = 2Dδ(s− s′)δ(t− t′) , (4)

where D is the diffusion constant for a small segment of the chain.

The aim of this article is to investigate numerically the response of a chain to a

compressive force acting to one end of the chain. Before considering this problem,

we first present the results of some mean field descriptions.

3. Mean Field Results

We apply a constant compressive force f = −fx̂ to one end of the polymer. This

includes the following amount of mechanical energy to the free energy:

Gext = −f · r(s = L) , (5)

minimizing this free energy allows us to study the equilibrium shape of the chain.

This can be done for a set of different boundary conditions. Let us denote the angle

that the local tangent vector at contour length s makes with x-axis by θ(s).

Two important boundary are the following cases. Case (I): both ends of the

chain are clamped (θ(0) = θ(L) = 0) and case (II): both ends can freely rotate

(θ̇(0) = θ̇(L) = 0). Here the dot symbol represents the derivative with respect

to contour length s. Physically the free rotating end is the case where no external

torque is applied to the chain. Considering an electrically neutral chain in the mean

field approximation where the effects of thermal fluctuations are not important,

one can easily show that the equilibrium shape of the chain is the solution to the

following differential equation:

κ

2
θ̈(s) + f sin θ = 0 . (6)
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The above nonlinear differential equation describes the equilibrium shape of a

filament that is under the action of an external compressing force. Symmetry

considerations have limited the shape variation to two dimensional spaces. While

for small forces we can linearize the above equation and investigate the results,

but to study the buckling phenomena we need to consider the nonlinear equation.

The straight chain solution with θ(s) = 0 is a trivial solution that can exist for

small forces. But one can see that for forces greater than a critical force f0
c , the

above solution is not stable and a second solution with buckled shape for the chain

initiates. The buckling threshold depends on the specific choice of the boundaries.

For the condition where the two ends are clamped, case (I), the bucking force reads:

f0
c = 4π2κ

L2 and for case (II) the buckling instability occurs at f0
c = π2κ

L2 .

Taking into account the effects of thermal fluctuation of a neutral semi-flexible

chain, enters a new length scale Lp = κ/kBT , that is the persistence length of a

fluctuating semi-flexible polymer. Saddle point analysis for a fluctuating semiflexible

polymer under a compressive force is being carried out by Odijk.13 It is shown that

thermal fluctuations enhances the bucking threshold in the following way:

fc = f0
c

(

1− c
L

Lp

)

, (7)

where c is a numerical coefficient of the order one. This can be understood as a

renormalization of the bending modulus. Thermal fluctuations effectively decrease

the rigidity of a polymer that is under compressive force.

To examine the effects of electrostatic interactions in the buckling instability, we

note that for a charged polymer some new length scales enter into the system. For

Debye–Huckel electrostatic interaction, two important length scales are the Debye

screening length λD and the Bjerrum length lB = e2/ǫkBT , where e measures

the charge of an electron. We assume that ions with charge Ze are distributed

uniformly on the chain with minimum distance l0. Combining these length scales

we can achieve the electric persistence length for this fluctuating charged polymer

that is: Lpe = (Z2/4)(λD/l0)
2lB. Scaling arguments shows that the total persistence

length of a charged chain is given by: Lp + Lpe.
19 In a very simplified picture for

buckling instability in charged systems we can replace the persistence length in the

buckling force for a neutral system with the total persistence length:

fc = f0
c

(

1− c
LkBT

κ+ (Ze)2

4ǫ (λD

l0
)2

)

× φ

(

λD

l0
,
λD

L

)

. (8)

Based on the dimensional analysis we have considered a general dependence on

other length scales through a dimensionless function φ. This function captures

the physics of the buckling instability for a charged system at zero temperature.

The above expression for the buckling force shows a competition between

thermal fluctuations and electrostatic repulsion in the buckling instability. Thermal

fluctuations decreases the buckling force while the repulsion can increase it at finite

temperature.
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The mean field theory for the buckling instability in charged polymers are

considered in Ref. 14. It is shown that the analysis of the buckling problem in the

charged polymers with nearly rod like geometry are associated with an harmonic

differential equation with a complicated frequency. Defining a new function u(s) =

θ̇(s), and in the limit of θ(s) ≪ 1, the mean field equation reads:

κ

2
ü(s)− ω2(s)u(s) + fu(s) = 0 , (9)

with

ω2(s) =
1

2

∫ L

0

ds′V (|s− s′|) . (10)

The analytical solution of this equation for Debye–Huckel interaction is not possible.

Here we consider a short range repulsion interaction with a simple form like:

V (r) = V0e
−r/λD . (11)

In the limit of L ≫ λD, we will have ω2 ≈ 2λDV0. Solution to the stability equation,

reveals that the buckling threshold at zero temperature is:

fc = f0
c +

V0λD

l30
. (12)

This simply shows that the buckling threshold is linearly increasing with increasing

the interaction range λD.

4. Simulation

In order to analyze the buckling transition for a charged and semi flexible

polymer, we perform molecular dynamic simulations with ESPResSo package.17

We decompose a polymer with length L to N individual segments. Each segment

has a mass m and an electric charge q. Adjacent monomers are connected to each

other with extensible springs. As microtubules and actin filaments are inextensible

filaments, we have used a very large stiffness coefficients for these springs to consider

the inextensiblity constraints. The bending rigidity of the polymer is modeled by

a bond angle potential Uθ = kθ(1 − cos(θ)) where θ stands for the angle between

adjacent bonds and kθ is related to the bending rigidity through κ = 2(L/N)kθ.

The hydrodynamic interactions between the monomers will produce anisotropic

frictional coefficients for the monomers. To account for this effect, we calculate

the friction coefficients of each monomer with use of a model that monomers are

cylinders with length l0 = L/N and diameter d. The friction coefficients read:20

ξ⊥ =
4πη

ln(l0/d)
, ξ‖ =

2πη

ln(l0/d)
. (13)

Langevin thermostat and P3M algorithm in the ESPResSo software are used

respectively to model the effects of thermal fluctuation and electrostatic interaction

between particles. The equilibrium distance between adjacent monomers l0 = L/N ,
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Fig. 2. Left: Gibbs free energy G, for a buckling polymer versus the perpendicular displacement
δ of the polymer at its middle point for different values of the external forces f . As one can see,
for small forces the system is in mechanical stable equilibrium while for large forces the straight
state is unstable. Right: the overall stiffness of the midpoint is plotted for different values of the
applied force. At critical force, the stiffness vanishes. Simulations are performed for freely rotating
ends.

friction coefficient ξ⊥ and bending rigidity are used to define a microscopic time

scale as τ = ξ⊥l
3
0/κ. In our simulations, the time step is chosen as ∆t = 0.001τ . In

a typical simulation, the equilibration happens for a time about 3× 105∆t.

We first perform the simulations for an electrically neutral filament at finite

temperature. To investigate the stability of a system that is under external

compressive force f , we study its response to a small transverse displacement of a

point in the middle of the polymer. To do this favor, we apply an external auxiliary

force f⊥ = f⊥ŷ to the midpoint of the chain. A mechanical work with an amount

−f⊥y(s = L/2) is included to the free energy. In this case, the total free energy of

the system is a function of the applied forces: G = G(f, f⊥). Defining a conjugate

variable corresponding to the transverse force by δ = −∂G/∂f⊥, we can construct

the following Legendre transformation:

Ω(f, δ) = G− f⊥∂G/∂f⊥ , (14)

This is the free energy of the system that is constrained to a constant δ, the

midpoint displacement. Figure 2(left) shows the numerical results of this free energy

for different values of the external compressive force f . As one can see for small

compressive forces, the state with δ = 0 is the stable equilibrium state of the chain.

Increasing the compressive force and in a critical force fc, the curvature of the

free energy changes its sign at point δ = 0 signaling the instability transition. To

determine the transition point, we can expand the free energy for small δ and define

a new variable k, that measures the overall stiffness of the midpoint by:

Ω(f, δ) = Ω0(f) +
1

2
k(f)δ2 +O(δ)3 , (15)
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the transition point can be reached by extrapolating the results to find the state with

k(fc) = 0. Figure 2(right) shows the results for a typical simulation. A numerical

value of order 1.2 pN for the buckling force is achieved for a polymer with stiffness

Lp = 3 mm. This picture for the buckling transition, resembles the physics of the

phase transition in magnetic systems with changing the external magnetic field. In

this case, it is very natural to ask what happens if one change the temperature, the

strength of the fluctuations. As in case of magnetic systems, we expect a nontrivial

change in the transition point.

5. Results

To investigate the effects of thermal fluctuations, we first consider an electrically

neutral filament with bending rigidity that has the same order of magnitude of

microtubules. For better comparison with cytoplasmic microtubules, we choose

a total length of 10 µm and apply the pushing force to one of the ends. For

boundary conditions, we apply the clamped condition to both ends. Figure 3(left)

demonstrates the temperature dependence of the critical buckling force for different

values of the chain stiffness κ. The results at very low temperature (T → 0)

are in agreement with the mean field result. One can see that by increasing the

temperature, the critical force linearly decreases.

The temperature dependence of the critical force show different slopes for

different numerical values of the bending rigidity. To show this behavior in the

buckling force we investigated the buckling transition at a fixed temperature and

vary the rigidity. Figure 3(right) shows the behavior of the critical buckling force

in terms of the bending stiffness. This is investigated for different values of the

temperature.

The other issue that we want to address here, is the effects of electrostatic

interactions in a charged filament immersed in a fluid with mobile charges. For
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Fig. 3. Left: Critical buckling force versus temperature for a neutral semiflexible polymer with
two freely rotating ends that is allowed to undergo thermal fluctuations. Results are presented
for different bending rigidities. Right: Buckling force versus bending rigidity is plotted. In both
graphs, the total length of the polymer is 10 µm, and number of segments in the simulations is
n = 500. Numerical error in determining the critical force is 0.04 pN .



September 21, 2011 17:7 WSPC/147-MPLB S0217984911027406

2216 K. Ghamari & A. Najafi

(p
N

)
cf

l  /0 λ D

Charged Fillament at T=300K

Neutral Filament at T=300K

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 1.65

 1.7

 0  0.2  0.4  0.6  0.8  1
 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 1.65

 1.7

 0  0.2  0.4  0.6  0.8  1

Fig. 4. Critical buckling force versus l0/λD for a semiflexible and charged polymer with two
freely rotating ends at temperature 300 K. Here LB = 0.7 nm, κ = 7.45 10−26 Nm2 (for actin
filament) and the total length of the polymer is 0.75 µm. The result is compared with the critical
buckling force for a fluctuating and electrically neutral filament.

studying the electrostatic effects, we use the Debye–Huckel interaction that is

already introduced. To have a feeling of a real system, we choose the elastic and

electrostatic parameters of an actin filament with total length L = 0.75 µm and

persistence length Lp = 18 µm. Charge density of an actin filament is of order 1

electron in each 2.5 Å and the Bjerrum length for water at room temperature is

about 0.7 nm. Figure 4 shows the results of the simulations for buckling critical

force in terms of the Debye screening length at two different temperatures. As one

can see, for a range of parameters, there is a competition between the electrostatic

effects and the effects due to thermal fluctuations. At very small Debye screening

length (large (l0/λD)), the critical force reaches the value that is already obtained

for a neutral filament. Increasing the screening length, the critical force increases.

For a constant screening length, thermal fluctuations can either increase or decrease

the critical force.

In summary, we have considered the effects due to the thermal fluctuations in

the buckling transition for either a charged or neutral filaments. We have shown

that for a neutral filament thermal fluctuations can always decrease the buckling

critical force, while for a charged filament the effects of fluctuations can compete

with the electrostatic effects and either decrease or increase the critical force.
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