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Abstract

After a brief introduction to the thermodynamics of chemical reactions we provide
a short discussion on chemical kinetics.

1 Chemical reaction

Consider a closed system composed of 4 chemical species Ai with molar masses Mi

that react with the following reaction:

w1A1 + w2A2 −→ w3A3 + w4A4, (1)

where stoichiometric coefficients wi are assumed to be positive (negative) for products
(reactants). Here w1, w2 < 0 and w3, w4 > 0. Stoichiometric coefficients enforce the
conservation of mass, meaning that −w1M1 − w2M2 = w3M3 + w4M4.

What fraction of the reacting mass corresponds to species i? To answer this ques-
tion, we define normalized stoichiometric (dimensionless) coefficients νi. It is easy to
show νi = wiMi/(−w1M1−w2M2). Note that

∑
i νi = 0, ν1 + ν2 = −ν3− ν4 = −1. A

very elementary example is the following reaction:

−2H2 −O2 −→ 2H2O, (2)

where, we have:

w1 = −2, w2 = −1, w3 = 2, ν1 = −2
M1

2M3
, ν2 = − M2

2M3
, ν3 = 1.

2 Reaction rate

Each chemical reaction is characterized by a single reaction rate J . To define the
reaction rate, assume that at time t, there is an amount of mass Mi of each species
present in a fixed volume V . The total mass of reactants and products are denoted by
Mr =M1 +M2 and Mp =M3 +M4, respectively. The reaction rate is defined as:

J =
Ṁr

V
= −Ṁp

V
.
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The dimension of reaction rate reads as [J ] = Kg m−3s−1. We have provided the
above definition for a unidirectional reaction but in general both forward and reverse
reactions can contribute to the reaction rate. The time derivative of all masses can be
expressed in terms of the reaction rate as:

Ṁi

V
=

wiMi

−w1M1 − w2M2
J.

We now define the partial mass density of species i by ρi = Mi/V then using the
definition of νi, we see that ρ̇i = νiJ . Alternatively, we can think of the molar density
defined by ni = Mi/(MiV ). Then its dynamics reads as: ṅi = wiJ̄ , where J̄ =
J/(−w1M1−w2M2) shows the molar reaction rate. Note that total density defined as
ρ =

∑
i ρi is a conserved quantity (

∑
νi = 0) but the total number of moles n =

∑
i ni

is not a conserved quantity (
∑
wi 6= 0).

3 Thermodynamics

A closed system of chemically reacting components is an example of a non-equilibrium
system. Consider that the system has n species with only one reaction:

q∑
i=1

wiAi −→
n∑

i=q+1

wiAi,

that is determined with reaction rate J .
We denote by ni, the molar concentrations (mole/V ) of species i, then the total

molar density is given by n =
∑
i ni. The total number of particles i is denoted by

Ni, and it is related to molar concentrations as Ni = NAV ni. The chemical system
with some given initial concentrations starts to evolve in time. We want to write the
general dynamical equations that can describe the system. Obviously, temperature, T ,
pressure, p, and total density ρ are among the thermodynamic variables necessary to
define the system’s state. How about partial concentrations? Do we need to consider
all concentrations as independent state variables? To find the answer, we proceed by
considering the dynamics of ni:

∂tni = wiJ̄ . (3)

It should be noted that the above equation can be written as: J̄ = ∂t(ni/wi). As J̄
is independent of i, instead of ni for i = 1 · · ·n, we can work with a single quantity
(ni(t)− ni(0))/(wi) (that is independent of i), so that:

J̄ =
1

NAV
∂tξ, ξ(t) = NAV

ni(t)− ni(0)

wi
=
Ni(t)−Ni(0)

wi
.

The variable ξ shows the progress of the reaction and it is called the progress variable.
The extent or degree of reaction is another name for this progress variable. This
observation suggests that all of the n variables can be replaced by a single new state
variable, ξ. Our thermodynamic considerations will also validate this point. Careful
analysis show that 0 ≤ ξ ≤ ξm, where ξ = 0 show the initial state and ξ = ξm
corresponds to the case where all reactants have been transformed into products.
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To study the thermodynamics of the reacting system, we denote by S and E, the
entropy and internal energy of the system, respectively. At equilibrium, the entropy is a
state function given by S = S(E, V,Ni). The first and second laws of thermodynamics
for a differential process can be written as:

dE = dQ− pdV, TdS = dE + pdV −
n∑
i=1

µidNi, (4)

where dQ is the partial heat exchanged with the external reservoir and µi shows the
chemical potential of species i. Note that, as the system has no particle exchange with
the external reservoir, then no term containing chemical potential appears in the first
equation.

Following the general assumptions of non-equilibrium thermodynamics, we can pro-
ceed and calculate the rate by which the entropy produces in the system. These as-
sumptions include the criteria of slow dynamics and local equilibrium. As a result of
these assumptions, entropy preserves the same functional form of the state variables
as it would have at the equilibrium conditions. Then combining the second law with
the law of dynamics of densities (∂tξ = Ṅi/wi), we will reach the following equation:

∂tS =
1

T
∂tE +

p

T
∂tV −

A

T
∂tξ, (5)

where affinity is defined as A =
∑n
i=1 wiµi. Affinity is the chemical force that drives

the reaction. The form of the last term in this equation strongly validates our previous
suggestion about the progress variable ξ. This means that temperature, pressure, and
progress variable, form a complete set of state variables.

Chemical affinity and progress variables are conjugate variables:

A =

n∑
i=1

wiµi, ξ =
Ni(t)−Ni(0)

wi
.

In this case, the entropy has a functional form as S = S(E, V, ξ). Equation 5 suggests
that: A = −T (∂S/∂ξ)|E,V . In terms of Helmholts free energy F = E − TS, we see
that A = (∂F/∂ξ)|V,T .

For constant density, the rate of entropy production (associated with chemical re-
actions) can be written as:

σ = −NAV
J̄A

T
> 0, A =

n∑
i=1

wiµi.

This form of entropy production suggests that A is a generalized force that initiates
the reaction and the progress of the reaction corresponds to a generalized current J
that is given by the speed of the progress variable. In the linear response regime, we
can consider a linear relation like:

J̄ = −LA
T

→ σ = NAV L(
A

T
)2 > 0,

where L is a phenomenological coefficient. To ensure the irreversibility (positive en-
tropy production rate), this linear response coefficient should be positive, L > 0.
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4 Fluctuation around the equilibrium

Equilibrium in the chemical system corresponds to A = 0 which will result in an
equilibrium value for the progress variable denoted by ξ = ξeq(T, ρ). To study the
fluctuations around this equilibrium, we consider that ξ = ξeq + δξ and A = δA =
∂A
∂ξ |eqδξ. In terms of the Helmholtz energy δA = ∂2F

∂ξ2 δξ. Now using the linear response

equation, we see that ∂tδξ = −τ−1δξ where τ−1 = (L/Tρ)∂
2F
∂ξ2 |eq. At the equilibrium

conditions, Helmholtz energy is minimum, meaning that ∂2f
∂ξ2 |eq > 0. Furthermore, the

positiveness of the linear response, L > 0, results in the stability of equilibrium where
fluctuations relax to zero at time scale τ as δξ ∼ δξ(0)e−t/τ .

5 Chemical Kinetics

What quantities determine the rate of a chemical reaction? In general densities of all
the species contributing to the reaction as reactants can enhance the reaction rate.
This means that J = J(n1, n2, ...). Experimental pieces of evidence usually allow us
to write phenomenological relations for reaction rate:

J = kfn
α
1n

β
2 · · ·

where kf is called the rate constant and α, β are numbers. α = 0 shows a zeroth order
reaction, α = 1 is a first order reaction and so on. As an example consider the 4-species
reaction that we started with and assume that the reaction is first order with respect
to all species. Densities of all species evolve with the following equations:

ṅ1 = −kfn1n2 + krn3n4,

ṅ2 = −kfn1n2 + krn3n4,

ṅ3 = kfn1n2 − krn3n4,

ṅ4 = kfn1n2 − krn3n4. (6)

6 Ideal gas limit

A very dilute solution of chemical species behaves like ideal gase This will allow us to
present simple relations for the reaction rate which is called the law of mass action.
Consider the following reactions:

w1A1 + w2A2 � w3A3 + w4A4, (7)

note that two reactions of forward and reverse directions are considered in a single
notation. A successful collision of w1 particles of type A1 with w2 particles of type A2

is necessary to start the forward reaction. At a very dilute regime, we can proceed by
assuming that the collision probability is proportional to the density of the particles.
In this case, the following simple relation can be written for the reaction rate:

J̄ =
(
kfn

−w1
1 n−w2

2 − krnw3
3 nw4

4

)
,
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where two rate constants for forward and reverse reactions, are defined by kf , and kr,
respectively. The form of the above reaction rate is called the rule of mass action. For
an ideal gas, the chemical potential can be written as µi = kBT ln(ci/c0) + µ0

i where,
µ0
i (T ) is the part of the chemical potential that is independent of density. Now we can

rewrite the above equation as:

J̄ = krn
w3
3 nw4

4

(
kf
kr
× n−

∑
wi

0 × e
∑
wiµ

0
i /kBT e

− A
kBT − 1

)
.

At equilibrium J̄ = A = 0 then we can arrive at a relation for the equilibrium constant
of the reaction that is defined as Keq = kf/kr:

Keq = kf/kr = n
∑
wi

0 e
−

∑
wiµ

0
i

kBT .

As kf and kr are constant numbers, we can use this last equation and rewrite the
reaction rate as below:

J̄ = krn
w3
3 nw4

4

(
e
− A
kBT − 1

)
.

very near to equilibrium, we can approximate the above equation as:

J̄ ∼ −krnw3
3,eqn

w4
4,eq ×

A

kBT
, A� kBT .

This last equation resembles the linear response relation. As it is seen, the linear
response relation can be recovered for cases where A� kBT .

7 Catalytic reactions

The enzymes are biological catalysts that help the biophysical processes to take place.
These are usually proteins that help to transform a certain type of substrate molecules
denoted by S to product molecule X. We denote by E, the enzyme molecules. The
transformation process from S to X can be considered a two-step process involving the
appearance of an intermediate complex denoted by ES. The reactions are:

E + S �kf
kr

ES ES →qf E + X.

We assume that all reactions are first order and the first reaction is in equilibrium. Re-
action constants for each reaction are denoted in the above equation. The equilibrium
assumption can be justified for systems where nS � nE .

The question that we want to address is the effective reaction rate of the following
reaction:

S → X.

We call the effective reaction rate of this process Jeff. It should be noted that Jeff =
ṅX = −ṅS in such a way that Jeff is a function of nX and nS . To obtain this effective
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reaction rate, we begin by writing the kinetic equations for the first set of reactions
which are assumed to be first order:

ṅS = −kfnSnE + krnES ,

ṅE = −kfnSnE + krnES + qfnES ,

ṅES = kfnSnE − krnES − qfnES ,
ṅX = qfnES . (8)

Regarding our initial assumption, the first reaction (formation of ES complex) is an
equilibrium reaction, the number density of E and ES should be conserved ṅE =
ṅES = 0, then nE + nES = n0

E is a constant that effectively measures the total
number of enzymes in the system. Furthermore, the equilibrium condition gives that
kfnSnE − krnES − qfnES = 0. These conditions will allow us to write the number of
ES complexes as a function of nS :

nES =
αnS

n∞ + nS
, α = n0

E , n∞ =
kr + qf
kf

,

then the effective reaction rate reads as:

Jeff = ṅX = qfnES =
αqfnS
n∞ + nS

.

It is seen that for high concentration of substrates ṅX ∼ αqf while for low concentration
ṅX ∼ (αqf/n

∞)nS .
The law of consumption of substrate in a catalytic reaction is called the Michaelis-

Menton law:
ṅS = −αqf

nS
n∞ + nS

.
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