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Suspensions of hydrodynamical active particles exhibit interesting rheological properties. For a dilute
suspension of microswimmers, it has been shown that the effective viscosity of the suspension depends on the
volume fraction of swimmers, and it behaves differently for pushers and pullers. Here we develop a theoretical
framework to study the rheological properties of an interacting suspension. Taking into account the hydrodynamic
interaction between swimmers and considering the small Péclet number condition, we calculate the effective
viscosity of a two-dimensional suspension. For a dilute suspension, a perturbative result is obtained up to the
second order of the surface fraction of swimmers. Our results show that the effective viscosity for the suspension
can be very different for pushers and pullers.
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I. INTRODUCTION

Motivated by its application and relevance in biophysics and
engineering, the rheology of active suspensions has attracted
much attention recently [1,2]. Active suspensions composed
of self-propelled active agents, either living microorganisms or
synthetic active colloidal particles, have a nontrivial response
to an external shear flow [3,4]. Thermal fluctuations of
individual active colloids and their mutual interactions are the
major sources that make their response nontrivial. Reduction
or increase in the effective apparent viscosity [5,6] and non-
Newtonian behavior [7] are among the main important features
of such rheological responses. In addition to the rheological
properties, a concentrated population of suspended active
agents as a nonlinear dynamical system exhibit fascinating
spatial and temporal patterns [8–12].

Despite the fact that thermodynamic pressure exhibits
anomalous properties in nonequilibrium active suspensions
[13], viscosity as a kinetic coefficient could be defined and
measured in such systems. The effective viscosity of an active
suspension is at the heart of recent theoretical studies and
experiments. In an active suspension, the force distribution and
subsequently the flow field produced by an individual particle
are essential in studying their responses to external forces. As
a result of zero net force in self-propelled particles, the force
distribution can be either dipolar or quadrupolar at the leading
order of multipole expansion. Pushers, pullers, and neutral
swimmers are the examples of real organisms with different
force distributions. New recent experiments reveal that the
effective viscosity of an active suspension highly depends on
such force distributions. An increase in the effective viscosity
in motile algae Chlamydomonas (puller) [5], reduction of
effective viscosity in Bacillus subtilis (pusher), and suspension
of Escherichia coli [6,7] have been reported. It has been shown
very recently that in a suspension of E. coli, the activity of
bacteria can turn the suspension into a superfluid state [14,15].

The question we want to address here is how the two-body
hydrodynamic interaction between swimmers influences the
effective viscosity of the suspension. The main emerging
approaches to the modeling of a suspension of microswimmers
typically abstract away the details of the actual propulsion
mechanism and use simple tractable and rigid geometries for

swimmers [16–18]. Saintillan [19] by extending previous clas-
sical theories for passive suspensions [20] has used a simple
kinetic model for studying the effective rheology of active sus-
pensions in extensional flows. Haines et al., by modeling bac-
teria as self-propelled disks [21] and as a rigid prolate spheroid
with a point force [22], have obtained analytical expressions
for the effective viscosity up to the first order in volume frac-
tion. In both cases hydrodynamic interactions were neglected.
Gyrya et al. has studied the hydrodynamic interaction be-
tween two microscopic swimmers, modeled as self-propelled
dumbbells, and has performed a simulation to identify the
connection between interactions and rotational noise as key
(interchangeable) ingredients for reduction of viscosity [23].

In this work, we use a microscopic hydrodynamical model
for a self-propelled swimmer and extend our previous work
[24] to calculate the rheological properties of an interacting
suspension. This work can be considered as an extension of
Batchelor’s classical O(c2) correction in a colloidal suspension
to a system composed of active colloids [25,26].

This paper organized as follows: in Sec. II we introduce
our model for a single swimmer and give analytic results for
the hydrodynamic interaction between two swimmers in an
external shear flow. Then in Sec. III we develop the statistical
frame work and mean field approximation for a collection
of particles. Rheological properties of a suspension of active
particles are given in Sec. IV, and finally the results will be
discussed in Sec. V.

II. MODEL AND TWO-PARTICLE INTERACTION

To calculate the rheological properties of a suspension of
active particles, we start with a detailed microscopic model for
an individual active particle. For this task we use a minimal
model of a low Reynolds autonomous swimmer that is able
to describe both pushers and pullers [27]. In low Reynolds
regime where the effects of viscous forces dominate over
inertial effects, it is a well-known fact that a minimal model
for a swimmer needs at least two internal degrees of freedom
[28]. A model system composed of three spheres connected
linearly by two rods with variable lengths can capture the
hydrodynamic features of such swimmers. Figure 1 shows
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FIG. 1. Geometry of two three-linked spheres’ swimmers.

a schematic view of two interacting swimmers (denoted by
swimmer i and j ) and their internal structures. We denote
by a the radius of spheres and assume that the rods are very
thin with no hydrodynamic coupling to the fluid. Denoting the
position vector of central spheres of each swimmer by ri and
rj , the other spheres are labeled by ib, if , jb, and jf and their
position vectors are given as

rif = ri + �if t̂i , rib = ri − �ib t̂i ,
(1)

rjf = rj + �jf t̂j , rjb = rj − �jb t̂j ,

where t̂i,j denote the orientation vector of the swimmers. In our
quasi-two-dimensional study, we assume that all swimmers
are moving in the (x-z) plane. In this case we have t̂i,j =
(cos θi,j , sin θi,j ). We assume that for each swimmer the arm
lengths change sinusoidally around a mean value L as

�if = L + u sin(ωt + ϕi),

�ib = L(1 + ξ ) + u sin(ωt + ϕi + δϕ),

�jf = L + u sin(ωt + ϕj ),

�jb = L(1 + ξ ) + u sin(ωt + ϕj + δϕ),

where ξ is an asymmetry parameter for swimmers. In the
case where the arm lengths of each swimmer are equal, i.e.,
ξ = 0, we have a symmetric swimmer. ω denotes the internal
frequency of swimmers, and δϕ is the internal phase difference
for each swimmer where for simplicity we have assumed that
all swimmers have equal internal phase differences.

Phases of the swimmers are given by ϕi and ϕj . For an
autonomous swimmer, in addition to its translational and
rotational velocities, phase is another variable that is necessary
to describe its dynamical state. To have physical intuition about
the phase variable, one can consider a beating flagellum that
provides the driving force for a microorganism. It is shown that
assigning an effective limit-cycle oscillator to the flagellum,
it is possible to extract its phase [29]. In this article, we will
consider the simple case where all swimmers are in phase (ϕi =
ϕj = 0). As we discuss at the end, for uniform distribution of
phase difference, the general behavior does not change.

The asymmetry parameter ξ plays essential role in the
details of flow field produced by an individual swimmer. We
will show that the force distribution due to a single swimmer
shows a quadrupolar distribution for ξ = 0, and it shows a
dipolar field when ξ �= 0. For ξ = 0 the swimmer is neutral,
for ξ > 0 the swimmer is a pusher, and for ξ < 0 the swimmer
is a puller [24].

As we aim to investigate the response of a suspension of
swimmers to external forcing, let us assume that the above
swimmers are immersed in an external simple shear flow. We
denote the external shear flow by

ush. = � · x, � = γ̇ ẑ x̂, (2)

where γ̇ is the shear rate applied to the fluid. We can show
that the above swimmers are autonomous systems that can
propel themselves by internal motions defined by Eq. (1). To
obtain the swimming velocity, we should solve the dynamical
equations of the above model swimmers that are coupled
to the dynamics of the ambient fluid. Due to linearity of
the hydrodynamic equations at micrometer scale (negligible
Reynolds number), the hydrodynamic forces acting by the
spheres on the fluid are related to the velocity of each sphere
linearly. Consider a collection of colloidal particles moving in
an inertialess fluid; their interaction can lead to the equations
of motion between their velocities vα = ṙα and hydrodynamic
forces they apply to the fluid, fα , as

vα =
∑

β

Mαβ(rα,rβ) · fβ + � · rα, (3)

where indices α and β run over all spheres (i,j,ib,if,jb,jf ).
The hydrodynamic kernel Mαβ has the following tensorial
structure at the Oseen approximation [30]:

Mαβ(rα,rβ ) =
{

1
8πη◦ |rαβ |

[
I + rαβ rαβ

|rαβ |2
]

α �= β
1

6πη◦ a
I α = β.

Here rαβ = rα − rβ and η◦ is the viscosity of the fluid. In writ-
ing the above expression for the hydrodynamic kernel, we have
assumed that the lengths of rods are much larger than the sphere
size L � a. In addition to the above equations, we should
include the facts that the swimmers are force and torque free:

fi + fib + fif = 0, �if t̂i × fif = �ib t̂i × fib,

fj + fjb + fjf = 0, �jf t̂j × fjf = �jb t̂j × fjb. (4)

The sets of equations given in (1), (3), and (4) form a closed
set of equations that we can solve and find all dynamical
characteristics of the swimmers, namely, their velocities and
force distributions.

To simplify the results we analyze the dynamics of the
swimmers in the case where a � L, u � L, and |ξ | � 1.
This helps us to expand the final results in terms of small
quantities that can be constructed by different relevant length
scales. If we assume that the swimmers are far enough away
from each other such that the distance between them is
larger than the length of swimmers |r| = |ri − rj | � L, we
can expand the forces and velocities in powers of the small
quantity L/r . Averaging over time, the linear and angular
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velocity of the first swimmer up to the leading order can be
obtained. As a result of the linearity of dynamical equations,
the velocities and forces can be decomposed into their contri-
butions coming from the shear flow and the parts due to the
interactions. We can decompose the translational and angular
velocities as

vi = v0
i + vbg

i + vint(ri − rj ,θi,θj ),
(5)

�i = �0
i + �

bg

i + �int(ri − rj ,θi,θj ),

where v0
i and �0

i are the intrinsic swimming veloci-
ties of individual swimmers in an ambient fluid and are

given by

v0
i = v◦(1 − ξ ) t̂i , �0

i = 0, (6)

where v◦ = 7
24

a
L2 u

2ω sin δϕ. The velocity of the swimmer due
to the background shear flow is given by

vbg

i = γ̇ x cos θ t̂i − 1

12
Lγ̇ ξ sin θ cos θ

(
1 + 7

4

a

L

)
t̂i , (7)

�
bg

i = γ̇ sin2θ, (8)

and the interaction contributions are given by

vint(ri − rj ,θi,θj ) = −11

8
ξv◦[1 − 3(r̂ · t̂j )

2
]
aL

r2
r̂ − 3

8

aL2

r2
γ̇ sin θj cos θj

(
1 + ξ + 3

4

a

L

)
[1 − 3(r̂ · t̂j )

2
]r̂

+ 3

7

L3

r3
v◦q1(θi,θj ,r̂) t̂ − 6

7
v◦

L3

r3
{[1 − 3(r̂ · t̂j )

2
]t̂j + 3(r̂ · t̂j )[5(r̂ · t̂j )

2 − 3]r̂}

+ 17

64

a2L2

r3
γ̇ sin θj cos θj q1(θi,θj ,r̂) t̂j + 1

16

aL3

r3
ξ γ̇ sin θj cos θj

(
7 + 13

4

a

L

)

×{[1 − 3(r̂ · t̂j )
2
]t̂j + 3(r̂ · t̂j )[5(r̂ · t̂j )

2 − 3]r̂} (9)

�int(ri − rj ,θi,θj ) = 45

56
ξ v◦

a2

r3
q2(θi,θj ,r̂) − 9

8

aL2

r3
γ̇ sin θj cos θj q2(θi,θj ,r̂) + 27

28
v◦

L3

r4
q3(θi,θj ,r̂)

+ 9

16

aL3

r4
γ̇ sin θj cos θj q3(θi,θj ,r̂), (10)

where the angular functions qi,(i = 1,2,3) are defined in the Appendix. The forces on spheres of the swimmer i can be written
as (α ∈ {i,if,ib})

fα = f0
α + fbg

α + fint
α . (11)

Here f0
α are forces due to intrinsic swimming without shear and given by

f0
if = 3

7
πη◦av◦(5 + 7ξ ) t̂i , f0

ib = 3

7
πη◦av◦(5 − 17ξ ) t̂i .

The role of the asymmetry parameter ξ can be understood from the forces that are exerted by a single swimmer on the fluid.
For ξ = 0 the above force distribution shows a quadrupolar distribution, and it shows a dipolar field when ξ �= 0. For ξ = 0 the
swimmer is neutral, for ξ > 0 the swimmer is a pusher, and for ξ < 0 the swimmer is a puller. Pullers use their head to generate
their motion, and pushers use their tail to produce motion.

The forces acting on the swimmer due to the background flow are given by

fbg

if = −6πη◦aLγ̇ sin θi cos θi

[
1 + 3

4

( a

L

)
+ 1

12
ξ + · · ·

]
t̂i ,

fbg

ib = 6πη◦aLγ̇ sin θi cos θi

[
1 + 3

4

( a

L

)
+ 1

12
ξ + · · ·

]
t̂i ,

and the forces due to the interaction, fint
α , are [31]

(πη◦av◦)−1fint
if =

{
− 36

7

L3

r3
q1(θi,θj ,r̂) + 3

2

aL3

r3
γ̇ /v◦ sin θj cos θjq1(θi,θj ,r̂) − L4

r4

[
108

7
q5(θi,θj ,r̂) + 99

7
q4(θi,θj ,r̂)

]

+ L6

ar4
γ̇ /v◦ sin θj cos θj

[
3

2

a2

L2
q5(θi,θj ,r̂) − 7

8

a

L
ξq4(θi,θj ,r̂) + · · ·

]
+ · · ·

}
t̂i

+
[

9

4

L5

ar4
q3(θi,θj ,r̂) + 9

16

aL3

r4
γ̇ /v◦ sin θj cos θjq3(θi,θj ,r̂) + · · ·

]
n̂i , (12)
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(πη◦av◦)−1fint
ib =

{
− 18

7

L3

r3
q1(θi,θj ,r̂) − 3

8

aL3

r3
γ̇ /v◦ sin θj cos θjq1(θi,θj ,r̂) + L4

r4

[
54

7
q5(θi,θj ,r̂) + 99

14
q4(θi,θj ,r̂)

]

+ L6

ar4
γ̇ /v◦ sin θj cos θj

[
− 3

a2

L2
q5(θi,θj ,r̂) + 7

2

a

L
ξq4(θi,θj ,r̂) + · · ·

]
+ · · ·

}
t̂i

+
[

9

4

L5

ar4
q3(θi,θj ,r̂) + 9

16

aL3

r4
γ̇ /v◦ sin θj cos θjq3(θi,θj ,r̂) + · · ·

]
n̂i , (13)

where the angular functions qi,(i = 4,5) are defined in the
Appendix.

Next, we will use the above analytical results that are
obtained for the velocity and force distribution to evaluate
the rheological properties of a suspension.

III. A FLUCTUATING SUSPENSION

Consider a two-dimensional dilute suspension of N swim-
mers moving in a background shear flow. Denoting the surface
density of swimmers by n◦ their surface fraction is given
by c = n◦s◦ where s◦ = 2a × 2L is the effective surface
occupied by a single swimmer. As we have mentioned before,
each swimmer has translational and orientational degrees of
freedom given by ri and θi . Taking into account the rotational
fluctuations of the swimmers, the equations of motion read as

ṙi = v0
i + vbg

i +
∑
j �=i

vint(ri − rj ,θi,θj ),

(14)
θ̇i = �0

i + �
bg

i +
∑
j �=i

�int(ri − rj ,θi,θj ) +
√

2Drζi(t),

where Dr represents the rotational diffusion constant of
swimmers and ζi(t) are Gaussian noises with zero mean
and temporal δ correlations, i.e., 〈ζi(t)ζj (t ′)〉 = δij δ(t − t ′). It
is shown previously that for such swimmers, the rotational
diffusion has a value like Dr = kBT /(24πη◦aL2) [24]. In
writing the above equations of motion, we have assumed that
Dr � ω. As a result of this approximation, the internal motion
of the swimmers are faster in comparing with the rotational
diffusion. This allowed us to use interaction contributions
that are averaged over internal motion of the swimmers.
The validity of the above assumption can be verified in real
systems. For a swimmer with the largest length L ∼ 1 μm
and the smallest length a ∼ 0.1 μm, we see that Dr ∼ 0.5 s−1.
For a real microswimmer, for example, Chlamydomonas, the
undulation frequency of the flagellum is about 100 Hz, which
justifies our assumption [32,33].

Instead of solving the above Langevin description, we use
the Fokker-Planck method to analyze the statistical properties
of the suspension. The statistical properties of the suspension
are entirely determined by the N -particle probability distri-
bution function PN (r1,θ1; r2,θ2; · · · ; rN,θN ; t), which is the
probability of finding particle i at position xi moving along
direction given by θi at time t . The normalization condition
for this probability distribution function is given by

∏N

j=1

∫
drj

∫ 2π

0
dθjPN (r1,θ1; r2,θ2; · · · ; rN,θN ; t) = 1.

The probability distribution function obeys the following
dynamical Fokker-Planck equation:

∂PN

∂t
= −

N∑
i=1

∇ri
· (ṙiPN ) −

N∑
i=1

∂

∂θi

(θ̇iPN ).

As a first approximation in dealing with a dilute suspension,
we assume that the N -particle distribution function can be
factorized as

PN (r1,θ1; r2,θ2; · · · ; rN,θN ; t) =
∏N

i=1
P (ri ,θi,t).

Defining the one-particle probability density as p(ri ,θi,t) =
NP (ri ,θi,t), we can see that the governing equation for this
probability density can be written as

∂ p(r,θ,t)

∂t
= −∇r · [ṙ p(r,θ,t)] + Dr

∂2p(r,θ,t)

∂θ2

− ∂

∂θ
[�̄int(r,θ,t) p(r,θ,t)]

− ∂

∂θ
[�bg p(r,θ,t)], (15)

where �̄int is defined as

�̄int(r,θ,t) =
∫

dRdθ ′ �int(R,θ,θ ′)P (r′,θ ′,t),

where R = r − r′. We further assume that the suspension is
spatially homogeneous, that is, p(r,θ,t) = p(θ,t). In this case,
by integrating over spatial degrees of freedom and using a
divergence theorem, (15) reduces to

∂ p(θ,t)

∂t
= Dr

∂2p(θ,t)

∂θ2
− ∂

∂θ
[�̄int(r,θ,t) p(θ,t)]

− ∂

∂θ
[�bg p(θ,t)]. (16)

After replacing the value of angular velocity from the pre-
vious section, and performing the summation of contributions
from other swimmers, we will obtain

�̄int(r,θ,t) = 15π

512

a3n◦
L2�c

ξ �◦
∫ θ+2π

θ

dθ ′ sin[2(θ−θ ′)] p(θ ′,t)

+ 9π

128

aL2

�c

n◦γ̇
∫ θ+2π

θ

dθ ′

× sin[2(θ − θ ′)] sin(2θ ′) p(θ ′,t).

As the hydrodynamic interaction is divergent at short dis-
tances, we should define a short length cutoff to regularize the
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integrals. �c is a microscopic cutoff length beyond which the
long-range hydrodynamic interaction affects. Here we assume
that �c � 6L, As the analytic far field velocity expression
is accurate for distances further than around three swimmer
lengths [34].

Therefore, the steady state dimensionless Fokker-Planck
equation simplifies to

∂2p(θ,t)

∂θ2
= Per

∂

∂θ
[sin2 θ p(θ,t)]

+ κ
∂

∂θ

{∫ θ+2π

θ

dθ ′ sin[2(θ − θ ′)] p(θ ′,t) p(θ,t)

}

+ z◦c Per

∂

∂θ

{∫ θ+2π

θ

dθ ′ sin[2(θ − θ ′)] sin(2θ ′)

× p(θ ′,t) p(θ,t)

}
, (17)

where z◦ = 9π
15

L
�c

, and the two dimensionless numbers are

given by Per = γ̇

Dr
, which is the rotational Péclet number, and

κ = 45π
1792

av◦
L�cDr

ξc. The above equation is the central equation
that determines the single-particle distribution function in an
interacting system. It contains different terms with different
underlying physics. The term proportional to Per shows the
contribution from external shear flow, and it will result in
angular asymmetry in the distribution function due to the
external force. The term proportional to κ reflects the fact
that the activity of the swimmers has nontrivial effects on the
distribution function. The last term that is proportional to cPer

shows the contributions due to the hydrodynamic interactions
between the swimmers. Contributions due to activity and
interaction make the above equation hard to solve.

For our system we can compare the relative importance of
two terms κ and cPer . We can see that

cPer

κ
∼

(
L

a

)2

×
(

L

u

)2

× γ̇

ω
� 1.

This means that we can neglect the effects due to the term
proportional to κ and make the equation simpler. So the
equation for the orientational probability distribution takes the
following form:

∂2p(θ,t)

∂θ2
= Per

∂

∂θ
[sin2 θ p(θ,t)]

+ z◦c Per

∂

∂θ

{∫ θ+2π

θ

dθ ′ sin[2(θ − θ ′)]

× sin(2θ ′) p(θ ′,t) p(θ,t)

}
. (18)

To solve the above equation, we proceed by searching for
perturbative solutions expanded in terms of two small numbers
Per and cPer . The final result for the distribution function can

be arranged as

p(θ ) = 1

2π

[
1 − 1

4
Per (1 + z◦c) sin(2θ )

− 1

8
Pe2

r (1 + z◦c)sin4θ + · · ·
]
. (19)

As one can see, the above distribution function is sensitive to
the surface fraction of swimmers c. It should be noted that
this distribution function is normalized to particle density and
has the same angular dependence as passive dumbbells. This
function has peaks at θ = 3π/4 and θ = −π/4, which arise as
the competition between the simple shear flow and rotational
Brownian motion of the swimmers. Once p(θ ) is known from
the Fokker-Planck equation, and it can be used to evaluate the
average stress imposed on the fluid by swimmers.

IV. LINEAR RHEOLOGY

For a system composed of N swimmers, we assume that all
swimmers interact through the two-body interactions obtained
above. In this case the stress tensor due to all swimmers can
be written as

S =
N∑

i=1

(rifi + rif fif + ribfib), (20)

where summation should be performed over all swimmers.
As we have shown, the hydrodynamic force acting by each
swimmer can be divided into a part that depends on the state
of that swimmer and a second part that emerges from the
interaction with other swimmer. The interaction contribution
depends on the relative state of interacting swimmers. We
separate the interaction part of the stress tensor as

S =
N∑

i=1

S0(ri ,θi) +
N∑

i=1

N∑
j=1

S int(ri ,θi,rj ,θj ). (21)

For swimmers with fast internal motion and regarding our
discussion above, we can first average over internal motion
of swimmers and then average over fluctuations to obtain the
averaged stress as

〈S〉 = N

∫
drd cos θP (r,θ )〈S0〉t

+ N (N − 1)

2

∫
drd cos θ

∫
dr′d cos θ ′P (r,θ )

×P (r′,θ ′)〈S int〉t ,
where the subscript t denotes the averaging over internal
motion. Using the results that have been obtained above for
the forces, and averaging over the angular distribution of
swimmers we could obtain the average stress tensor. Up to
the leading order, the time average of the stress is

〈S〉t =
{

− 15

7
πη◦ ξ La v◦ + 3πη◦ aL2 γ̇ sin θi cos θi

[
1 + 3

4

(
a

L

)
+ 3ξ

]
− 1

2
πη◦

a2L4

r3
q1

×
[

v◦
7a

(144 + 132ξ ) + 1

8
γ̇ sin θj cos θj

(
15 + 16ξ

)] + 3

2
πη◦

L5

r4
q5

(
12

7

L2

a
v◦ + 9

a3

L
γ̇ sin θj cos θj

) }
t̂i t̂i . (22)
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At this point we have not yet performed the radial and angular
average; this is just the time average. After performing the
angular average with respect to the orientational distribution
function, the effective viscosity of the suspension can be
obtained as η = η◦(1 + n◦ Szx

2aγ̇ η◦
). Up to the leading orders we

will have

η

η◦
= 1 + c

[
z1

L

a
− z2ξw

]

+ c2

[
z3

L2

a�c

+ w

(
z4

L5

a3�2
c

− z5
L2

a�c

)

− ξw

(
z6

L2

a�c

+ z7
L

�c

)]
+ O(c3), (23)

where w = (η◦v◦L2)/(kBT ), z1 = 3π/64, z2 = 180π/28,
z3 = 15π2/8192, z4 = 504π3/112, z5 = 621π3/224, z6 =
207π3/112, z7 = 405π3/57344.

Our result for the effective viscosity of an active suspension
can be considered as an extension of the classical formula for
the effective viscosity of a passive suspension. It has been
shown that for a suspension composed of passive colloidal
particles, the effective viscosity has a contribution proportional
to c (volume fraction in three-dimensional systems). In the
passive case, both the thermal fluctuations and the interactions
contribute to the effective viscosity as a second order effect
proportional to c2.

The dimensionless number w, which appeared in our
results, is a measure of the activity of swimmers. For a
suspension of active particles, the terms proportional to w

represent the activity contribution to the effective viscosity.
As one can distinguish from the above result, the activity
has a contribution in both c and c2 terms. The hydrodynamic
short length cutoff �c, appears only in terms proportional to
c2. This shows that similar to passive suspensions, in active
suspensions the hydrodynamic interaction also can contribute
in second order corrections. As we can see, for �c → ∞ the
interaction contribution to the effective viscosity vanishes, and
only the passive and intrinsic activity of swimmers contributes
in effective viscosity [24]. The dependence to the asymmetry
parameters ξ in our results is interesting. This shows that the
effective viscosity of pullers and pushers is different. The
effective viscosity is reduced for pusher swimmers (ξ > 0),
and it is increased for puller swimmers (ξ < 0). These are the
facts that are seen in experimental observations [5–7].

In addition to effective viscosity, the normal stress differ-
ence can also be calculated:

N = Szz −Sxx = Pe2
r (1 + z◦c) πη◦v◦

[
15

224
La ξ − 17π

14 336

L3

�c

× c(144 + 132ξ ) + 9π

112

L7

a2�c
3 c

]
. (24)

As could be seen, the magnitude of this normal stress is
proportional to swimming speed, and the type of swimmer
could affect the decrease or increase of normal stress difference
through the sign of ξ . For pushers we have N > 0, while for
pullers N < 0 in agreement with previous work [35]. This nor-
mal stress difference is a measure for non-Newtonian behavior
in an active suspension that is observed experimentally [5].

V. CONCLUDING REMARKS

We have presented a microscopic model for studying the
rheological properties of a quasi-two-dimensional suspension
of self-propelled particles. To study the effects of swimming
activity in the rheological properties of a suspension, it is very
important to note that the thermal fluctuations of the swimmers
should be considered. Neglecting the thermal fluctuations
of the swimmer will result in rheological properties that
are independent from swimming activity. In other words
the fluctuations provide a mechanism that result in activity-
dependent response (rheological properties) of the system.
This is due to the linearity of the Stokes equations for the
fluid. For hydrodynamical swimmers, their swimming activity
enters through the boundary condition on their surface. The
linearity of fluid equations shows that the swimming problem
in the presence of an external flow can be separated into two
problems, a single swimmer immersed in a quiescent fluid and
a passive body in the presence of an external force. To obtain
the rheological properties or the response of the system to
external force one will need to solve the second problem that
is independent of the swimming activity.

Taking into account the orientational fluctuations and
hydrodynamic interaction between swimmers, we show that
the hydrodynamic interaction contributes to the effective
viscosity as a second order correction proportional to c2. Our
results for the effective viscosity of the suspension extend
the classical theories for passive dumbbells [36,37]. We show
that in addition to the surface fraction c, the geometry of the
swimmers L/a, their asymmetry factor ξ , and their swim-
ming strength w = η◦v◦L2/kBT have considerable effects in
their rheological properties. For a typical micrometer-scale
self-propelled particle swimming with speed v◦ ∼ 1 μm, the
activity parameter reads as w ∼ 1. This shows that the
effects due to activity in the viscosity are crucial. We found
that swimming activity results in an increase in viscosity
in suspensions of pullers, but a decrease in suspensions
of pushers, in agreement with experimental observations
[5–7].

It should be mentioned that we have neglected transla-
tional fluctuations and have considered only the rotational
fluctuations. To check the relevance of this approximation,
one should note that the rotational diffusion of an active
particle will give rise to an effective translation diffusion given
by Deff

t ∼ v◦2

Dr
[38]. For a typical microswimmer, rotational

and translational diffusion coefficients are given by Dr ∼
10−1 s−1 and Dt ∼ 10−12 m2s−1, respectively. Regarding the
fact that the swimming speed is about 10−6 ms−1, we can
easily see that Deff

t ∼ 10Dt . This will ensure that orienta-
tional diffusion has a stronger effect than the translational
one.

In this article, we have presented the results for a simple
case where all swimmers are in phase. The model swimmer
discussed in this article allows us to consider a more general
case of a system with out-of-phase swimmers. For out-of-phase
swimmers, the hydrodynamic interactions will depend on the
phase difference ϕi − ϕj . Without presenting the details of the
calculations here, we have examined the case that the phases
are rigid and distributed randomly. Averaging over a uniform
distribution of the phases, the terms proportional to z5 and
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z6 in Eq. (23) will vanish. The terms promotional to z6 and
z7 have similar signs, and at the limit of a � L, the term
proportional to z5 is negligible as compared with the term
proportional to z4. This shows that the rheological properties
of two systems, one with in-phase swimmers and the other
with uniformly distributed phases, are similar. However, in a
more realistic system with diffusing phases, coupling between
phase and orientational degree of freedom can arise because
of nontrivial dynamics of the phase variables. Such coupling
can introduce interesting effects in the system.

In this article we have considered the active Brownian
particles mechanism for swimmers. Run and tumble is another
mechanism that most microorganisms use to swim. A natural
extension of this work is the generalization of our results for
the latter case.
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APPENDIX: THE ANGULAR FUNCTIONS

The angular functions qi(θi,θj ,r̂),(i = 1,2,3,4,5,6) are

q1(θi,θj ,r̂) = 1 − 3(r̂ · t̂i)
2 − 3(r̂ · t̂j )

2 − 6(t̂i · t̂j )(r̂ · t̂i)(r̂ · t̂j ) + 15(r̂ · t̂i)
2
(r̂ · t̂j )

2
,

q2(θi,θj ,r̂) = (r̂ · n̂i)[(r̂ · t̂i) + 2(t̂i · t̂j )(r̂ · t̂j ) − 5(r̂ · t̂i)(r̂ · t̂j )
2
],

q3(θi,θj ,r̂) = (r̂ · n̂i)[1 + 2(t̂i · t̂j )
2 − 5(r̂ · t̂i)

2 − 5(r̂ · t̂j )
2 − 20(t̂i · t̂j )(r̂ · t̂i)(r̂ · t̂j ) + 35(r̂ · t̂i)

2
(r̂ · t̂j )

2
],

q4(θi,θj ,r̂) = (r̂ · t̂j )[−3 − 4(r̂ · t̂i) − 2(t̂i · t̂j )
2
(r̂ · t̂j ) + 15(r̂ · t̂i)

2 + 20(r̂ · t̂i)(r̂ · t̂j )(t̂i · t̂j ) + 5(r̂ · t̂j )
2 − 35(r̂ · t̂i)(r̂ · t̂j )

2
],

q5(θi,θj ,r̂) = 3(r̂ · t̂i) + 4(r̂ · t̂j )(t̂i · t̂j ) + 2(t̂i · t̂j )
2
(r̂ · t̂i) − 15(r̂ · t̂i)(r̂ · t̂j )

2 − 20(r̂ · t̂i)(r̂ · t̂j )(t̂i · t̂j )

− 5(r̂ · t̂i)
2 + 35(r̂ · t̂j )(r̂ · t̂i)

3
.
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