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1 Strain and Stress

The main question of elasticity is to find the equilibrium configuration of a solid and elastic
continues medium that is under the action of external forces.

To characterize the deformation of a body, let us denote the position vector of a material
point before deformation by r. After the deformation takes place, the material point
changes its position to a new position denoted by r′. The displacement field is defined as
w(r) = r′ − r. The distance between two material points before and after the application
of the deformation are given by ds2 = dridri and ds′2 = dr

′
idr
′
i respectively. We have:

ds′2 = (dri + dwi)(dri + dwi) = (dri + ∂jwidrj)(dri + ∂jwidrj) = ds2 + 2wijdridrj .

This relation helps us to define the notion of strain that is a new physical quantity with
tensorial properties. The strain tensor tensor is defined as:

wij =
1

2
(∂iwj + ∂jwi + ∂iwk∂jwk) . (1)

For small deformations, that include almost all practical examples in the theory of elasticity,
we can drop the nonlinear part of the above equation and keep only the linear part. It is easy
to see that a volume element of the matter, after deformation changes as: dV ′ = (1+wii)dV .

To interpret the state of forces in a continues medium, consider a reference state of a
system that has no deformation. In this case the system is in mechanical equilibrium and
all internal forces are balanced. The net force acting on any volume element of the matter is
zero. Applying an external force will deform the system and internal forces appears. These
internal forces are present and they tend to restore the original equilibrium state (state
with no deformation) through dynamical processes. The internal forces are originated
from intermolecular forces. As these inter-molecular forces are short range, the total force
acting on a small volume (mathematically small) of matter can be evaluated through an

∗Based on the book by Landau and Lifshitz.
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integration over the surface enclosing this volume element. To reach a force with vectorial
nature through a surface integration, a second rank tensor, stress tensor, should be defined.
In other words, the state of force distribution inside a continues medium is described by
a second rank tensor with components σij . The force exerted on the volume element can
be written as:

∮
σ · ds =

∫
∇ · σdV . It can be shown that for an elastic system with an

isotropic molecular structure, no torque at the microscopic scale can persist and the stress
tensor should be symmetric σ = σT.

Now let us consider a system that under the action of time independent external forces
per unit volume denoted by f(r), deforms to a new shape. Note that this external force
could act either at the bulk or at the boundaries. As we keep the external force on, the
deformed state is a new equilibrium state. The force balance equation that describe this
equilibrium state reads as:

∇ · σ + f = 0. (2)

A very trivial example of the above equation is the state of undeformed system with f = 0.
In this case the internal forces and hence the stress tensor is zero every where. Another
simple example corresponds to a case where an isotropic external force in the form of
constant pressure P , acts on the boundary of the system. Stress tensor should be constant
every where. On the macroscopic boundary of this system

∮
σ · ds + P

∮
ds = 0, so the

constant stress tensor is given everywhere by: σ = −PI, where I is the unit tensor of rank
two.

2 Deformation energy

For a deformed body, the deformation energy per unit volume is a functional of the strain
field as: F = F(wij). Having in hand this functional, we can calculate the stress dis-
tribution as well. To see the origin of this idea, let us calculate the virtual work done
by the internal stresses when the state of deformation of the body is changed from wi

to wi + δwi through a virtual process. The work done against internal forces reads as:
δF =

∫
δFdV = −

∫
(∂iσij) δwjdV =

∫
σijδwijdV , where we have used the integrations by

part and have assumed that the boundaries at infinity are kept fixed with no deformation
and hence no stress. As a result of this virtual work calculation, it is easily seen that:
σij = ∂F/∂wij and this shows how can we calculate the stress from the free energy.

For small deformations we can expand the deformation energy in powers of strain tensor.
The quadratic term, is the first non trivial term in such expansion. In this case one can
expect a linear relations between stress and strain tensors. Using such a linear relation for
stress in terms of strain, one can easily integrate over all virtual works that transform the
system from an initial undeformed state to a final deformed state and obtain the energy
as: F =

∫
δF =

∫ ∫
σijδwji. Hence for a quadratic system, the bending energy is given by:

F = (1/2)

∫
σijwjidV.
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For an isotropic system, two phenomenological scalars, Lame coefficients denoted by λ and
µ, are necessary to write a quadratic expansion as:

F =
1

2
λwiiwii + µwijwji =

1

2
Kwiiwii + µ(wij −

1

3
wkkδij)(wij −

1

3
wkkδij). (3)

where K = (λ+ (2/3)µ). Decomposition in terms of the traceless part of the strain tensor
allows us to give physical interpretation for coefficients. Recalling the fact that a volume
conserving deformation (shear deformation) corresponds to a traceless strain tensor, we
can assign K and µ to bulk and shear (rigidity) moduli, respectively. For this isotropic
medium, the following linear stress- strain relation holds:

σij = Kwkkδij + 2µ(wij −
1

3
wkkδij),

wij = (1/9K)σkkδij + (1/2µ)(σij − (1/3)σkkδij). (4)

Two simple examples can be considered here. First for an isotropic compression σ = −PI,
we can simply have: wii = −P/K.

The second example is a perfect rod with circular cross section with radius R and
length L that is under the action of external pressure on its ends. The sides of this rod
is free to deform. We denote the longitudinal direction by ẑ. Since there is no external
force, the stress tensor is constant everywhere. On the side of the rod, σ · n = 0 so, all
components of σ except zz component should be zero (on the side on rod, n does not
have any component along ẑ). On the ends, σzz = −P where P could be either positive
(compression) or negative (extension). Now from the stress-strain relation, we will have:

wxx = wyy =
1

3

(
1

2µ
− 1

3K

)
P, wzz = −1

3

(
1

µ
+

1

3K

)
P.

Instead of Lame coefficients, we can work with two new parameters, Young’s modulus E
and Poisson’s ration σ that are defined as:

P = −Ewzz, wxx = −σwzz

The first equation resembles the Hook’s law when we replace the rod with a simple spring.
E is the spring constant and −1 ≤ σ ≤ 1

2 measures the ratio of the transverse compression
to the longitudinal extension. The deformation energy per unit volume for this rod reads as:
F = P 2/(2E). Denoting the length compression by δL, we see that δL/L = −wzz = P/E.
In terms of this length compression, the total energy per unit length of this deformed rod
can be written as:

Fc

L
=

1

2
Λ(
δL

L
)2, (5)

where compressional elastic modulus of the rod is defined by: Λ = πR2E.
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Here we should emphasize that Young’s modulus and Poisson’s ratio can be alterna-
tively used as two independent phenomenological parameters for characterizing an elastic
medium:

E =
9Kµ

3K + µ
, σ =

1

2

3K − 2µ

3K + µ

In terms of these parameters, deformation free energy and stress-strain relations can be
written as:

F =
E

2(1 + σ)

(
wijwij +

σ

1− 2σ
wiiwii

)
,

σij =
E

1 + 2σ

(
wij +

σ

1− 2σ
wkkδij

)
, wij = E−1 ((1 + σ)σij − σσkkδij) . (6)

After reviewing the above simple examples, we can consider the equilibrium state of a
medium that is under the action of external force density f . The differential equation for
the displacement field w in the equilibrium state is:

∇2w +
1

1− 2σ
∇(∇ ·w) = −2(1 + σ)

E
f . (7)

Solving this equation with suitable boundary conditions, we will reach to the deformation
field then stress distribution and total deformation cab be calculated.

As an another example consider a large elastic medium that fills the half space z < 0.
As a result of an harmonic external force, the free surface of the medium (denoted by z = 0
plane) deforms in an harmonic way given at the boundary by: wz(x, y, z = 0) = h◦ sin(qx)
(see fig. 1). To simplify the problem, we investigate the results at the limit of zero Poisson’s

Figure 1: A large body with surface harmonic deformation.

ratio (σ = 0). The displacement field satisfy the equation ∇2w+∇(∇·w) = 0. As a result
of symmetry, wy = 0, everywhere. To fulfill the boundary conditions, the solutions should
have mathematcal form given by wx = f(z) cos(qx) and wz = g(z) cos(qx − θ). Applying
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these proposals into the differential equations, we can finally reach to the following relations
for displacement and strain fields:

wx = h◦ cos(qx)eqz, wz = h◦ sin(qx)eqz

wxx = −h◦q sin(qx)eqz, wzz = h◦q cos(qx)eqz, wxz = −h◦q cos(qx)eqz, (8)

the other components of the strain tensor (that are not listed in above equation) are zero.
Stress tensor is σij = Ewij . Having in hand the stress and strain tensors, we can evaluate
the free energy of this system by integrating over the volume (1/2)

∫
σijwjidV . Denoting

the area of this system by L2, the final result for the free energy reads as:

F =
3

8
Eq(h◦)

2L2.

3 Elasticity of a Rod

In the previous part we showed how for a simple compressional geometry, the elasticity of a
rod can be solved. In this part we want to consider the problem of rod in more details. For
a thin rod, in addition to the compressional elasticity, two other classes of deformations
can be considered independently, the torsional and bending deformations. There is an
important difference between these two new classes of deformations with the previously
defined deformations. A macroscopic rod that is under the twist or bending can experience
large deformations. But note that the strain tensor in all cases are small and we can study
those cases in small strain limit.

Figure 2: (a) An undeformed rod, (b) a pure twist deformation (c) a pure bending and (d)
cross section of a bend rod.

Let us start with twist elasticity. Fig. 2 shows the geometry of a rod with circular cross
section before and after twist. Two cross sections of the rod are shown, one in the middle
and the other is adjacent to the first one. We aim to calculated the deformation energy
stored in the small part of the rod that is bounded by these two cross sections. We denote
by ∆z, the length of this short part of the rod. After applying a twist, the middle cross
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section does not experience any deformation but the adjacent cross section will deform and
in general the deformed cross section is not necessarily flat. A general material point A
(located on the top surface of sub-system) with position r = (x, y,∆z) is transformed to
a new position A′ with coordinate r′ = r + δφẑ × r. Defining the rotation angle per unit
length by ω then the rotation angle can be given by: δφ = ω∆z. In this case the strain
tensor is given by:

wx = −ωy∆z, wy = ωx∆z, wz = ωψ(x, y).

Where ψ(x, y) shows the unknown longitudinal deformation that needs to determine by
applying the boundary conditions. Now the stress and strain tensors are given by:

wxz =
ω

2
(∂xψ − y) , wyz =

ω

2
(∂yψ − x) , wij = 0 other components

σxz = µω (∂xψ − y) , σyz = µω (∂yψ − x) , σij = 0. (9)

Inserting the above result into the equilibrium condition ∇ · σ = 0, we can see that the
unknown strain function should be satisfied by a two-dimensional Laplace equation ∇2ψ =
0. For a rod with circular cross section and noting that the stress tensor is zero on the
surface of rod, we can see that ψ = constant. Hence, the strain function ψ does not
contribute to the stress. Now the free energy per unit volume of the rod can be simply
obtained by evaluating (1/2)σijwji. Integrating this energy density over the cross section,
we can evaluate the total torsional energy stored in this small rod. Denoting the radius
of cylinder by R and defining the torsional rigidity by T = (1/2)µπR4, the total torsional
energy per unit length of the rod reads:

Ft

∆z
=

1

2
Tω2. (10)

Let us now consider a bend deformation that is applied to a long rod. In practice, bend
deformation can be reached by applying either a force or a torque at the ends of the rod. To
evaluate the bending energy stored in a small part of this rod with length ∆z, we note that
this part of the rod can be considered as small arc with radius of curvature given by c−1.
Material points on the convex part of this arc stretched (points 1 and 2 in fig. 2(c)) and
points on the concave part (points 3 and 4) are compressed. There is a surface inside the
rod called the neutral surface that separates the stretched and compressed parts. c shows
the local curvature of this neutral surface. For a simple rod with circular cross section, it
can be shown that the bending energy per unit length stored in a small rod with length
∆z is given by:

Fb

∆z
=

1

2
κc2, (11)

where κ = EI is the bending rigidity of the rod and the moment of inertia I is an integral
over the cross section. For circular cross section, I =

∫
x2dxdy hence I = (π/4)R4. More

details are given in Landau and Lifshitz.
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4 Long rod with complex deformation

As shown in fig. 3, consider a long rod with circular cross section that is under the action of
external forces and torques that are applied at its ends. We aim to obtain the equilibrium
configuration of this rod. Our strategy is to write the energy functional for a general
deformation profile of the rod, then minimizing this functional would give the equilibrium
configuration. Undeformed rod has a length given by L. We use an arc length parameter
0 ≤ s ≤ L, to denote different material points of the rod. A general configuration of the
rod can be represented by position vectors r(s) of all its material points.

Figure 3: A rod that is under the action of forces and torques at its ends.

Differential geometry of a space curve can be outlined as follows. For a curve, ṙ(s) =
dr/ds = t is a tangent vector and r̈ = ṫ = c(s)n where n is a binormal vector and c
denotes the local curvature of the curve. One should note that the tangent vector ṙ is
not necessarily a unit vector, ds is a fixed length (distance between two adjacent material
points when the rod is not stertched) but dr is a distance between two points that can
be changed by stretching or compressing. Three vectors t,n and b = t× n shows a local
right-handed orthogonal coordinated system. Consider two adjacent points s and s + ds
on the curve and two local frames at these points. These local frames are constructed with
the way that have been described before. For a general space curve, these two frames are
related to each other by a rotation angle ∆Φ. The curve is twisted if this rotation angle
has a component along the tangent vector. The torsion rate is defined as ω = (ds)−1∆Φ ·t.
It is easy to see that from this definition for torsion rate, we will have: ω = b · ṅ. Noting
that b ·n = 0 then ω = −n · ḃ. Finally the local curvature and torsion rate can be written
as:

c2 = r̈ · r̈, ω = c−2ṙ · (r̈× ...
r ) .

To write the energy functional of the rod, we note that the compressional, torsional and
bending modulus for a rod are given by Λ, T and κ respectively. Note that for a rod that is
made from an isotropic material, these three moduli are not independent. We decompose
the rod to small sub-systems. Let us consider a small part that is bounded by s and s+ds.
Recalling the results for compressional (Eq. 5), twist (Eq. 10) and bend (Eq. 11) energies,
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we can write the energy functional as:

F [r, ṙ, r̈,
...
r ] =

1

2

∫ L

0

√
t · t

(
κc2 + Tω2 + Λ

(|t| − 1)2

|t|

)
ds+ U. (12)

In this functional c, ω and t should be considered as functional of r and its derivatives.
The energy contribution due to the external forces and torques F(0), F(L), τ(0) and τ(L),
is denoted by U and it is given by:

U = −F(0) · r(0)− F(L) · r(L)− τ(0) · ṙ(0)− τ(L) · ṙ(L).

Let us proceed by considering a simple case where the rod is inextensible and torsion is
absent. As the rod is inextensible, we set Λ = 0 and use a Lagrange multiplier λ to imply
the in-extensibility condition. The free energy reads:

F [r, ṙ, r̈,
...
r ] =

1

2

∫ L

0

(
κc2 + Tω2 + λ(t · t− 1)

)
ds+ U. (13)

In this case the variation of the energy is given by:

δF =

∫
(κ

....
r − λr̈) · δrds+ [κr̈ · δṙ + (λṙ− κ...

r ) · δr]B + δU,

where [f ]B := f(L) − f(0). The following differential equation describes the equilibrium
state of the rod:

1

∆s

δF

δr
=
(
κ(c̈− c3)− λc

)
n− 3κcċt = 0.

For the case where both ends are subjected to external forces and torques, the boundary
conditions read:

+λṙ(L)− κ...
r (L)− F(L) = 0, κr̈(L)− τ(L) = 0,

−λṙ(0) + κ
...
r (0)− F(0) = 0, − κr̈(0)− τ(0) = 0.

For a deformed rod that is in (x, z) plane, we choose a reference frame that is attached to
the first point of the rod (s = 0). In Monge representation, the shape of this rod can be
given by a function z = h(x) and r = (x, h(x)). Further simplifications can be achieved
by considering a rod that is nearly straight. In this case h′(x) = dh/dx � 1 and we will
have t ∼ (1, h′), n ∼ (−h′, 1) and c ∼ h′′(x). In this case the differential equation and the
boundary conditions describing the equilibrium state are given by:

κh′′′′(x)− λh′′(x) = 0,

λ− Fx(L) = 0 λh′(L)− κh′′′(L)− Fz(L) = 0, κh′′(L)− τ(L) = 0,

−λ− Fx(0) = 0 − λh′(0) + κh′′′(0)− Fz(0) = 0, − κh′′(0)− τ(0) = 0. (14)
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This linearized regime can describe the equilibrium state of an inextensible rod and Λ can
be considered as a Lagrange multiplier that guarantees the in-extensiblity constraint.

As a first example, consider a rod that its first point is clamped, and an external bending
force F(L) = (0, f0) is applied to its end. As the first point is clamped, instead of force and
torque boundary conditions, we should apply the conditions as: h(0) = h′(0) = 0. Force
and torque conditions at the end implies: h′′(L) = λ = 0 and λh′(L)− κh′′′(L) = f0. The
differential equation describing the shape of rod reads as: h′′′′(x) = (λ/κ)h′′(x). Straight
forward calculations shows that:

h(x) =
f0L

4κ
x2
(

1− 2

3

x

L

)
.

For second example, we consider a rod that its first point is hinged (free to rotate), and
an external compressing force F(L) = (−f0, 0) is applied to its end. As the first point is
hinged, instead of force boundary conditions, we should apply the conditions as: h(0) =
h′′(0) = 0. Force and torque conditions at the end imply: h′′(L) = 0, λ = −f0 and
λh′(L) − κh′′′(L) = 0. As in the linearized theory we do not allow for any compression,
hence we do not expect to see any deformation in this example. The differential equation
describing the shape of the rod reads as: h′′′′(x) = (λ/κ)h′′(x). Integrating twice, we will
have h′′(x) − (λ/κ)h(x) = ax + b. Taking into account the boundary condition we see
that a = 0. Zero torque condition at the end implies that b = h(L). Let us proceed with
our intuitive expectation of zero deformation that corresponds to h(L) = 0. Then the
differential equation has a solution like:

h(x) = h0 sin(
√
f0/κx).

For small forces, we can choose h0 = 0 and everything is self-consistent and as we have
expected no deformation takes place along the rod. When we increase the force, at a critical
force given by fe = (π2κ/L2), we can have a finite deformation pattern that satisfies the first
suggestion h(L) = 0. What we are observing here is a first hint on the buckling instability.
Complete nonlinear analysis of the rod, shows that for small external compressional forces
f0 ≤ fe, the straight rod is stable but for larger forces the straight state of the rod is not
stable and the buckling instability will initiate.
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