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ABSTRACT
We theoretically consider the dynamics of a self-propelled active Janus motor moving in an external electric field. The external field can
manipulate the route of a Janus particle and force it to move toward the desired targets. To investigate the trajectory of this active motor, we
use a perturbative scheme. At the leading orders of surface activity of the Janus particle and also the external field, the orientational dynamics
of the Janus particles behave like a mathematical pendulum with an angular velocity that is sensitive to both the electric field and surface
activity of the motor.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5101023

I. INTRODUCTION

Among all microswimmers,1–3 active Janus particles are novel
and one of the most interesting micromotors with many promis-
ing and realized applications.4,5 Since its first realization,6 many
applications of active Janus particles have been achieved success-
fully, including effective and intelligent cargo7–12 and drug deliv-
ery,13–18 the ability to enter into living cells,19–22 detecting and
healing microdefects in microchips,23,24 and nanopatterning tech-
niques.25 Also, it has been shown that these motors are able to
clean water of organic or inorganic pollutants such as bacteria and
heavy metal compounds more effectively.26–34 Designing chemical
and biosensors is another progress in the application of active Janus
particles.18,35,36

Like the first synthesized models,6,37–39 active Janus motors usu-
ally are made in the form of micron-sized rods or spheres consisting
of two parts with distinct surface chemical properties. These motors
operate by setting up decomposition of chemical molecules in the
fluid and converting chemical energy into mechanical work, often
in the form of a directed or rotational motion.40–44 Besides sub-
stantial efforts devoted to understanding the mechanism involved in
the motion of a single motor,45–56 studying their dynamics in com-
plex environments, such as geometrical confinements and obstacles,
crowded environments with high densities of active or passive par-
ticles, and non-Newtonian media, is also of great interest in order

to control their behavior in various applications.57–72 In most of the
applications, having the ability to precisely align and guide Janus
motors in predefined directions toward targets is a crucial exper-
imental need.10,11,73 Modulating the velocity of self-phoretic Janus
motors by applying a gradient to the concentration of involved
chemical molecules is examined experimentally.7,9,11 In some bio-
logical applications, a ferromagnetic core, such as nickel, has been
attached to Janus motors so that torque from an external mag-
netic field can change the direction.7–10 Optical and chemical gra-
dients,74–76 activation field gradients,77,78 and acoustic tweezers79 are
some other ways to guide active Janus particles.

Electrical properties of most catalytic micromotors6,42,50 sug-
gest that an electric field can be an alternative or even better can-
didate to control the motion of self-phoretic particles. Moreover,
pickup and release of cargos through induced dipolar interactions
between a Janus motor and the cargos can be achieved more easily by
applying an electric field rather than other tools.11,73 In this regard,
the electrophoresis of catalytic Janus particles has been investigated
experimentally in Ref. 68 (see Fig. 3). A spherical polystyrene col-
loidal particle with a platinum cap immersed in the solution of H2O2
has been considered. Driven by self-phoresis, the particle moves
toward the polystyrene side. Their observations show that applying
an electric field causes the particle to rotate and realign its direction
of symmetry parallel to the field. Therefore, the particle moves in the
direction of the electric field.
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Here, we theoretically investigate the dynamics of an active
Janus particle in the presence of a uniform external electric field. The
particle is a nonconducting spherical colloid with active chemical
sites that are distributed asymmetrically over it. This active parti-
cle is immersed in an electrolyte solution. As a result of chemical
reactions, a gradient of cations and anions will be developed in the
media and this eventually provides the self-propulsion force neces-
sary to operate the motor.80 Furthermore, an external electric field is
also applied to this system.

The electric field acted on a passive charged particle causes
the well known phenomena of electrophoresis.81,82 For active col-
loids, in addition to the electrophoresis, the external electric field will
affect the dynamics of the Janus particle by modifying and deform-
ing the electrostatic potential and Debye layer around that parti-
cle. We will show that this effect has a main role in the dynamics
of the active Janus particle by imposing an aligning torque on the
particle.

The organization of this paper is as follows: in Sec. II, we intro-
duce the model of the active Janus motor. Sections III and IV are
devoted to outlining the main equations governing the motion of the
motor and introduce the approximations to simplify the equations.
We proceed by providing a perturbation expansion and obtaining
analytical results in Sec. V. Finally, the results and discussions are
presented in Sec. VI.

II. MODEL SYSTEM
As shown in Fig. 1, consider a spherical active particle with

radius a immersed in a bulk electrolyte solution with electric perme-
ability εr and hydrodynamic viscosity η. For simplicity, we consider
the case of a symmetric 1:1 electrolyte, i.e., the valencies of two ionic
species, cations and anions, are Z± = ±1, respectively. We denote
the bulk number density of each ionic species by nb+ = nb− ∶= n∞
and their diffusion constants as D. The particle is charged, and the

FIG. 1. Illustration of a spherical and chemically active particle in a uniform elec-
tric field E = E �̂. The surface of the particle consists of two hemispheres with
distinct chemical activity. Chemical reactions release both positive and nega-
tive ions (blue and red dots) on the north hemisphere (depicted in yellow) and
annihilate them on the south hemisphere (depicted in gray). The unit vectors t̂
and �̂ indicate the symmetry axis of the active particle and the direction of the
electric field, respectively. Self-propulsion and the electrophoresis of the particle
allow it to move with translational and rotational velocities denoted by U and 
,
respectively.

electrostatic potential on the surface of the particle, relative to the
potential in the bulk solution, is denoted by ψs. As demonstrated
in Fig. 1, the surface of the particle consists of two parts with dis-
tinct chemical activity.80 The activity of the surface of the parti-
cle triggers a set of chemical reactions asymmetrically; both ionic
species are released (“emitted”) simultaneously on the north hemi-
sphere of the particle with rate Q̇. On the other hand, both cations
and anions are reduced (“annihilated”) on the south hemisphere
by the same rate given at the emitting part. Physically, this can be
realized, e.g., by breaking up neutral molecules (“fuel”) present in
the solution on the emitting side that drives the whole system out
of chemical equilibrium. Then, on the other side of the particle,
reactions start to recombine the extra ions with neutral molecules
in order to bring back the system to chemical equilibrium with a
conserved number of molecules. Moreover, the particle is assumed
to be nonconductive; therefore, the chemical reactions on its sur-
face do not have any electrical effect on the particle, i.e., releas-
ing/annihilating of ions does not change the uniform surface charge
of the particle. Such a Janus motor is often made of an insulator,
e.g., silica or polystyrene, with a thin layer of a catalyst coated on
some parts of the particle.44 The physical behavior of other types of
active Janus motors, such as light-activated Janus particles moving
in binary mixtures,39 has some similarities to the model described
here.

In addition to the model described above, other similar theo-
retical models for an active Janus particle are possible which share
the same concept of releasing/annihilating ions (or other types of
solute particles) to create phoretic forces.45,83 However, the distribu-
tion of reactions recombining extra ions or solute molecules differs
in these models. Since all of these models share the same physics,
and especially leads to similar results for an isolated Janus parti-
cle,84 in this study, we focus only on the simple model explained
above.

Following the chemical processes, local changes in the den-
sity of ions around the particle will develop and subsequently drive
the system out of mechanical equilibrium. For such an isolated
active Janus motor and in the absence of the external field, we
denote the self-propulsion active velocity by Ua. From the other
hand and for a passive Janus particle with a constant and sym-
metric surface potential, moving in an external electric field, the
phenomenon of electrophoresis exerts a force to the particle. We
denote this electrophoretic velocity with Ue. Here, we would like
to consider both mechanisms of activity and electrophoresis, simul-
taneously. Decomposing the active and electrophoresis parts in the
velocities as

U = Ua + Ue + Uae, Ω = Ωae, (1)

we aim to calculate the contributions to the linear and angular veloc-
ities denoted by Uae and 
ae that are functions of the interplay
between activity and electrophoresis. Promised by symmetry princi-
ples, neither activity nor electrophoresis is able to solely apply torque
on the particle and enforce it to rotate. This is reflected in the above
equation for the angular velocity where contributions from activity
or electrophoresis are not considered. Furthermore, we will see in
Sec. V that the above form of decomposition will help us in devel-
oping some approximating procedures to deal with the complicated
mathematics of this problem.

J. Chem. Phys. 150, 234902 (2019); doi: 10.1063/1.5101023 150, 234902-2

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

In the following, we proceed with giving the main equations
governing the dynamics of the motor. Then, by introducing some
simplifications, we will get a set of equations that can be solved
analytically.

III. GOVERNING EQUATIONS
Fluid velocity u(r), pressure p(r), electric potential ψ(r), and

ionic densities n±(r) are main fields in our problem that need to be
determined. Before writing the dynamical equations, it is convenient
to define a dimensionless system of units. We use the radius of the
Janus particle a, thermal potential ψ0 = (kBT/e), bulk density of ions
n∞, and a characteristic velocity given by v0 = (kBT/e)2(εr/ηa) to
make all quantities nondimensional, where kB is the Boltzmann con-
stant, T is the temperature, and ρ and η are the fluid density and
viscosity, respectively. In this dimensionless system, the hydrody-
namics of the incompressible Newtonian fluid is governed by the
following Stokes and continuity equations:

∇2u(r) − ∇p(r) +∇2ψ(r)∇ψ(r) = 0, ∇ ⋅ u(r) = 0. (2)

One should note that in writing the above equations, we have
assumed that the Reynolds number defined as Re=(ρU a/η) is
very small for microscales where U is the characteristic velocity
of the motor. The electrostatic interactions of ions with the local
potential ψ(r) lead to a distribution of body forces in the fluids
given by ∇2ψ(r)∇ψ(r). The electrostatic potential obeys the Poisson
equation,

δ2∇2ψ = −1
2
(n+ − n−) , (3)

where δ = 1/(κa) with 1/κ =
√
εrkBT/2e2n∞ gives the dimension-

less thickness of the “Debye layer.” This Debye layer measures the
the equilibrium thickness of the fluid around a colloidal particle
where counter ions are accumulated there and screen the charge of
colloid.81,82 The distribution of the ionic species is governed by the
continuity equation for the corresponding number densities,

∂n±(r)
∂t

+∇ ⋅ j±(r) = 0. (4)

The ionic currents j±(r) are given by the phenomenological expres-
sions as

j±(r) = −∇n±(r) ∓ n±(r)∇ψ(r) + Pe n±(r)u(r). (5)

The first two terms on the right hand side of the above equation
represent the transport by diffusion of ions and drift due to the elec-
tric force, respectively. The third term is the convection due to the
flow of fluid. Here, Péclet is a dimensionless number that describes
the ratio of the transport via convection by the flow to the thermal
diffusion and it is given by Pe = (av0/D).

Equations (2)–(4) must be solved subject to appropriate bound-
ary conditions at the surface of the motor and at infinity. We start
with the boundary conditions at the surface of the motor. The
chemical activity on the surface of the Janus motor is given by the
following condition on the ionic fluxes:

n̂ ⋅ j±(r = n̂) = q̇ t̂ ⋅ n̂ , (6)

where q̇ = Q̇a/D is a dimensionless number defining the strength of
surface activity of the Janus particle. The unit vector locally normal
to the surface of the motor is denoted by n̂, and the angular con-
figuration of the Janus particle is denoted by a unit vector denoted
by t̂. The electrostatic potential and the fluid velocity in a comoving
frame should satisfy the following boundary condition at the surface
of the motor:

u(r) = 0, ψ(r) = ψs, r = n̂. (7)

At infinity, the boundary conditions read

u(r) = −U −Ω × r, ∇ψ(r) = −� �̂, n± = 1, r →∞, (8)

where � = E ea/(kBT) is a dimensionless number characterizing the
strength of the external electric field and �̂ is a unit vector show-
ing its direction. U and 
 are the translational and angular veloc-
ities of the motor, respectively. The motor experiences hydrody-
namic and electrostatic forces and torques that are given by the
Stokes hydrodynamic and Maxwell electrostatic stress tensors. Con-
sidering the fact that the motion of a microscale Janus particle
takes place at low Reynolds condition, net force and torque should
vanish,

F = ∮
S
{−pI +∇u + (∇u)T +∇ψ∇ψ − 1

2
∇ψ ⋅ ∇ψI} ⋅ n̂ dS = 0,

(9)

τ = ∮
S
r × {−pI +∇u + (∇u)T +∇ψ∇ψ − 1

2
∇ψ ⋅ ∇ψI} ⋅ n̂ dS = 0.

(10)

Here, I stands for the unit matrix and superscript T denotes the
matrix transposition.

IV. APPROXIMATIONS
Before solving the equations, it is instructive to consider the

order of magnitude for relevant physical parameters in a typical sys-
tem. We will see that realistic values of parameters will allow us to
introduce a couple of approximations that can simplify the math-
ematical equations we have presented in Sec. III. A micromotor
with a ∼ 1 µm moves with a velocity about 1 µm s−1 in an aque-
ous solution with viscosity η ∼ 10−3 Pa s.6,37 Furthermore, in an
electrolyte solution, such as 0.001M solution of KCL at room tem-
perature, the diffusion and the bulk density of ions are of order D
∼ 10−9 m2 s−1 and n∞ ∼ 1023 m−3, respectively.82 So, we can see
that δ ∼ 10−3 and Pe ∼ 10−1. Consequently, we can make great sim-
plifications in dynamical equations by considering the conditions
of Pe ≪ 1 and δ ≪ 1 to obtain approximate equations. For fur-
ther simplification of the model, we assume that the kinetics of the
decomposition/reduction is in the “reaction limited” regime with
q̇= Q̇a/Dn∞≪ 1,85 i.e., diffusion of ions is much faster than emis-
sion/annihilation of ions.

The main simplification is related to the concept of the Debye
layer. For most experimentally realizable systems, as noted above,
the thickness of the Debye layer is much smaller than the size of the
particle, i.e., δ = 1/κa ≪ 1. At this condition, we use a macroscale
description developed by Yariv and co-workers86–88 and divide the
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fluid domain into two regions: “inner” (within the Debye layer) and
“outer” (outside the Debye layer) parts. In this macroscale descrip-
tion, the goal is to obtain effective macroscale properties of the
nearly electro-neutral outer region. In the following, we will see that
the effective physical properties at the bulk can be achieved by apply-
ing proper boundary conditions on the outer surface of the Debye
layer on macroscale fields.

The equations governing the dynamics can be solved for each
regions separately and finally matched to the solutions on the edge of
the double layer.80,86,87,89 The velocity of the Janus particle, U, which
we would like to evaluate, appears in the outer region problem as a
boundary condition at infinity (in the comoving frame).

In the inner region, because of a very thin film of fluid, the sur-
face of the motor can be approximated as a planar wall. The fluid
is in quasiequilibrium, and the density of ions relaxes very fast to
the equilibrium Boltzmann distribution corresponding to the local
electrostatic potential ψ, i.e., n± = e∓ψ. This leads to the Poisson-
Boltzmann equation for the electrostatic potential within the double
layer satisfying the boundary condition ψ = ψs at the surface of the
motor. Furthermore, we consider the colloidal particles in which
the surface potential is uniform over the surface of particle. Solv-
ing this equation gives the electrostatic potential in the inner prob-
lem; then, the Stokes equation with an electrostatic body force and
no-slip boundary condition at the surface of the motor will be solved
within a lubrication approximation to obtain the fluid flow profile
within the double layer. The solution for the inner region provides
the required boundary values for the outer region problem, i.e., the
values for the potential ψD(r̂) at the edge of the double layer, from
which the so-called zeta-potential follows as:

ζ(r̂) = ψs − ψD(r̂), (11)

and the “phoretic slip velocity,” i.e., the flow velocity Vs at the edge
of the double layer, is given by the Dukhin-Derjaguin relation90 as

Vs = ζ∇sψ − 4 ln(cosh
ζ
4
)∇s lnN, (12)

where ∇s = (I − n̂n̂) ⋅ ∇ denotes the derivative along the surface (to
be evaluated at the edge of the Debye layer).

For the outer region, the regularity of ∇2ψ at the limit of δ→ 0
implies that the left hand side of Eq. (3) vanishes at the same limit of
negligible Debye screening length.86 Consequently, one infers that in
the outer region (n+ − n−) is very small (of the order of δ2 or smaller).
Then, we will reach to our core approximation for the outer region:
n+ ≃ n−. By applying this approximation, now we can rewrite the
governing equations for the outer region. It is convenient to denote
all the effective macroscale fields for the outer region by capital let-
ters. The hydrodynamic flow is governed by the Stokes equation
as

∇2V −∇P +∇2Ψ∇Ψ = 0, ∇ ⋅ V = 0. (13)

The ionic densities and electrostatic potential are obtained by solving
the following equations:

∇2N = 0, ∇ ⋅ (N∇Ψ) = 0. (14)

The effective fields at the outer region are subjected to boundary
conditions at the edge of the Debye layer (r ≈ 1) as

∂N
∂n

= −q̇ t̂ ⋅ n̂, N
∂Ψ
∂n

= 0, Ψ = ψs − ζ, V = Vs, (15)

where ∂
∂n = n̂ ⋅∇ and Vs is the phoretic slip velocity given in Eq. (12).

The boundary conditions at infinity read as

V(r) = −U −Ω × r, ∇Ψ(r) = −� �̂. (16)

Finally, the effective fields satisfy the same force and torque free
conditions as given before in Eqs. (9) and (10).

To demonstrate how the above equations can work, consider a
very simple example that corresponds to a nonactive Janus particle
in the absence of electric field (q̇ = � = 0). The results can be written
as

N0 = 1, Ψ0(r) = 0, ζ0 = ψs, U0 = Ω0 = 0. (17)

This implies that in the absence of activity and external field,
the system is in the equilibrium state and the particle does not
move.

V. PERTURBATIVE EXPANSION
The assumption of a thin Debye layer has simplified the gov-

erning equations, but the equations are still too difficult to be solved
analytically. In order to achieve analytical solutions and to gain phys-
ical insight into the problem, we further restrict the scope of this
study to the case when the surface chemical activity of the motor
q̇ and the applied electric field � are small so that the activity and
applied field can be treated as perturbations to the equilibrium state
where the particle is not active and there is no external field. We
will see later in Sec. VI that for a typical active Janus particle, the
strength of the electric field and also the chemical activity belong
to an interval that naturally can justify the validity of this pertur-
bative scheme. In order to implement the perturbative expansion,
we decompose the full problem of the electrophoretic active Janus
particle to three distinct auxiliary problems. As defined before in
Eq. (1), the first problem corresponds to the propulsive motion of an
active Janus particle in the absence of external force, and we denote
this problem by superscript a. The second problem that is denoted
by superscript e corresponds to the electrophoresis of a passive col-
loidal particle. Superimposing these two problems, we will need a
third contribution to recover our real problem. Denoting this con-
tribution by symbol ae, it will collect the simultaneous effects due to
both activity and electric field. Now, a perturbative expansion can be
considered for the linear and angular velocities of the Janus particle
as

Ua =
∞
∑
m=1

q̇m Ua
m, Ue =

∞
∑
m=1

�m Ue
m,

Uae =
∞
∑

m,n=1
q̇m�nUae

mn, Ωae =
∞
∑

m,n=1
q̇m�nΩae

mn.

Due to symmetry arguments and as is reflected in our expansion,
for the first two problems of the isolated Janus motor and elec-
trophoresis, there is no torque to change the angular orientation
of the particle. We will use a similar terminology to decompose
and expand all relevant fields of the problem. In Secs. V A–V C,
we will present the leading order contributions to each problem
defined here.
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A. Isolated active particle
Here, we consider the case that an active Janus particle moves

in an electrolyte solution without applying any external electric field.
This problem has been considered before; for completeness, we suc-
cinctly present the calculations.80 Applying the approximations and
expansion discussed above, the governing equations up to the first
order of q̇ are simplified as follows:

∇2Va
1 −∇Pa

1 = 0, ∇ ⋅ Va
1 = 0, (18a)

∇2Na
1 = 0, ∇2Ψa

1 = 0, (18b)

which should be solved provided the following boundary conditions
for the number density of ions and the potential on the surface of the
particle:

∂Na
1

∂n
= −t̂ ⋅ n̂,

∂Ψa
1

∂n
= 0, Ψa

1 = −ζa1, r = n̂. (19)

The slip velocity has a complicated dependence on the density of
ions and zeta-potential. Perturbation expansion for these variables
takes a bit more calculations that are presented in Appendix A. Con-
sidering the solutions in equilibrium state, Eq. (A1) reveals that the
phoretic slip velocity up to the order of q̇ reads as

Va
1,s = ψs∇sΨa

1 − 4 ln(cosh
ψs

4
)∇sNa

1 , r = n̂. (20)

At infinity, we have

Va
1(r) = −Ua

1 −Ωa
1 × r, ∇Ψa

1(r) = 0, Na
1 = 0. (21)

Finally, the force- and torque-free conditions at the first order of q̇
can be obtained by expanding Eqs. (9) and (10).

Solving the equations for the density and potential gives the
following solutions:

Na
1 =

1
2r2 (t̂ ⋅ r̂), Ψa

1(r) = 0, ζa1 = 0. (22)

Using Eqs. (20) and (22), the slip velocity is evaluated as

Va
1,s = −2 ln(cosh

ψs

4
) t̂ ⋅ (I − r̂r̂), r = n̂. (23)

Having the slip velocity condition, we can proceed to evaluate the
velocity of the particle. To this end, we employ the Lorentz reciprocal
theorem in hydrodynamics which relates two solutions of the Stokes
equation sharing the same geometry but with different boundary
conditions.1 By considering our main problem (moving an active
particle with phoretic slip velocity) as one of the two problems
and noting that this particle is force- and torque-free, the Lorentz
theorem gives

U ⋅ FI + Ω ⋅ τI = −∫∣r∣=1
Vs ⋅ σI ⋅ n̂ dS, (24)

where FI = ∫∣r∣=1 σI ⋅ n̂ dS and τI = ∫∣r∣=1(r − r0) × σI ⋅ n̂ dS
denote the force and torque exerted by the fluid on the particle in
the other problem with corresponding stress tensor σI , which can
be chosen arbitrary. We choose a sphere moving with an arbitrary

translational or rotational velocity and no slip boundary condition
on its surface as problem I and can easily see that the translational
and the angular velocity of the spherical active Janus particle are
given by91

U = − 1
4π ∫r=1

Vs dS, Ω = − 3
8π ∫r=1

r ×Vs dS. (25)

Putting the slip velocity from Eq. (23) into the above equations
and, then, calculating the integrals leads to the following results for
translational and rotational velocities of the motor:

Ua
1 =

4
3

ln(cosh
ψs

4
)t̂, Ωa

1 = 0. (26)

Following the same procedure for higher orders of q̇ reveals that
both the translational and angular velocities vanish up to the order
of O(q̇3).

B. Electrophoresis
When the activity of the particle is neglected, the problem drops

to the electrophoresis of a passive charged colloidal particle in an
electrolyte solution, which is one of the well-known problems in the
physics of colloidal dispersion and has been studied in different lim-
its analytically and numerically.81,82,92 Here, we are assuming that for
this passive Janus particle, the surface electric potential is symmetric
and constant over the particle. In the thin Debye layer limit and for
weak electric fields, the dynamical equations for effective fields up
to the first order of �, i.e., Ve

1, Ψe
1,Ne

1, satisfy the same equations as
Eq. (18) but with different boundary conditions. The particle is pas-
sive, i.e., there is no emission/annihilation of ions on the surface of
the particle. Therefore, the boundary conditions at r = n̂ are given
by

∂Ne
1

∂n
= 0,

∂Ψe
1

∂n
= 0, Ψe

1 = −ζe1, r = n̂,

Ve
1,s = ψs∇sΨe

1 − 4 ln(cosh
ψs

4
)∇sNe

1, r = n̂,
(27)

where the slip velocity on the surface of the particle up to the order
of O(�) is obtained according to Eq. (A1) in Appendix A. Far from
the particle, the boundary conditions read

Ve
1(r) = −Ue

1 −Ωe
1 × r, ∇Ψe

1(r) = −�̂, Ne
1 = 0, r →∞.

These equations and boundary conditions result in the following
solutions:

Ψe
1(r) = −(r +

1
2r2 ) �̂ ⋅ r̂, ζ

e
1 =

3
2
�̂ ⋅ r̂, Ne

1(r) = 0. (28)

Then, using Eq. (27), the slip velocity is calculated as

Ve
1,s = −

3
2
ψs �̂ ⋅ (I − r̂r̂), r = n̂. (29)

Substituting this slip velocity in to the Lorentz equation, Eq. (25),
and calculating the integrals, the velocity of the particle can be
derived as follows:

Ue
1 = ψs �̂, Ωe

1 = 0, (30)

which describes the electrostatic velocity of a spherical colloidal
particle in the Smolokowski limit.92

J. Chem. Phys. 150, 234902 (2019); doi: 10.1063/1.5101023 150, 234902-5

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

The contribution of orders O(�2) and O(�3) to the velocity of
the particle is zero.

C. Electrophoresis of the active Janus particle
We proceed to the order of O(q̇ �) that both the activity and

the electric field has a simultaneous contribution in the dynamics
of the particle. The effective fields are given by the solutions to the
following equations:

∇2Vae
11 −∇Pae

11 = 0, ∇ ⋅ Vae
11 = 0,

∇2Nae
11 = 0, ∇ ⋅ (∇Ψae

11 + Na
1∇Ψe

1) = 0.
(31)

In this case, the relevant boundary conditions on the surface of the
particle and at infinity read as

∂Nae
11

∂n
= ∂Ψae

11

∂n
= 0, Ψae

11 = −ζae11, Vae
11 = Vae

11,s, r = n̂,

Vae
11(r) = −Uae

11 −Ωae
11 × r, ∇Ψae

11(r) = Nae
11 = 0, r →∞,

respectively, where Vae
11,s is the slip velocity up to the order of O(q̇ �)

and is taken from Eq. (A1). Solving the equation for density of ions
gives N11 = 0. After inserting Na

1 and Ψe
1 from Eqs. (22) and (28)

into Eq. (31), we see that one needs to solve the following Poisson
equation to achieve Ψae

11:

∇2Ψae
11 = (

1
2r3 +

1
4r6 )(t̂ ⋅ �̂) + (− 3

2r3 +
3

4r6 )(�̂ ⋅ r̂)(t̂ ⋅ r̂). (32)

The solution to this equation is obtained by evaluating the following
expression:93

Ψae
11(r) =

1
4π ∫

∇2Ψae
11

∣r − r′∣ dr
′ + B(r), (33)

regarding that B(r) satisfies the Laplace equation, i.e., ∇2B(r) = 0
with a proper boundary condition given by

∂B
∂n
∣r=1 =

∂Φ
∂n
∣r=1,

and Φ(r) = 1
4π ∫

∇2Ψae
11

∣r−r′ ∣ dr. A direct calculation of the above integral
(presented in Appendix B) reveals that Ψae

11 has a form as

Ψae
11(r) =

1
4
( 1

3r3 −
1
r
) (t̂ ⋅ �̂) +

1
4
(1
r
− 1
r3 +

1
2r4 )(t̂ ⋅ r̂)(�̂ ⋅ r̂). (34)

Then, by considering the boundary conditions on the surface of
the particle, we can calculate the change in the zeta-potential up to
O(q̇ �) as

ζae11 = −
1
6
(t̂ ⋅ �̂) +

1
8
(t̂ ⋅ r̂)(�̂ ⋅ r̂). (35)

Using the density of ions and the electric potential, we evaluate the
slip velocity up to the order of q̇ � as

Vae
11,s =

1
8
ψs t̂ ⋅ (Ir̂ + r̂I − 2r̂r̂r̂) ⋅ �̂ − 3

4
tanh

ψs

4
t̂ ⋅ (Ir̂ − r̂r̂r̂) ⋅ �̂;

(36)

consequently, the translational and rotational velocities of the parti-
cle are attained by computing the integrals in Eq. (25) as

Uae
11 = 0, Ω11 =

3
8

tanh
ψs

4
�̂ × t̂. (37)

This contribution originates from the zeta-potential modification.
One can see that up to the order of O(q̇�), the main effect of the
electric field is to rotate it along a direction parallel or antiparallel to
the electric field, depending on the sign of ψs.

Carrying out the same procedure, we found that the pertur-
bation terms proportional to O(�)2 and O(q̇)2 are zero. Details of
these calculations are not included here, but we continue our calcu-
lations to find the next nonzero contributions in our perturbation
analysis. The next nonzero contribution is of the order of O(q̇�2),
which we will consider in detail in Subsection C 1.

1. Calculating Uae
12 and Ωae

12

Here, we take into consideration the second order of electric
field and try to find the velocity of the motor up to the order O(q̇�2).
To do this, the following equations should be solved:

∇2Vae
12 −∇Pae

12 +∇2Ψae
11∇Ψe

1 = 0, ∇ ⋅ Vae
12 = 0,

∇2Nae
12 = 0, ∇ ⋅ (∇Ψae

12 + Na
1∇Ψae

11) = 0.
(38)

These equations are subject to the boundary conditions on the
surface of the motor and are given by

∂Nae
12

∂n
= ∂Ψae

12

∂n
= 0, Ψ12 = −ζae12, Vae

12 = Vae
12,s, r = n̂,

and at infinity, the conditions are given by

Vae
12(r) = −Uae

12 −Ωae
12 × r, ∇Ψae

12(r) = Nae
12 = 0, r →∞,

where Vae
11,s is taken from Eq. (A1). Solving these equations, we

derive the results for density, electric potential, and zeta-potential
as

Nae
12 = 0, Ψae

12(r) = 0, ζae12 = 0. (39)

Although all fields in this order are zero, according to Eq. (A1), the
slip velocity has some contributions from the lower orders and is
obtained as

Vae
12,s =

1
4
(t̂ ⋅ �̂)(I − r̂r̂) ⋅ �̂ +

3
16

t̂(�̂ ⋅ r̂)2 − 9
64
(1 − tanh2 ψs

4
) t̂

⋅ (I − r̂r̂)(�̂ ⋅ r̂)2 − 3
16
(t̂ ⋅ r̂)(�̂ ⋅ r̂)2 r̂. (40)

Finally, Uae
12 and Ωae

12 can be obtained by inserting the above equation
into Eq. (25) and taking the integrals as

Uae
12 =

1
960
(−151 + 27 tanh2 ψs

4
) (t̂ ⋅ �̂)�̂ − 1

64
(1 + 3 tanh2 ψs

4
) t̂,

(41)
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Ωae
12 = 0.

In Sec. VI, we show in detail how the trajectories of active Janus
particles will be modified by applying an external uniform electric
field.

VI. RESULTS AND DISCUSSION
Combining all the above results, the total translational and rota-

tional velocities of the motor up to the leading orders of perturbation
analysis are given by

U = 4
3

ln(cosh
ψs

4
)q̇ t̂ + ψs� �̂ +

1
960
(−151 + 27 tanh2 ψs

4
)

× q̇ �2 (t̂ ⋅ �̂)�̂ − 1
64
(1 + 3 tanh2 ψs

4
)q̇ �2 t̂, (42)

Ω = 3
8

tanh
ψs

4
q̇ � �̂ × t̂. (43)

One should note that the above equations are written in dimension-
less units. As noted before, the linear and angular speeds given by
v0 and v0/a with v0 = (kBT/e)2(εr/ηa) can be used to recover the
physical dimensions.

In typical systems of active Janus motors and electrophore-
sis experiments,6,68 one has n∞ ∼ 1023 m−3, Q̇ ∼ 107 s−1µm−2,
ψs ∼ 100 mV and E ∼ 250 V m−1, which are equivalent to dimen-
sionless values as q̇ ∼ 0.1,ψs ∼ 4.0 and � ∼ 0.01, regarding that at
the room temperature we have kBT/e ∼ 25 mV. One should note
that, for such a typical swimmer that is realizable in experiments, we
have � ≪ 1 and q̇ ≪ 1 that justifies the validity and convergence
of the perturbative expansion we have used in our analysis. Using
these values, one can estimate the magnitude of the translational and
the angular velocities of the motor as U ∼ 60 µm/s and Ω ∼ 0.2 s−1,
respectively.

Interestingly, we note that, as we neglected thermal fluctuations
in this study, the motion of the motor is constrained to take place
in a two dimensional plane containing two vectors t̂(0) (initial ori-
entation of the swimmer) and �̂, direction of the electric field. For
simplicity, we choose the x axis as the direction of the electric field �̂,
and in this case, t̂ lies in the x–y plane such that cos θ = t̂ ⋅ �̂. In the
following, we consider the case that q̇ = 0.1, � = 0.01. We start pre-
senting results by investigating the influence of the external electric
field on the speed of the motor.

First, we discuss the case of positive surface potentials, i.e.,
ψs > 0. From Eq. (42), one infers that applying an electric field in
the direction of t̂, i.e., θ = 0, causes the speed of the motor to increase
with respect to the speed of an isolated motor. According to Eq. (43),
this case does not induce any rotational motion for the swimmer.
This increase in the speed can be understood by considering the fact
that in this case both electrophoresis and activity lead the motor
to move in the same direction, and thus, both effects cooperate in
propelling the motor in the direction of the electric field with an
enhanced speed. For the electric field applied in the direction of −t̂,
i.e., θ = π, two contributions drive the motor in opposite directions;
therefore, the speed decreases with respect to the speed of the motor
in the absence of the field.

On the other hand, the case of a motor with negative surface
potentials is different. For ψs < 0, the speed of the motor decreases

for θ = 0 and increases for θ = π. For other initial orientations
of the motor, the speed decreases due to application of the elec-
tric field to reach the same value irrespective of the sign of surface
potential. Figure 2 illustrates results for two typical examples. Here,
the surface potential is chosen as ψs = ±4.0, initial orientation is
given by θ = π/3, and other physical values are q̇ = 0.1, � = 0.01.
As one can see, in both cases proceeding in time, the speed will
decrease.

The most interesting impact of the electric field is its influ-
ence on orientation and direction of the Janus particle. In order to
find out how the electric field affects the dynamical behavior of the
motor, we follow some trajectories which start at the same position
but with different initial orientations of the motor with respect to the
direction of the electric field. The dynamics of the active particle is
obtained by the following equations:

dx
dt

= Ux,
dy
dt

= Uy,
dθ
dt

= Ω = ω sin θ, (44)

where all variables are dimensionless, ω = 3
8 tanh ψs

4 q̇ �, and Ux, Uy,
and Ω are given in Eqs. (42) and (43). The trajectory of the motor in
the presence of an electric field is obtained by integrating the above
equations.

For general cases, Eq. (44) can be solved numerically to give the
trajectory. Some typical examples of the trajectories are illustrated
in Fig. 3 for two different initial orientations θi = ±π/3 and for two
different surface potentials ψs = ±4.0. As is reflected from Eq. (43)
and also seen in Fig. 3, for any initial orientation, the electric field
enforces the motor to rotate until its orientation t̂ points parallel or
antiparallel to the direction of �̂, for cases of ψs < 0 or ψs > 0, respec-
tively. Afterwards, the motor keeps moving toward its emitting side,
i.e., in the direction of the electric field for ψs < 0 and opposite to
the field for ψs > 0. This is in contrast to the electrophoresis of a pas-
sive particles, where the motion of a particle is in the direction of the
electric field for positive surface potentials and against the field for
negative surface potentials.

Similar behavior has been observed experimentally in Ref. 68
for dynamics of a half-coated Janus sphere composed of polystyrene
and platinum moving in a solution of H2O2. Their results reveal

FIG. 2. The speed of the motor in the presence of an electric field normalized
by its intrinsic speed Ua as a function of time. This plot corresponds to the initial
configuration that θ = π/3 for two values of surface potential and � = 0.01 and
q̇ = 0.1.
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FIG. 3. Trajectories of the Janus motor
in the presence of an external uniform
electric field. The panels correspond to
typical values q̇ = 0.1, � = 0.01 and
to different surface potential [(a) and (b)]
ψs = 4.0 and [(c) and (d)] ψs = −4.0
for initial orientations of the motor with
respect to the direction of the electric
field [(a) and (c)] θi = π/3 and [(b) and (d)]
θi = −π/3. The dashed blue lines show
the trajectory of a corresponding isolated
motor, i.e., in the absence of electric
field. The colored small disks indicate the
motor orientation along its trajectory. The
emitting side of the motor is depicted in
yellow, as shown in Fig. 1.

that the surface potential is negative and then the motor reori-
ents the polystyrene side in the direction of the applied field and
moves toward its intrinsic direction of motion. One should note that
in that experiment the isolated Janus particle self-propels with the
polystyrene side forward.

The instantaneous orientation of the Janus particle is shown by
colored disks along its trajectory in Fig. 3. As illustrated in Fig. 1,
here we have shown the emitting side in yellow. In addition, the
time intervals between the symbols are the same; then, the position
of disks is an indication of the speed of the motor. The distance
traveled by the motor between two symbols decreases during its
motion, and this implies that the speed of motor decreases as time
increases.

Although the angular rotation tends to orient the motor to
the parallel/antiparallel direction with respect to the electric field,
Eqs. (42) and (43) reveal that the time taken by the motor to reori-
ent diverges to infinity. However, this is not physically insightful.
In real situations, fluctuations with thermal or nonthermal sources
do not allow us to define a precise value for the angle. We denote
this unavoidable error by ∆θ; then, the final orientation of the
motor is not exactly parallel/antiparallel to the field. Now, by con-
sidering ψs > 0 and integrating the equation for θ in Eq. (44), we
obtain the “relaxation time” τ, the time taken by the motor to reach
its final orientation θf = π − ∆θ from an initial orientation θi as
follows:

τ
t0
= 1
ω

ln(cot
θi
2

cot
∆θ
2
), (45)

where t0 = a/v0 ∼ 10−3 s is the time scale. For example, for the motor
considered above, i.e., for values q̇ = 0.1, � = 0.01,ψs = 4.0 with ini-
tial orientation θi = π/3 and for ∆θ ∼ 1○ = π/180 rad, the relaxation
time is about 10 s. Increasing the magnitude of the electric field will
decrease this time scale. This time scale is comparable with the relax-
ation time that is achieved in the experiment in which optical forces
were used to reorient the particle.74

As an important remark, we investigate the stability of the
final state of the particle motion. We consider the case of small

deviations from the final orientation of the particle for the case
ψs < 0, i.e., δθ ≪ 1. One can do the same procedure straightfor-
wardly for negative surface potentials. Using Eq. (42), we can write
Eq. (44) as

d
dt
x(t) = (a + b) cosδθ,

d
dt
y(t) = a sinδθ,

d
dt
δθ(t) = −ω0 sinδθ,

(46)

where a = 4
3 ln(cosh ψs

4 ) q̇ − 1
64(1 + 3 tanh2 ψs

4 )q̇ �2, b = ψs�
+ 1

960(−151 + 27 tanh2 ψs
4 )q̇ �2 (t̂ ⋅ �̂), and ω0 = 3

8 tanh ∣ψs ∣
4 q̇ �. For

δθ≪ 1, we have

d
dt
x(t) = (a + b), d

dt
x(t) = aδθ,

d
dt
θ(t) = −ω0δθ. (47)

For the initial state given by x = 0, y = y0, δθ = θ0, we will see that the
x coordinate increases linearly with time and

δθ ∼ θ0e−ω0t , y − y0 ∼ −
aθ0

ω0
(e−ω0t − 1). (48)

Therefore, at long times, the deviation from θ = 0 decays and the
coordinate perpendicular to the electric field, i.e., y, has a constant
value δy∞ ∼ aθ0

ω0
. This means that the final state moving along the

electric field is stable against small fluctuations.
In this article, we have assumed that the surface potential over

a passive Janus particle is uniform. It should be mentioned that for
a passive particle, surface potential and subsequently zeta potential
can have nonuniform distribution with different origins with respect
to what we have considered here. This nonuniformity can originate
from geometrical and electrical effects.94 For such passive particles,
dipole and quadrupole distribution of zeta potential will have extra
contributions in the particle’s motion. For such particles, the dipolar
and quadrupolar contributions should be included to what we have
presented here.

In summary, we have theoretically studied the dynamics of
a self-propelled Janus particle in the field of an external force.

J. Chem. Phys. 150, 234902 (2019); doi: 10.1063/1.5101023 150, 234902-8

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

In our description, the strength of surface activity q̇ and the exter-
nal electric field � are considered as two independent parameters,
and it is shown that the resulted trajectory of the Janus particle is
very sensitive to these parameters. We have shown, by tuning the
electric field and the surface activity, that it is possible to control the
dynamics of the particle and operate it in a desired manner.

Finally, it should be mentioned that for realistic experimental
situations, interaction with confining boundaries is unavoidable. To
have a complete control on the trajectory of an active Janus particle,
the effects of walls should be considered carefully.

ACKNOWLEDGMENTS
Financial support from the Iran National Science Foundation

(INSF) is acknowledged.

APPENDIX A: EXPANSION OF Vs IN TERMS
OF q̇ AND �

Here, we present the expansion of the phoretic slip velocity,

Vs = ζ∇sΨ − 4 ln(cosh
ζ
4
)∇sN,

in terms of q̇ and � as follows:

Vs ≈ ζ0∇SΨ0 − 4z0∇sN0

+ q̇(ζ0∇SΨa
1 + ζa1∇SΨ0 − 4z0∇sNa

1 − ζa1 tanh
ζ0

4
∇sN0)

+ �(ζ0∇SΨe
1 + ζe1∇SΨ0 − 4z0∇sNe

1 − ζe1 tanh
ζ0

4
∇sN0)

+ q̇�( ζ0∇SΨae
11 + ζae11∇SΨ0 − 4z0∇sNae

11

− ζae11 tanh
ζ0

4
∇sN0 −

1
4
ζa1ζ

e
1 sech2 ζ0

4
∇sN0)

+ q̇�2( ζ0∇SΨae
12 + ζae12∇SΨ0 − 4z0∇sNae

12

−(ζae12 −
3

32
ζa1ζ

e
1

2) tanh
ζ0

4
∇sN0

− 1
4
(ζa1ζe2 + ζe1ζ

ae
11) sech2 ζ0

4
∇sN0), (A1)

where z0 = ln(cosh(ζ0/4)) and we keep only the terms that lead to
nonzero velocity. Higher orders can be evaluated straightforwardly.

APPENDIX B: CALCULATING Ψae
11

In this appendix, we calculate Ψae
11, where

Ψae
11 = Φ(r) + F(r), ∇2F(r) = 0,

∂F(r)
∂r
∣r=1 = −

∂Φ(r)
∂r
∣r=1,

and

Φ(r) = 1
4π ∫

∇Na
1(r′) ⋅ ∇Ψe

1(r′)
∣r − r′∣ dr,

where F(r) is introduced in order to satisfy the boundary condition
on the surface of the motor, i.e., ∂Ψae

11
∂r ∣r=1 = 0 should be achieved. By

plugging Eqs. (22) and (28) into the above equation, and expanding
1/|r − r′|, r̂, and r̂′ in terms of spherical harmonics Ynm(θ, �),95 one
obtains Φ as follows:

Φ(r) = � q̇ (�̂ ⋅ t̂)( 1
10r3 −

1
4r
)+

1
5
� q̇ (t̂ ⋅ r̂)(�̂ ⋅ r̂)( 5

8r4 +
5
4r
− 3

2r3 ).

(B1)

Then, the boundary condition of F(r) on the surface of the motors is
evaluated as

∂F(r)
∂r
∣r=1 =

1
20
(�̂ ⋅ t̂) − 3

20
(t̂ ⋅ r̂)(�̂ ⋅ r̂).

Solving∇2F(r) = 0 using the spherical harmonics and employing the
above condition, one arrives at

F(r) = − 1
60r3 t̂ ⋅ (I − 3r̂r̂) ⋅ �̂. (B2)

Therefore, Ψae
11 is obtained as

Ψae
11 = � q̇ (�̂ ⋅ t̂)( 1

12r3 −
1
4r
) + � q̇ (t̂ ⋅ r̂)(�̂ ⋅ r̂)( 1

8r4 +
1
4r
− 1

4r3 ).

(B3)
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