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1 Introduction

Drawing inspiration from Smoluchowski, Feynman used the idea of ratchet and
pawl to illustrate the impossibility of extracting useful work or directed motion
from equilibrium fluctuations. However, he also demonstrated how work can be
extracted from random motions in non-equilibrium systems, such as those with
different temperatures for different parts (e.g. T1 and T2). As depicted in Figure
1, we have a ratchet, which is a pinion with an asymmetric sawtooth structure.
This pinion can freely rotate in either a clockwise or counterclockwise direction
around a pivot, and its axes are directly linked to the axes of a vane. The vane
is in equilibrium with an ambient gas at temperature T1. Due to the random
impacts of gas molecules on the vane, the ratchet exhibits random motion,
which can be described as a sequence of random clockwise and counterclockwise
differential rotations.

To analyze the motion, let’s assume that the ratchet can rotate in discrete
differential angles denoted by δθ, and that each differential motion occurs within
a short time interval τ0 . By considering the probabilities for right and left
rotations, we can calculate the average rotational velocity of the ratchet. Since
the system is in equilibrium with a thermal reservoir at temperature T1, the
ratchet can acquire the necessary energy from the reservoir to initiate motion.
The probability for this process is proportional to e−E/kBT .

Due to symmetry, rotations in both directions are equally probable. Let’s
denote the probability for a right or left differential rotation as P0. Then, the
average angular velocity (in the clockwise direction) can be expressed as:

ω̄ =
δθ

τ0
(P0 − P0) = 0.

The idea now involves introducing a pawl to the system to observe how it can
rectify the random motions and lead to a net rotation. As shown in the figure,
consider that the ratchet is equipped with a pawl that can be in either an up or
down state. When in the up state, it allows the ratchet to rotate freely, but in
the down state, it prevents counterclockwise motion. The pawl is constrained
by a spring, and transitioning from the down to the up state of the pawl requires
the compression of the spring. Let’s denote the compression energy of the spring
as ϵ.
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Figure 1: A picture showing the Feynman’s ratchet. A pawl is responsible
for rectifying the rotational Brownian motion of the ratchet. The clockwise
direction is shown in the figure.

The pawl and the spring are in equilibrium with a gas having temperature T2.
As before, we assume that the ratchet (or vane) is in contact with heat reservoir
T1. The ratchet can obtain energy from the reservoir T1 and make clockwise
rotations. The probability for this process is proportional to e−ϵ/kBT1 . On the
other hand, the pawl can gain energy from reservoir T2 and allow the ratchet
to perform a differential counterclockwise rotation. The probability for this
process in proportional to e−ϵ/kBT2 . The average rotational speed of the ratchet
is given by:

ω̄ =
δθ

τ0
P0

(
e
− ϵ

kBT1 − e
− ϵ

kBT2

)
= ω0.

For ϵ ≪ kBT1, kBT2, we can simply have: ω0 ∼ α(T1 − T2) +O(∆T )2, where α
is a positive constant. It is interesting that for T1 > T2, the pawl successfully
rectifies the motion of the ratchet. In this case ω0 > 0.

Rectifying the motion and achieving a net directed motion is good but more
important is the ability to do mechanical work. To see how this system can do
work, we add a load to the ratchet. Let denote by δh, the differential height
that a load with mass m moves upward during each discrete clockwise rotation
of the ratchet. In this case, the average rotational speed reads as:

ω̄ =
δθ

τ0
P0

(
e
− (ϵ+mgδh)

kBT1 − e
− ϵ

kBT2

)
̸= 0.

Again, for small ϵ we can expand the above result to reach a simpler relation
for the speed as:

ω̄ ∼ α∆T − βW,

where ∆T = T1−T2, W = mgδh and α, β are positive constants. For later use,
we see that α/β = ϵ/T2. As one can see, the load will decrease the rotational
speed. The maximum load that the above ratchet can lift is given by mmax =
(α/β)(∆T/gδh).
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The system considered here is a heat engine that can produce useful work.
Let’s assume that the system has an average speed given by ω̄ > 0. We can
calculate the thermodynamic efficiency of this engine as a function of T1, T2,
and ω̄. In each discrete jump, an amount of energy equal to Q1 = ϵ+mgδh is
borrowed from the heat reservoir T1 and transformed to useful work W = mgδh.
As a result of energy conservation (first law of thermodynamics), an amount of
heat Q2 = Q1 −W would be dissipated in the reservoir T2. The efficiency can
be considered as η = W/(W + ϵ). Using the relation for average speed, we see
that W = (α/β)∆T − ω̄/β. Now the efficiency reads as:

η = (
T1 − T2

T1
)
(
1− γω̄ +O(ω̄)2

)
,

where γ is a positive number that depends on Temperatures, in the above rela-
tion, we have assumed that ∆T is a small parameter meaning that the rotation
speed is also small. This allowed us to expand the results in terms of the speed
of rotation. Interestingly, higher efficiency corresponds to lower rotation. Max-
imum efficiency is given by:

ηmax = η(ω̄ = 0) = 1− T2

T1
.

One should note that the above result for the maximum efficiency is not an
approximate value. By doing the calculations carefully, one can obtain the same
result without any change. At the limit of ω̄ = 0, the differential movements
in the ratchet are very near to equilibrium and the processes can be considered
as reversible processes. At this limit, we are facing a Carnot engine working
between two temperatures T1 and T2. For this reversible Carnot engine, one
would expect the above efficiency which is the maximum value.
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