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Hydrodynamic interactions of spherical particles in a fluid confined by a rough no-slip wall
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In this paper we develop a theoretical framework to study the hydrodynamic interactions in the presence of
a nonflat and no-slip boundary. We calculate the influence of a small amplitude and sinusoidal deformations of

a boundary wall in the self-mobility and the two-body hydrodynamic interactions for spherical particles. We
show that the surface roughness enhances the self-mobility of a sphere in a way that, for motion in front of a
local hump of the surface, the mobility strength decreases while it increases for the motion above a local deep
of the rough surface. The influence of the surface roughness in the two-body hydrodynamic interactions is also

analyzed numerically.
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I. INTRODUCTION

Hydrodynamic interaction of colloidal particles in con-
fined geometries is an important problem in low Reynolds
fluid dynamics [1]. Fluid motions confined by one or two
parallel flat planes are interesting examples with either ana-
lytical or numerical known solutions [2,3]. The solution to
these problems is involved in soft matter related phenomena
and also microfluidic experiments [4—6]. In soft matter sys-
tems, swimming motion in a geometrically confined environ-
ment is a subject of growing interest [7-10], apparently bet-
ter understanding of these systems requires a good
knowledge of the hydrodynamic interactions in confined ge-
ometries. In microfluidic applications, a better control of the
processes requires the prediction of the hydrodynamic effects
due to the walls.

Confining wall can generate nontrivial effects. For ex-
ample, in a very simple system composed of a single sphere
near a wall, the mobility parallel to the wall is always larger
than the perpendicular mobility [1] which has been verified
experimentally [11,12]. As other examples for the effects due
to the boundaries, we address the experiments, showing that
microorganisms, e.g., E. Coli [13], bull spermatozoa [14],
swimming in confined geometries are attracted by surfaces.
In this paper we concentrate on the effects due to the rough-
ness of the confining walls. We will consider a rough wall
that confines the fluid flow at low Reynolds number, and ask
the following question, does the long wavelength roughness
of the wall have any important influence on the one- or two-
body hydrodynamic interactions? We use a perturbation
method and investigate the case of a small amplitude and
regular roughness on an infinite wall. We show that the
roughness has important contributions in the hydrodynamic
interactions.

Another challenging issue in the low Reynolds, quiescent
fluid dynamics, is the validity of no-slip boundary condition.
This is certainly important where the nanostructure of the
surface is involved. There are experimental and theoretical
works, investigating the influence of the nanoroughness of
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the boundaries and justify the validity of the so-slip bound-
ary conditions [15,16]. Here we would like to stress the fact
that, justification of the no-slip boundary condition, necessar-
ily needs analytical results for rough surfaces taking into
account the no-slip boundary condition.

The rest of this paper is organized as follows: in Sec. II,
we present a short review on Stokes flow and introduce the
hydrodynamic interactions. Section III is devoted to the hy-
drodynamic effects of a rigid and flat wall. The effects of a
general roughness is presented in Sec. IV. An example of a
sinusoidal roughness is considered in Sec. V. Concluding re-
marks are presented in Sec. VL.

II. STOKES FLOW AND HYDRODYNAMIC
INTERACTIONS

To study the fluid motion for colloidal particles suspended
in a fluid medium we define the Reynolds number as the
ratio between the characteristic transport time scale due to
diffusion and the convection time over a length L. Denoting
the fluid density by p, viscosity by #, typical velocity by U
and also the linear size of the particles by a, we see that the
Reynolds number is Re="2_1n a wide variety of phenom-
ena occurring in the motion of micron scale particles, the
Reynolds number is very low. For these phenomena we can
consider the limit of zero Reynolds number. At zero Rey-
nolds number the fluid dynamics is expressed by Stokes
equation. Denoting the fluid velocity and pressure fields by
u(x) and P(x), the Stokes and continuity equations for an
incompressible flow can be written as

7V2u(x) - VP(x) =, V .u(x)=0, (1)

where ¥, denotes the density of external body force acting
on the fluid. The fluid velocity field is subject to no-slip
boundary condition on the surface of solid boundaries. We
would like to consider the motion of N colloidal particles
suspended is a low Reynolds flow (see Fig. 1). Recalling the
fact that the governing equations are linear with respect to
the velocity profile, and applying the no-slip boundary con-
dition on the surface of rigid particles, we can eliminate the
fluid velocity and obtain a set of linear equations relating the
particle velocities to the hydrodynamic forces acting on
them. Denoting the velocity of mth particle by v and the
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FIG. 1. (Color online) Two spherical particle is moving in a low
Reynolds flow. The fluid flow is bounded by a rough, rigid, and
no-slip boundary. Velocities and hydrodynamic forces acting on
particles are shown in this picture.

corresponding hydrodynamic force by f”, we can write the
following equation:

v —EEDm"xf” (2)

n=1 j=1

Coefficients Dj;" are known as the elements of hydrody-
namic interaction. Quite similar to the Onsager relations in
thermodynamics and based on general symmetry arguments
and microscopic reversibility, the hydrodynamic tensor D;-’j’»"
is symmetric with respect to its up or down indices [17,18].
For special case of 2 particles (denoted by « and 8), and for
convenience we define the self-mobility tensor as the re-
sponse of a particle to the force acting on it by ,u,ij=Dga. And
also the hydrodynamic response of ath particle to the force
acting on Sth particle is shown by: M ,»j=ij'.ﬁ =Dg°‘. Different
components of the hydrodynamic interaction tensor depend
on the size and the relative configurations of the particles.
Calculating the hydrodynamic interaction tensor, is an impor-
tant problems in low Reynolds hydrodynamics. Here we
present an analytic method that is useful for very small and
spherical particles. A very small sphere can be considered as
a point force, a source term in the Stokes equation. Denoting
the point force by f(x)=bd(x—x,), the velocity field of the
point force, can be written as [19,20]

3

u(x) =2 Gij(x,X0) X b, 3)
=1

and correspondingly the associated pressure field is given by:
P(x)=1I(x,x)-b. Here G;{(x,X,) is the Green’s function of
the Stokes differential equatlon

Solving the Stokes equations and having the associated
Green’s function for any required geometry, we can use
Faxén’s theorem for spherical objects with radius a to ex-
press the mobility tensor in terms of the Green’s function of
Stokes equation [1,21],

2 2
D;;.B(Xa,xﬁ)=<1+%Via><1+—vxﬂ) G;(x*xP). (4)

For very small spheres with radius a smaller than the typical
distance between spheres, then D”"B(x xP)= GF (x ,xP) up
to second order in a [22].

In the rest of this paper, we use the above method and
presents the results for unconfined (U), confined with a flat
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wall (F) and confined with a rough wall (R). The effects due
to roughness is considered for a very small amplitude rough-
ness.

III. HYDRODYNAMICS NEAR A FLAT
AND NO-SLIP WALL

We first consider the case of a fluid flow that is bounded
by a rigid, flat (F) and no-slip plane located at z=0. The
solution to the problem of a point force in the presence of a
flat wall is given by Blake [3,19], who has used the image
method to construct the solutions. The flat wall Green’s func-
tion for the upper half space (z>0), is given by

ij(x,xo) = Gg(x,xo) GU(X xy") + GD (x,x{") — GSD (x,x{"),
)

where the Green’s function for an unbounded (U) fluid flow

U . . .
G, that is called stokeslet is given by

1 (8. rr
GUlx,xp) = —(—’L+ ’"—Zl) (6)
8mp\ r r

here r=x-x,, and x"=x,—2(Z-x,)? is the image position of
the point force with respect to the flat wall. Defining a new
vector R=x- x0 , we can express the potential dipole field

SD
GP ;» and stokeslet dipole G;;~ as
2 Jd [ R;
GD X, X imy _ 1=26 _<_’> , 7
( ) 777]10( jZ) (9Rj R3 ( )
SD I vy oim
Gy (x.x(") = 2z¢(1 - )ﬁ?GiZ(X,Xo )s (8)

J
where z=Z.x. The pressure field for the flow that is bounded
by a flat wall is given by

17 (x,x,) = ITY(x,%0) + MY(x,x]") — 210—[1 mY(x,x{"],
)

where the pressure field associated to a point force in an
unbounded space is given by

11 (xxo)—i(X Xol,

(10)

87|x —x,

Having in hand all the above information, we can calculate
the hydrodynamic interactions in the presence of a flat no-
slip wall.

As an example and using the above formalism we present
the results for the self-mobility of a very small sphere mov-
ing above a flat and no-slip wall. Denoting the perpendicular
distance between the sphere and wall by H, and assuming
that H is greater than the sphere radius a, the components of
self-mobility tensor are [1,21]
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9a ( a )2]
-——+0| =] |, (11)
8H H
where uy=1/(677a) is the self-mobility of a spherical par-
ticle moving in an unbounded fluid. As an important and
nontrivial result, the above equations show that, the self-
mobility of the sphere in the direction parallel to the wall is
always larger than the perpendicular direction [1]. This effect
has been verified experimentally [11]. Calculations show

that, up to O(%;)?, other components of the self-mobility ten-
sor are zero.

Mfz:l/«o{l

IV. EFFECTS DUE TO A ROUGH AND NO-SLIP WALL

The aim of this paper is to express analytical expressions
for hydrodynamic interactions in a semi-infinite flow,
bounded by a rough (R), rigid and no-slip wall. Figure 1
shows the schematic view of a rough plane that bounds the
fluid flow. Two spherical particles located at positions x¢ and
xP are moving in the fluid. The position vector for the points
on the bounding wall is considered as x,=[x,y,%(x,y)]. This
kind of parametrization allows us to obtain the results of a
flat wall by considering the limiting case of h(x,y)=0. For
later use we define x?:(x, y,0), that is denoting the location
of the points of a flat wall located at z=0.

Applying the no-slip boundary condition on the rough
surface (R), we expect that the influence of the roughness
will produce nontrivial effects. To study the hydrodynamic
effects of a rigid and rough wall with small amplitude rough-
ness, we can construct a perturbation expansion. Introducing
a small dimensionless parameter e=h,/z, where h is the
typical amplitude for height fluctuations and z measures the
distance of particles from the wall, we expand all quantities
in powers of . As explained before, hydrodynamic interac-
tion between small spherical particles can be obtained by
solving the velocity field of a point force for the required
geometry. Here the solutions to the Stokes-Green’s equation
should be obtained by applying the required boundary con-
dition. The velocity field of a point force satisfies the Stokes
equation [Eq. (1)] and is subject to the following boundary
condition:

u(x,) =0. (12)

Expanding the corresponding velocity and pressure field of a
point force in the presence of a rough wall in powers of &,
we can write

wR(x) =u?(x) + uV(x) + u?(x) + O(&?),

PR(x) = PO(x) + PD(x) + PP(x) + O(&7). (13)

The zeroth order term are the velocity and pressure field of
point force in the presence of a flat (F) and no-slip wall. In
this case we will have
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ux) =uf(x), PO(x)=Pl(x). (14)
Higher order corrections due to the wall roughness, can be
obtained by noting that different order of the velocity and
pressure fields are satisfied the following differential equa-
tion:

7V (x) - VP (x) =0, u”(x)=0, (15)
where the boundary conditions for the first and second orders
are given explicitly by

0) 0
) =)

&u(l)(xo) hz(xg) &Zu(o)(xg)

2 Pz

u®(x) = - h(x)) (16)
As one can see the velocity field at order (n), is related to the
local value of the derivatives of the velocity filed at order of
(n—1), in the position of flat wall. Using the well known
integral representation for the flow field of Stokes equation,
we can write the following integral solution [19]:

W= - [ W xas 0. (7)

where the integration is carried out on a closed surface com-
posed of an infinite plane at z=0. The surface is closed at the
upper half space and dS(x') is the area element on this sur-
face in the inward direction (here is 7). The stress tensor
T(x,x') is given by

J
T(xx') == 85,1 (x.X") + 877 - Gl(x.x')
_(9 F
+ 8wy —Gr(x,x'). (18)
ox; Y

Now we can expand the hydrodynamic interaction tensor
moving in a fluid bounded by a rough wall, in terms of small
parameter € as

Df=D®+ DY +D? + O(&?), (19)

where the zeroth order is the results of a sphere moving in a
medium bounded by a flat (F) and no-slip wall,

) _ nF ~ ~F
D;;’=D;; = Gy;. (20)
Using Egs. (3), (4), and (17) and considering the explicit
form of the stress tensor T;;(x4,Xp), we can arrive at the
following expressions for the first and second order correc-
tions to the mobility tensor due to the roughness of the wall:

8mn X D(D(xa,xﬁ)

1
-3 fD'(O)(xa,xf)D’(O)(xﬁ,x?)h(xg)fx?, (21)
T
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25679 X D(z)(xa,xﬁ)
= wa f D’(0)(XQ,X?)D’(0)(XB,X;O)D”(O)(X?,X;O)
Xh(x")h(x!*)d?x’d*x°

- f (E(O)(xwxg)b(o)(xﬁ,xg) +(a+— ﬁ))hz(xg)dzxg

(22)
where
1(0) 0 J (0)
D (X,B’Xg*) = _D (Xﬁ’x)|x~>x0,
S Jz s
D//(O S’ X, )_ D(O)(X’X,)|(X,X’)—>(XOX’O)
(0) 0 7 (0)
D (XB’XS) = FD (Xﬁsx)|x—>x§)9 (23)

and E(O)—H(F )5 +D 0 ;.- As one can see, the mobility
tensor 1s symmetnc D(xa,xﬁ) D(xg,X,).

In the following section we choose a very special form of
the wall deformation pattern and investigate the hydrody-
namic interactions.

V. SINUSOIDAL ROUGHNESS

As a special example we assume that the wall roughness
is a sinusoidal deformations of a flat wall located at z=0. The
height profile of the rough plane, in the Monge representa-
tion, is given by the following equation:

z=h(x,y) = hg cos(gx + ), (24)

where hj is the amplitude of the roughness, and the wave
vector of the roughness along the x axis is denoted by ¢. This
special type of roughness allows us to study any general
roughness that is invariant under translation along y direc-
tion.

As a special feature of the hydrodynamic interaction we
concentrate on the self-mobility of a spherical particle mov-
ing in a medium bounded by a rough and no-slip wall. Figure
2 shows the schematic view of a sphere with size a, moving
near a rough wall. Perpendicular projection of the sphere
position into the z=0 plane, is deviated from the wall hump
by a distance w Denoting the wavelength of the wall rough-
ness by A==", and the average height of the particle on the

wall by H, we define a dimensionless parameter by
y=277§. Now following the method developed in the pre-
ceding sections, the first order corrections to the different
components of the self-mobility are given by

1 hy
Mil)=m5008(¢){ 23'21(2(7)

S Jz(S)
*Wj &+ ]
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FIG. 2. (Color online) A spherical particle is moving in a con-
fined fluid flow. The roughness of the boundary is assumed to be a
sinusoidal pattern with wavelength A in the x direction. The bound-
ary is assumed to be invariant under translation along the y direc-
tion. Two parameters, H the average vertical distance from the wall,
and w the vertical deviation from a local hump of the surface rough-
ness, characterize the sphere’s position.

U
W 8mpH H

s<¢>{— %ﬂm]

m =0, (25)
and the second order corrections are given by

2
o__1 M
XX

3 5 9
87777HH2 3_2+COS(2¢){ YK3(27) o 4K0(27)

9
ngl(zy)—w"

© 3
+ YK 29 - 2, ]

0 AT
+36 cos’(p)e (1 - )

Xllz(y/Z)Kz('y/Z) - JO %ds] ,

3

os L )3 15 ey
— 5 - —COS
Py = g 12| 327 32 YR

+36 cos2(¢)e‘712(y/2)1(2(y/2)},

2
P
“ " 8myH H?

9 9 1
X{g + §COS(2¢)[— V'K, (2y) + 5751(5(27)} }
(26)

Where ¢= ZT’TW measures the deviation of the perpendicular
projection of the sphere from a local hump on the surface.
Here J,(), I,(7) and K, () are Bessel’s function of the order
n [23].
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We can investigate the effects of the roughness in two
extreme limits of long or short wavelength deformations. For
the case of very short wavelength deformations, N<H (y
> 1) one can see that the roughness has no net effects on the
self-mobility of a spherical particle moving very far from the
wall (up to first order of &). In this case the mobility tensor is
effectively given by the mobility tensor of a sphere located
very far from a flat wall. The explicit form of the mobility
tensor for this case is given by Eq. (11). The back flows,
scattered from the humps and deeps of the wall have can-
celled out the effects of each other and the overall averaged
back flow looks like a back flow from a flat wall.

In the case of a very long wavelength roughness where
A>H (y<1), we proceed and obtain the second order cor-
rections (in terms of &) to the self-mobility components.
Now we can expand this result around small v, to reach the
following expressions for the different elements of the self-
mobility tensor:

9(ahg\| 1
M= ph+ MoZ(F) [3—2[1 +5 cos(2¢)]+3 cosz(qb)] ,
27 aho
Iu’)lf} = Iu’y\ lu’0|: 64( H2 )COS(¢)

- j(a_%)(_[l +5cos(2¢)]+3 cosz(qb))}
R e L} ST RCY)

As one can see, the effects due to the roughness, enhances
the self-mobility tensor of a sphere in asymmetric way with
respect to the in plane (x and y) directions. We define the
asymmetric parameter as the difference between the mobili-
ties in the x and y directions,

27( ah
Ap=pl - ufl = [64<a f)COS(qﬁ)}. (28)

The sign of the asymmetric parameter depends on the
local position of the sphere. In terms of the back flow scat-
tered from the wall and in the limit of long wavelength de-
formations, it is expected that the nearest hump or deep will
have the dominant contributions on the particle motion. Over
a local hump (0< @< 77/2) uk >,uy , while over a local
deep (m/2< p<3m/2), uf < My, Interestingly for a special
points of ¢p=m/2,37r/2, the mobility tensor is symmetric.

To analyze the self-mobility for intermediate y (H~\),
we have presented numerical plots in Fig. 3. As one can see
for H~ \, the change in the mobility of a sphere mediated by
roughness changes its sign for motion above a peak or above
a valley.

To demonstrate the effects of roughness on the two-body
interactions, we have presented in Figs. 4 and 5, numerical
results for diagonal and off diagonal elements of hydrody-
namic interactions. In these examples we have studied the
hydrodynamic interactions for some different cases. In Fig. 4
we have plotted M,(r) (up) and M, (r) (down). In Fig. 4,
right part (up and down), we have plotted the interactions of
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FIG. 3. (Color online) Different components of self-mobility
tensor 5;L,«,«=(;,L” ,u,”)/ ,u” for a spherical particle moving adjacent
to a nonsmooth and no-slip wall are plotted as functions of the
particle’s separation from the wall. Here the wave vector for surface
roughness lies along the x direction. All three components of the
self-mobility tensor are plotted for two special cases of motion
above a hump or deep of the surface deformations. As one can see
for ¢=0 (sphere move over a local hump), the roughness decreases
the parallel components of self-mobility while for ¢=m (motion
over a local deep), they increase. Parameter values for these graphs
are: hy/ H=0.1, a/H=0.1.

two spheres that have same vertical distance H from the wall.
As one can see, the roughness always decreases the strength
of M, (r) and M (r). There is a very weak periodicity with
the wavelength of the roughness. In the left part of Fig. 4 (up
and down), we have plotted the hydrodynamic interaction as
a function of vertical separation of two spherical particles.
The results for this case depend on the local position of the
spheres with respect to the surface roughness. As one can see
for ¢=0 (spheres move over a local hump), the roughness
decrease the interaction strength while for ¢=7 (motion
over a local deep), it increases. As another example, some of
off diagonal components of the two-body hydrodynamic in-
teractions are plotted in Fig. 5. There is a very weak period-
icity with wavelength A, that is not clearly seen in the scale
of this graph.

VI. CONCLUDING REMARKS

In this paper we have considered the influence of a rough,
rigid and no-slip boundary wall on the hydrodynamic inter-
actions of spherical particles. We have studied a regular sinu-
soidal roughness pattern with very small amplitude rough-
ness on a flat plane. For simplicity we have studied a simple
wave with a single wave vector along x direction. Taking
into account the wall effects by applying the no-slip bound-
ary condition by standard perturbation technique, we have
calculated one and two-body hydrodynamic effects. For a
single and small radius sphere moving in the presence of a
rough wall, we show that, the different elements of self-
mobility tensor changes in asymmetric way. Motion along
the wave vector of surface roughness is different from the
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FIG. 4. (Color online) Different components of the hydrodynamic interaction tensor M ,~,~=87T77H(M§ —Mﬁ), for two spherical particles
moving parallel to the wall, are plotted as a functions of the particle’s separation. Here the wave vector for surface roughness lies along the
x direction. At right graphs (up and down), the interaction is plotted for the case where the position of the first sphere is fixed at ¢»=0 and
we changed the position of the second sphere. There is a periodicity with the wavelength of the roughness. As one can see in the case of left
graphs, for ¢=0 (sphere move over a local hump), the roughness decreases the interaction strength while for ¢= (motion over a local
deep), it increases. Parameter values for these graphs are: N\/H=10, hy/ H=0.1, a/H=0.1.

other in-plane direction. When a spherical colloid suspended
near a rough and no-slip wall, the hydrodynamic drag force
depends on the local position of the sphere. Roughness will
produce different contributions for motion on a local hump

0.04
0.03F o oM
0.02 eette., o S

L) ..
L . . - |
oo ° RS ..."-. 8Myz
+ * o0 .
o go"” trerceittrrnny
. gumu®®
= oottt Len r |
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L] L]
- 5 O |
L] L] H
-0.03F . -
-0.04F . -
.
-0.05F = i
.
-0.06
0.5 1 1.5 2 2.5 3.5 4
(r/H)

FIG. 5. (Color online) Off diagonal components of the hydro-
dynamic interaction tensor 6M ;=8 mnH (MS—M i;j)» for two spheri-
cal particles, are plotted as a functions of the particle’s separation.
Here the wave vector for surface roughness lies along the x direc-
tion. Parameter values for these graphs are: N\/H=10, hy/H=0.1,
a/H=0.1.

or a local deep of the wall. This kind of behavior in two-
body hydrodynamic interaction is also seen by numerical
investigations of different components of the hydrodynamic
interactions.

We note that in the current formulation of the problem, we
have made some approximations which need to be dealt with
carefully. Caution is needed in applying the results since
there are many length scales in the problem: a, kg, N, and H.
First, the Faxen’s formula has allowed us to treat the sphere’s
size in a series expansion in powers of € =(a/H). Second
approximation is related to the slowly varying roughness of
the wall and consequently to a series expansion of the results
in powers of e€,=(hy/H). The series expansion for a typical
component of the hydrodynamic interactions, for example
the self-mobility, has the following structure:

Awlpo= & X{[fu(Ne+ fra(ye+0(e)]

+[faye +f22(7’)€§ + O(C’Z)]ﬂ + 0(5%)},
(29)

where we have already defined y=27(H/\). The results are
valid for any 7y, however one should note that, the conver-
gence of the above series expansion in the limit of very small
v (y<1), is constrained to the condition (hy/N)<<1. By
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small roughness assumption, one expects that this criterion is
satisfied as well.

In conclusion, we have developed a systematic way to
evaluate the perturbation effects of a rough wall in the hy-
drodynamical properties of small spherical particles. The re-
sults of current work can be used in many directions related
to the colloidal problems in confined flows, where the rough-
ness is an ignorable characteristics of most walls. The influ-
ence of wall roughness on the thermal diffusion of colloidal
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particles is an interesting issue that we are considering. In-
spired by the ensemble of low Reynolds swimmers, we are
also investigating the motion of low Reynolds self-propellers
adjacent to a rough wall.
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