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Abstract
The rich physics of the fluid dynamical phenomena at the scale of capillary length needs novel
techniques for experimental investigations. We have examined the recently developed method
of sampling moiré for a problem in the area of fluid dynamics. We have experimentally
quantified the dynamics of a droplet in the spreading regime, where the well known scaling
results for the dynamics are expected from the theory of fluid dynamics. The simplicity of the
method allows us to study and see a very good comparison between our experimental data and
the theoretical results.

Keywords: sampling moiré, droplet spreading, droplet shape
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1. Introduction

Moiré fringe patterns are the base elements in constructing
many experimental measurement techniques. Measuring in-
plane and out-of-plane displacements of solid specimens
are classical examples that have proved the strong ability
of coherent moiré techniques [1–3]. Moiré interferometry
is also the subject of many investigations [4, 5]. Recently,
a simple and accurate phase measurement method, called
the sampling moiré method, was developed for measuring
thickness distributions of transparent plates from a single
image [6]. The accuracy and systematic error behind this
method are also very well studied and discussed [7–9]. In
addition to the simplicity of the method, the non destructive
nature of this technique allows one to study the samples
without any physical damage. A class of problems in fluid
dynamics, deals with the shape of interfaces of multi-phase
fluid systems [10]. In this case a competition between
different forces—surface tension, viscous and gravitational
forces—eventually determines the dynamics of the interface.
Especially, phenomena at the scale of capillary length, roughly
speaking 1 mm in size, are much more interesting to study.

In addition to direct imaging and studying the recorded
images, classical interferometry is the traditional method for
experimental studies in these systems [11–13].

In this paper we show that the sampling moiré method can
provide a good method to investigate the dynamical properties
of a spreading droplet of a transparent fluid over a rigid
substrate. In this case the interface of fluid and air develops
in time. Studying the dynamics of such a multi-phase flow
interface is interesting either from a fundamental or technical
point of view. Investigating the dynamics of a droplet over
a rigid surface can reveal both the dynamical characteristics
of the fluid, like viscosity and surface tension, and more
importantly, the contact angle of a droplet. The contact angle
encodes the surface properties of a fluid and also the underlying
rigid substrate.

The structure of this paper is as follows: after a short
review of the moiré method in section 2, we will present the
details of our experiment and results in section 3. A theoretical
argument for the spreading dynamics that is based on scaling
facts is presented in section 4, and finally an outlook is given
in section 5.
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Figure 1. Procedure of constructing moiré fringe patterns. A first row of a single image taken from a Ronchi grating is sampled p times. The
sampled images will be used in constructing the phase distribution of the image.
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Figure 2. Left: geometry of a droplet spreading over a flat glass. A Ronchi grating is located behind the glass. Right: a cross section of phase
distribution constructed from moiré fringes.

2. Method of sampling moiré

A single image taken from a Ronchi grating that encoded
the optical characteristics of a transparent sample is the main
experimental element of the sampling moiré method [6].
Figure 1 presents briefly the details of this method. Let us
denote the intensity distribution of an original image taken
from a grating by I(i, j). The wavelength of this grating that is
measured in terms of pixel numbers is denoted by p. Here we
outline the procedure just for the first row of the matrix: I(1, j),
this can be repeated for other rows. Different fringe patterns
denoted by In(i, j) can be constructed from the original image
in the following way: for the nth fringe matrix, we choose all
the n + j elements ( j = 1, 2, . . . , p) from the original image,
and interpolate all the interval elements by the neighboring
data points. Here we have used a simplified case where the
number of fringe patterns is exactly p, but in general those
could differ. Now, having in hand p sampled fringe patterns,
we can calculate the phase distribution by:

ϕ(i, j) = − arctan

∑p
n=1 In(i, j) sin

(
2π(n−1)

p

)

∑p
n=1 In(i, j) cos

(
2π(n−1)

p

) . (1)

Performing the above procedure for a reference grating (not
deformed) and a grating deformed by a sample, we can
subtract the corresponding phases and obtain the phase shift
distribution �ϕ(i, j). Real deformation of the grating is related
to this phase shift by:

δ(i, j) = −(p/2π)�ϕ(i, j), (2)

where the deformation is measured in units of pixel size. Very
small displacements, up to 1/500 of the grating pitch can be
achieved by the moiré method [9].

Using geometrical optics, we can obtain equations that
relate the displacement field of the grating to the height profile
of a transparent sample. Figure 2 shows the set-up of our
experiment. A droplet of a transparent fluid, spreading over
a rigid substrate shifts the image of a grating that is located
behind the droplet. As shown in this figure, the angles that the
reflected ray makes with the surface of the droplet are denoted
by θi and θr. We see that:

h(i, j)(tan θr − tan θi) = δ(i, j), (3)

where h(i, j) is the height profile of the droplet. By simplifying
the equations we will have:

h(i, j) = 1

tan θr(i, j)

√
n2 − sin2 θr(i, j)

√
n2 − sin2 θr(i, j) − cos θr(i, j)

δ(i, j),

(4)

where n is the refraction index of the fluid relative to the
refraction index of air. Here we are assuming that the refraction
index is uniform all through the medium. For a very nearly flat
droplet, the case that is valid for a spreading droplet with a
pancake shape, the phase shift is linearly proportional to the
height profile as:

h(i, j) = κ�ϕ(i, j), (5)

where the calibration parameter κ is a time independent
constant.
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Figure 3. An example of phase analysis by sampling moiré method. (a) Reference image of a Ronchi grating. (b) Image of the grating after
deformation. (c) Unwrapped phase distribution of grating before deformation. (d) Unwrapped phase distribution of grating after deformation
by a droplet. Here down-sampling with a sampling pitch p = 21 pixels and linear intensity interpolation are used to obtain the results.

3. Spreading dynamics

In our experiment we have used silicone oil droplets located
on a glass plate. A typical droplet of silicone oil with the
size of 1 mm3, spreads over the glass and reaches a complete
wetting state. The final height of the oil layer has a very
thin molecular scale. Our goal is to investigate the early
time dynamics of this spreading experiment. To analyze the
dynamics of this phenomena, we record a movie of a grating
that is dynamically deformed by a droplet. In our experiment a
grating with pitch length 500 μm, a CCD camera (TEO-517A,
640 × 480 pixels) and a lens (HELIOS, f = 58 mm) are
used. Here the corresponding wavelength of the grating reads
p = 21 pixels.

Before going to the dynamical case, we first present the
details of moiré analysis for a single frame of this movie.
Figures 3(a) and (b) show the intensity image of the Ronchi
grating before and after deformation captured by the CCD
camera. Figures 3(c) and (d) show the unwrapped phase
distribution of the grating before and after the deformation
obtained by down-sampling with a sampling pitch of 21 pixels.
Here a linear intensity interpolation is used to obtain the fringe
patterns. subtracting these two phase distributions (before and
after deformation), we can obtain the phase shift distribution.
A cross section of the phase shift distribution is plotted in
figure 2(right). This cross sectional plot completely reflects
the symmetry of the droplet. Using equations (2), (4), we can

assign a height to the droplet captured in this frame. Repeating
this scenario for all frames, we can achieve the dynamical
properties of the droplets.

We have performed the spreading experiment with
silicone oils with different viscosities and different sizes. The
results of our moiré experiments are shown in figure 4. As
one can see, for droplets with sizes smaller than 4 mm3, a
universal scaling relation quantifies the early time dynamics.
In the logarithmic scale, all droplets with different viscosities
show a linear dynamics with slope −0.2. In the next part, we
will present a short theoretical discussion about this universal
result.

4. Theoretical discussion

Understanding the spreading speed of a droplet is of
fundamental interest in many practical problems. Paint drops
and spin coating of lubricants on solid substrates are examples
of the industrial interests. Measuring the time for approaching
the final state with complete wetting is the key question.
Here, we have chosen the sampling moiré method to study
the dynamics of silicone oil drops with different viscosities
spreading over a plate of glass. To have a theoretical description
of the system, we shall think about the forces that drive the
system. Gravitational and surface tension forces drive the
dynamics of a droplet. For a fluid with density and surface
tension denoted by ρ and σ , a very important length scale,
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Figure 4. Dynamics of droplet height as a function of time is plotted for silicone oil with different viscosities. In this logarithmic scale, all
experimental results are compared with straight lines with slope −0.2. The volume of all droplets is 4 mm3.

called capillary length 
 = √
σ/ρg, measures the competition

between these two forces. For all physical processes in a
system with length scale less than 
, the surface tension
dominates over the gravity and for large scale phenomena
the gravity dominates. Including water, small drops of most
usual fluids with a size less than 1 mm, lie in the regime of
being surface tension-dominated. The central height of a drop,
contact angle and the size of drop are coupled to each other.
Theoretical arguments based on the solution of the Navier–
Stokes equation, can reveal scaling relations for the dynamics
[14, 15]. In a regime where the effects of gravity can be
neglected, the Navier–Stokes equation reads [16]:

η∇2u = −∇P,

where velocity and pressure of the fluid are denoted by u and
P. This is essentially Newton’s equation of motion for fluids.
The left-hand side of this equation denotes the viscous force
and the right-hand side stands for the surface tension force that
can produce a gradient of pressure. The exact solution to this
complicated equation is not possible, but a very intuitional
scaling argument can be used to deduce the results. Let us
denote the central height of the drop by h(t) and its spreading
diameter by R(t) (h � R). For a spreading drop made of an
incompressible fluid, the constant volume condition requires
that: R2(t)h(t) = constant. As the most important motion
of the fluid takes place in the radial direction and parallel to
the substrate, a typical tangential velocity of the fluid can be
considered as Ṙ. Obviously this velocity should vary from the
bottom of the drop to its top, so a variation of this velocity
in the perpendicular direction is expected. This helps us to
have an approximation for the value of a viscous force as:
η∇2u ≈ ηṘ/h2. To evaluate an approximation for the surface
tension we can start from Laplace’s equation for pressure drop
across a curved interface with curvature r−1, this reads as
P = σ/r [16]. For a droplet we have 1/r = ∂2h/∂2R ≈ h/R2,
so the surface force reads: ∇P ≈ σh/R3. Putting all these facts

into the Navier–Stokes equations, we will obtain a very simple
dynamical equation:

ḣ ≈ σ

η
h6,

this dynamical equation predicts a very simple and universal
height profile as: h(t) ≈ t−0.2. This predicts that irrespective of
the value of viscosity a constant exponent −0.2 describes the
spreading dynamics for drops with sizes less than the capillary
length. The results of our moiré experiments shown in figure 4
are in good agreement with the theoretical results.

5. Outlook

In summary, We have shown that the method of sampling
moiré can be used to experimentally study the fluid dynamical
phenomena at the scale of capillary length. As an example and
to show the ability of this method, we have chosen spreading
dynamics. The accuracy of our results are limited by the
geometrical error associated with sampling moiré method. As
has been discussed before [9], displacements up to 1/500 of the
grating pitch can be detected by this method. In our experiment
with a grating pitch of 500 μm, we can measure displacements
of the order of 1 μm. For future works, we are studying the
dynamics of contact angle. Measuring the contact angle of a
reference fluid located on a substrate, provides an experimental
gauge for the surface characteristics of the substrate. The
dynamics of a pendant drop, a drop that is spreading on a
roof, is also an interesting fluid dynamical problem that one
may use this method to investigate.
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