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Abstract. We study the entropic force due to a fluctuating semiflexible polymer that is grafted from one
end and confined by a rigid and rough wall from the other end. We show how roughness of the wall
modifies the entropic force. In addition to the perpendicular force that is present in the case of a flat wall,
roughness of the wall adds a lateral component to the force. Both perpendicular and lateral components of
the force are examined for different values of amplitude and wavelength of the roughness and at different
temperatures. The lateral force is controlled by the local slope of the wall while the perpendicular force
is only sensitive to the curvature of the wall. We show that for small compression, the entropic force is
increased by increasing the curvature of the confining wall. In addition to the biophysical relevance, the
results may also be useful in developing an AFM-based experimental technique for probing the roughness
of surfaces.

1 Introduction

Statistical properties of polymers are crucially enhanced
when they live in a confined space [1–4]. In a system that
undergoes thermal fluctuations, entropy reduction due to
the confinement eventually shows itself as a force that
pushes the boundaries. Soft matter is a field in which
the track of such entropic forces can be examined. In-
spired by biological systems, the statistical mechanics
of polymers has attracted considerable interest. Micro-
tubules and actin filaments are among the biopolymers
with a range of important functionalities in the mechan-
ics of cells [5–8]. Mechanics of cell division is also con-
trolled by the forces exerted on the cell cortex from these
biopolymers. Self-locomotion of some microorganisms like
the bacterial pathogen Listeria, is another example in
which the forces from cytoskeleton actin polymers play im-
portant role [9]. In addition to the polymerization forces,
the entropic forces also contribute in dynamical processes
in all the above systems. A proper description of the dy-
namical processes in such systems needs a comprehensive
understanding of the physics of entropic forces.

In addition to the above biological systems, an-
other relevant motivation for studying the entropic forces
comes from the recent single-molecule manipulation tech-
niques [10–13]. These techniques, using atomic force mi-
croscopy, enable detailed study of the surface morphology.
In recent experiments, to enhance the precision of the sur-
face measurements, it is proposed to study the entropic
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forces due to a polymer attached to the tip of AFM from
one of its ends, interacting with a surface from the other
end [14,15]. In quantifying the results of such experiments,
a theoretical knowledge about the entropic forces from a
fluctuating polymer confined by a wall with specific mor-
phology is necessary.

In this article we address the problem of entropic forces
from a semiflexible polymer that is grafted from one of its
ends. The fluctuating end of this polymer is confined with
a wall. The problem of entropic forces for this system has
been previously considered [16]. In the present article, we
revisit the same problem by letting the wall to be rough.
To model the roughness, we consider the case of a weak
roughness: a wall that is slightly deformed around a flat
reference wall.

The structure of this article is as follows: In sect. 2 we
define the model and present the main statistical proper-
ties that we are going to calculate. In sect. 3 we present the
mathematical method which we use and finally, in sect. 4
we give the quantitative results and discuss them.

2 Model

Figure 1 shows a schematic of our problem, one end of
a semiflexible polymer is clamped and the fluctuations of
the other end are confined by a rigid and rough wall. The
grafted end of the polymer is assumed to be perpendicular
to the confining wall. The contour length of this polymer
is L and its bending rigidity is κ. Denoting the strength of
thermal fluctuations by kBT , we can define a length scale
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Fig. 1. A fluctuating semiflexible polymer with one clamped
end is shown. A rigid and rough wall confines the fluctuations
of the other end of this polymer.

as ℓp = κ/kBT . This persistence length is a length scale
beyond which the thermal fluctuations wash out the cor-
relations between the tangent vectors of the polymer. The
semiflexible polymer is a polymer whose persistence length
has more or less the same value as its contour length. To
study the statistical mechanics of this system, we start
with its Hamiltonian:

βH =
ℓp

2

∫ L

0

ds

(

d2

ds2
r(s)

)2

+ βU [r(s)], (1)

where β = 1/kBT and r(s) is the position vector of a
general point on the polymer with contour length s mea-
sured from its clamped end. The first term in this energy
functional is an integral over the local curvature of the
polymer and stands for the bending energy of the poly-
mer. The potential energy due to the presence of the wall
is encoded in U . As shown in fig. 1, the coordinate sys-
tem is chosen in such a way that the clamped end of the
polymer is located at the origin. The local tangent to the
polymer at this clamped end is parallel to the z axis (per-
pendicular to the wall). Furthermore the position of the
wall is given by z = ξ + h(x), where the roughness of the
wall is given by the function h(x). We choose an explicit
form for the roughness as

h(x) = h0 cos(qx + φ), (2)

where h0 and 2π/q are the amplitude and wavelength of
the roughness and φ shows how the roughness is symmet-
ric with respect to the x = 0 plane. Here we are con-
sidering a wall that is curved in the x-direction and it is
flat in the y-direction. Note that for small roughness, the
case that we are interested in in this work, the radius of
curvature and slope of the wall at point x = 0 are given by

C = h0q
2 cos φ, S = h0q sin φ.

These two important quantities that are measured just in
front of the polymer will be the dominant characteristics
of the roughness that control the entropic force.

To model the wall potential, we assume that the in-
teraction between the polymer and the wall is very short
range and repulsive. This very short range interaction en-
ergy is given by

U =

{

0, rz(L) < ξ + h(rx(L)),

∞, rz(L) ≥ ξ + h(rx(L)),
(3)

where r(L) shows the position vector for the fluctuating
end of the polymer.

Our goal in this article is to calculate the entropic
forces exerted on the wall. Denoting the i-th component
of the force exerted by the polymer on the wall by fi(ξ),
we can calculate it as

〈fi(ξ)〉 =
1

Z(ξ)

∫

D[r(s)]e−β(H0+U) ∂U

∂ri(L)
, (4)

where H0 stands for the Hamiltonian of a freely fluctuat-
ing semiflexible polymer and Z(ξ) is the partition of the
systems and given by

Z(ξ) =

∫

D[r(s)]e−β(H0+U). (5)

In evaluating the statistical properties of the system, the
functional integrals should be performed over all config-
urations of the polymer. The measure of the functional
integral will be chosen in a way that the partition func-
tion for a free polymer with U = 0, is normalized to 1.
For the above prescription for the interaction potential
between the polymer and wall, we can see that

e−βU = Θ(ξ + h(rx(L)) − rz(L)),

where Θ(x) is the Heaviside step function. In evaluating
the partition function of our system we will use this step
function representation of the interaction energy.

As we said before, we are interested in studying the
confinement effects due to a wall that is slightly deformed
around a flat reference plane. In this case, the function
h(x) that gives the roughness of the wall, is a small quan-
tity: h(x) ≪ ξ. Furthermore the small roughness assump-
tion implies that the roughness wavelength should also
be larger than the polymer tip’s undulation: qrx(L) ≪ 1.
Now for a wall that is slightly deformed around a refer-
ence flat configuration, the interaction potential can be
expanded in terms of q. Up to the leading orders of this
small quantity we will have

e−βU ≈ Θ(ξr − rz(L))

−
(

Srx(L) +
1

2
Crx(L)2

)

δ(ξr − rz(L)), (6)

where ξr = ξ + h0 cos φ and S and C stand for the local
slope and curvature of the wall that were previously de-
fined. In this equation, the first term represents the poten-
tial due to a flat wall, the second and third terms show the
interaction with an inclined and curved wall, respectively.
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3 Mathematical details

To set up a systematic way for integrating over the poly-
mer configurations, we will use the Fourier mode analysis.
Before introducing the Fourier transform, we define the lo-
cal tangent of the polymer as t(s) = dr(s)/ds. The condi-
tion |t(s)| = 1 would suggest the following representation
for this unit tangent vector:

t =
1

√

1 + a2
x(s) + a2

y(s)

⎛

⎝

ax(s)

ay(s)

1

⎞

⎠ . (7)

At zero temperature, the polymer is flat and t(s) = ẑ. As
the temperature increases the functions ax(s) and ay(s)
will start deviating slightly from zero. For a semiflexible
polymer and in the limit of a weakly bending filament,
the deformations are small and we will use a perturbation
analysis in terms of small dimensionless functions ax and
ay. The grafted point of the polymer is always perpendic-
ular to the wall and the other end is free to rotate. Taking
into account these conditions we can easily see that the
following boundary conditions should be satisfied by the
functions ax and ay:

ax(0) = ay(0) = 0, ȧx(L) = ȧy(L) = 0.

Now and to study the deformation, we define the Fourier
representation as

ax(s) =

∞
∑

k=1

ax,k sin
(

λk
s

L

)

,

ay(s) =

∞
∑

k=1

ay,k sin
(

λk
s

L

)

. (8)

Imposing the above boundary conditions, the wavelength
of the deformations will be fixed as λk = π

2 (2k − 1). In
terms of the Fourier modes, the Hamiltonian of a free
semiflexible polymer can be written as

βH0 =
lp
4L

∞
∑

k=1

λ2
k

(

a2
x,k + a2

y,k

)

. (9)

Now the position vector of the fluctuating end of the poly-
mer can be given as

rz(L) =

∫ L

0

tz(s) ≈ L − 1

2

∫ L

0

ds
(

a2
x + a2

y

)

= L − L

4

∞
∑

k=1

(

a2
x,k + a2

y,k

)

,

rx(L) ≈
∞
∑

k=1

ax,k

∫ L

0

ds sin(λks/L) = L

∞
∑

k=1

λ−1
k ax,k.

Note that these variables are calculated up to the leading
orders of small quantities ax and ay. In the next section
we will use these results to study the statistical mechanics
of the confined semiflexible polymer.

Now we are in a position to proceed and calculate the
forces. Regarding the general formula for force (eq. (4)),
we can expand the force in terms of the small quantity
h0/ξ. At leading order of the expansion we will have

〈fz(ξr)〉
fc

=
4L2/π2lp
Z0(ξr)

×
(

∂Z0(ξr)

∂ξr
+

∂A(ξr)

∂ξr
−A∂ lnZ0(ξr)

∂ξr

)

,

(10)

〈fx(ξr)〉
fc

=
4L2

π2lp

G(ξr)

Z0(ξr)
, (11)

where Z0(ξr) is the partition function for a fluctuating
polymer confined by a flat wall and the classical Euler’s

buckling threshold fc = π2κ
4L2 is used to make the compo-

nents of force nondimensional. The buckling force mea-
sures the maximum tangential force that a flexible rod
(not fluctuating) can tolerate without bending, beyond
this force the rod is unstable and it starts to buckle [17].
We will see that the maximum value for the entropic force
is given by this buckling threshold. One should note that
this buckling threshold critically depends on the boundary
conditions that we have applied to the rod. The partition
function for a polymer confined by a flat wall is written as

Z0(ξr) =

∫

D[r(s)]Θ (ξr − rz(L)) e−βH0 , (12)

and the functions A and G that make the roughness con-
tribution are given by

A(ξr) = −
∫

D[r(s)]

(

Srx(L) +
1

2
Crx(L)2

)

× δ(ξr − rz(L))e−βH0 ,

G(ξr) = −
∫

D[r(s)]
∂

(

Srx(L) + 1
2Crx(L)2

)

∂rx(L)

× δ (ξr − rz(L)) e−βH0 .

Let us now start by evaluating the function A. We first
define the Laplace’s transform as

A(f) =

∫ ∞

−∞

e−βfξA(ξ)dξ.

Performing the integration we will have

A(f) = −
∫

D[r(s)]e−β(H0+f(L−rz(L)))

×
(

Srx(L) +
1

2
Crx(L)2

)

, (13)

To perform the summation over the polymer configura-
tions we will use the Fourier mode analysis. Up to the lead-
ing order of the deformations, all integrals are Gaussian
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and can be analytically done. We will have

A(f) = −1

2
C

∫ ∞
∏

i=1

dax,iday,i

Ni

× exp

[

−1

4

(

lp
L

λ2
i + βfL

)

a2
i

] ∞
∑

k=1

L2λ−2
k a2

x,k

= −1

2
C

∞
∑

k=1

L3

lpλ4
k

(

1+
βfL2

λ2
klp

)−1 ∞
∏

i=1

(

1+
βfL2

λ2
i lp

)−1

,

where a2
i = (a2

x,i+a2
y,i) and Ni = 4πL

λ2

i
lp

. As one can see, the

term proportional to the local slope S has no contribution
here. The function G, that makes the lateral components of
the force, will have a contribution from S. Now as A(f) is
obtained, we can use the definition of the inverse Laplace
transform as

A(ξr) =

∫ i∞

−i∞

β

2πi
dfeβf(L−ξr)A(f) (14)

that can be used to calculate the required function A(ξr).
Now defining η = 1−ξr/L, we can write the final results as

A(ξr) = 2CL

⎡

⎣

∞
∑

k=1

e−ηλ2

klp/L
∏

m �=k

(

1 − λ2
k

λ2
m

)−1

×

⎛

⎝− lp
L

η +
∑

l �=k

λ−2
l

(

1 − λ2
k

λ2
l

)−1
⎞

⎠

−
∞
∑

k=1

λ−4
k

∑

l �=k

λ2
l e−ηλ2

l lp/L

(

1 − λ2
l

λ2
k

)−2

×
∏

m �=k,l

(

1 − λ2
k

λ2
m

)−1
⎤

⎦ . (15)

Performing a similar step of calculations, one can calculate
two important function G and Z0. The results read

G(ξr) = 2S
lp
L2

∞
∑

k=1

(−1)k+1λke−ηλ2

klp/L, (16)

Z0(η) = 2
∞
∑

k=1

(−1)k+1λ−1
k e−ηλ2

klp/L. (17)

For very small values of η, the above summation over wave
vectors in Z0 does not rapidly converge. To overcome this
convergence issue, we can use the method described in
ref. [16] to achieve a rapidly convergent representation for
Z0. Following the method presented in the above refer-
ence, the partition function reads

Z0(η) = 1 + 2
∞
∑

l=1

(−1)l erfc

(

2l − 1

2
√

ηlp/L

)

, (18)

where the error function is given by

erfc(x) = 1 − 2√
π

∫ x

0

e−t2 dt.

j l
p
/ L

f z
/
f c
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Fig. 2. For a polymer that is confined by a flat wall from one
end and clamped at the other end, the entropic forces have only
a component that is perpendicular to the wall. This pushing
force is plotted in terms of η× ℓp/L, the longitudinal compres-
sion of the polymer. For small compression of the polymer the
perpendicular force starts from zero. The maximum force that
can be exerted by a fluctuating polymer is still given by the
classical Euler’s buckling threshold.

4 Results and discussion

The perturbation results that we have obtained in the
previous section allow us to explicitly study the entropic
forces and their dependence on the parameters of our sys-
tem. We first start to examine the results for a known case
of a semiflexible polymer confined with a flat wall [16].
For a polymer that is confined from one of its ends with
a flat wall and clamped at the other end, the entropic
force has only a component that is perpendicular to the
wall. All lateral components, because of symmetry, dimin-
ish to zero. In fig. 2, we have presented the perpendicular
component of the entropic force for a flat confining wall.
This z component of the force is plotted in terms of η,
the longitudinal compression of the polymer. As we have
expected, for small compression of the polymer, the per-
pendicular force is zero. By increasing the compression,
this force starts to have finite values. The maximum force
that can be exerted by a fluctuating polymer is given by
the classical Euler’s buckling threshold. This maximum
force can be reached at large compression η of the poly-
mer. Increasing the persistence length shifts the maximum
force to a higher value.

The roughness of the wall enhances the entropic force
exerted by the fluctuating polymer on the wall. Depend-
ing on the local curvature and local slope of the wall just
in front of the tip of polymer (when it is straight and does
not fluctuate), the roughness contribution will increase (or
decrease, depending on the sign of curvature) the z com-
ponent of the force. The slope of the wall can introduce a
nonzero x component to the force. As one might expect,
the roughness shows itself at very small values of η. For a
large value of η, the tip of the polymer is in contact with
the wall and it has less chance to perform large ampli-
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Fig. 3. The perpendicular component of the entropic forces
depends on the curvature of the wall. For very small compres-
sion (η), the force is plotted in terms of dimensionless curvature
C′ = CL and for different values of persistence length and η.
Here f0 is the value of force for a flat wall.

j l
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Fig. 4. The z component of the entropic force is plotted in
terms of η. To show how roughness enhances this force, we have
used the corresponding force for a flat wall to make a nondi-
mensional force. f0(η) is the entropic force for a wall that is
flat. As one can see, the effects due to roughness appear only at
very small η. For very large value of η, that corresponds to the
maximum force, the roughness has no effect. The parameters
that we have used are h0 = 0.1L, qL = 0.5.

tude fluctuations and consequently this polymer will have
no chance to detect any long-range signatures of the wall
that is encoded in the radius of curvature. The effect of
roughness is expected to be observed in a regime given by
η ≪ 1/(LC). In this case and to see the effects of wall
roughness at small values of η, we have to use the conver-
gent formula for Z0 that was presented before.

The change in perpendicular component of the force
because of the roughness, is presented in fig. 3. The force
is plotted in terms of the local curvature of the wall. As
one can see, the force has higher values at high curvatures.
For a constant curvature, increasing the persistence length
or increasing the compression η, will decrease the dimen-
sionless force. In both graphs to make the force nondi-
mensional, we have used f0, the corresponding entropic
force of a flat wall. In fig. 4, the perpendicular value of
the entropic force is plotted in terms of η. As before, we
have used f0 to make a dimensionless force. Divergence at

S
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Fig. 5. The lateral component of the entropic force is due
to the local slope of the wall just in front of the tip of the
polymer. Here S = −h0q sin φ measures the slope of the wall.
The dependence of this force to the slope is investigated for
different values of persistence length and compression η. Note
that the slope of the wall shows itself at very low values of η.

η = 0 is due to our the fact that f0 is itself zero at this
point. Again this proves that the curvature contribution
is large at small η. At large η, where we expect to see the
maximum force, the curvature has no effect. This means
that the roughness of wall can not enhance the maximum
entropic force that can be exerted on wall.

In addition to the perpendicular entropic force, the
slope of the wall just in front of the polymer will introduce
a lateral component to the force. As a result of symmetry,
the force will not have any component in the y-direction,
the direction that the wall is flat. In fig. 5, we have plot-
ted the component of the force exerted on the wall along
the x-direction. The lateral component of the force is con-
trolled by the local slope of the wall. For a constant persis-
tence length and compression η, the force increases with
increasing the slope S. For a constant slope, increasing
either the persistence length or the compression η will de-
crease the force. One should note that all of our results are
the first-order nontrivial corrections due to the roughness.
As one goes beyond the first-order perturbation analysis,
the terms that couple the curvature and local slope of the
wall are also expected to appear.

In conclusion, we have theoretically analyzed the en-
tropic forces exerted by a semiflexible polymer on a curved
wall. The first-order nontrivial corrections for the effects
of wall roughness is investigated in details. In addition to
the weak roughness limit, our calculations are valid for a
weakly bending filament with L/ℓp ≪ 1. Monte Carlo sim-
ulations can be used to go beyond this approximation and
achieve the results for stiff polymers. Two important com-
plexities that we have not addressed here are related to the
electrostatic and hydrodynamic effects which are always
present in most soft matter systems. In poly-electrolytes,
biopolymers with net electric charges, it is a known fact
that the buckling threshold is slightly different from Eu-
ler’s classical value [18–20]. In addition to the charging
effects, the hydrodynamic effects near a rough wall may
change the overall picture. The asymmetric hydrodynamic
mobility of the monomers mediated by the wall can mod-
ify the results [21]. A complete theory for entropic forces
should incorporate these effects as well.
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