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Rectified motion in an asymmetric channel: The role of hydrodynamic interactions with walls
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Dynamics of a Brownian particle in an asymmetric microchannel that is subjected to an external oscillating
force is numerically analyzed. In addition to the elastic collisions with the walls that are kind of short range
interactions, the long range hydrodynamic influences of the walls have been considered in an approximate way.
We demonstrate how the geometrical parameters of the channel change the rectified current of the particle. As
a result of numerical calculations, we show that long range hydrodynamic interactions with walls decrease the
efficiency of the Brownian ratchet.
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I. INTRODUCTION

For a Brownian particle that is in thermal equilibrium,
second low of thermodynamics does not allow us to achieve
a rectified motion even when the particle is moving in
an asymmetric periodic potential. In addition to symmetry
breaking with an externally applied asymmetric periodic
potential, the fluctuations need to obey an out of equilibrium
statistics to achieve a rectified motion at the microscopic world.
The original idea of the rectification of random motions at
microscopic scales dates back to the work by Smoluchovski [1]
where he discussed the issue of extracting useful work
from fluctuations. Feynman has illustrated this idea by a
very intuitive gedanken experiment composed of ratchet and
pawl [2]. Very recently, a group of experimentalists have shown
how the ratchet idea can be tested at macroscopic world by
using a granular gas. In their experiment, a plate vibrating
vertically provides a nonequilibrium gas of granular particles.
Collision of these granular particles with four vanes of an
asymmetric rotary part enforce it to rotate. The overall motion
of the vanes is shown to be a rectified rotation in a direction
preferred by the asymmetry of the vanes [3].

In addition to the above fundamental interests on the
physics of Brownian ratchet, it also provides a basic physical
mechanism for describing the dynamics of most biophysical
molecular motors [4]. Transport of colloidal particles in
channels with the size of micrometer is another related
area. Recent technological advances allow researchers to
design and fabricate devices to guide particles on micro- and
nanochannels [5,6]. Flow control and separation of particles
in such channels are the main experimental interests in this
field [7,8]. An important category of microfluidic devices is
so-called rocked ratchet, where an applied oscillating force
drives a net drift velocity for particles fluctuating in an
asymmetric potential imposed by the walls of channel. The
physical mechanism behind such systems has been considered
in detail [9,10]. A very comprehensive review of the related
works is presented in an article by Hanggi [11]. Hydrodynamic
interaction between particles at intermediate and high volume
fraction of particles is proved to have prominent effects on the
efficiency of Brownian ratchets [12]. In addition to interaction
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between particles, the long range hydrodynamic interaction
with confining walls is proved to have essential effects on
the motion of either passive colloidal particles [13,14] or
active systems [15–17]. It is the main goal of this article
to address how the interaction with walls will influence the
functionality of a Brownian ratchet. Usually this kind of long
range interaction is neglected in theoretical and numerical
investigations [18]. In this paper, we focus on hydrodynamic
interactions of particles with the walls of channel. To answer
this question, we start by a perturbation based theory that
can give estimated values of the hydrodynamic interactions
for a spherical particle moving near confining walls. Then
allowing the particle to fluctuate, we numerically simulate
the Brownian dynamics of such a colloidal particle moving
in a medium confined with the walls of an asymmetric
channel.

The structure of this article is as follows: In Sec. II, we
define the model and present the details of approximations
for the hydrodynamic interactions. In Sec. III, we present the
details of numerical scheme that we have used to simulate the
Brownian dynamics. The results are presented in Sec. IV, and
finally we discuss in Sec. V.

II. MODEL AND ITS PARAMETERS

A two dimensional rocked ratchet channel is used to study
the transport of Brownian particles. As depicted in Fig. 1,
the channel is characterized by its periodic length Lx , input
and output opening sizes Lz, and asymmetry angle θ . For
θ = 0, the channel is symmetric and we do not expect any
rectified motion for this case. Moreover we assume that the
colloidal particle has mass m and its radius is given by a. In a
reference frame that is shown in the figure, the position vector
of the particle is given by r = (x,z), where x̂ points along the
axis of channel. The following stochastic Langevin differential
equation describes the dynamics of a colloidal particle moving
in this channel [19]:

mr̈ = −G · ṙ + Fhc + Fe(t) + �(t), (1)

where G stands for the hydrodynamic friction tensor and
�(t) shows the random forces due to thermal fluctuations.
The effects of the walls of channel are given by a hard core
force Fhc. As a result of this very short range potential, the
dynamics of the particle obeys the rules of elastic collision
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FIG. 1. (Color online) A Brownian particle with radius a moves
in a two dimensional rocked Ratchet microchannel with period Lx .
The input and out of the channel have same width given by Lz. Angle
θ measures the asymmetry of channel. A typical trajectory of the
Brownian particle moving near the wall is shown.

at the boundaries. Conservation of energy and momentum
provide relations for the state of the system before and after
each collision. To provide an out of equilibrium condition for
the particle, we apply an external force along the x̂ direction
that is spatially uniform but period in time:

Fe(t) = f0 sin(ωt)x̂, (2)

where f0 and ω show the amplitude and frequency of
the external force, respectively. In addition to the above
deterministic forces, the dynamics of the particle is influenced
by time dependent random noise �(t) resulting from thermal
fluctuations. The average and correlation of this stochastic
force is given by

〈�(t)〉 = 0, 〈�(t)�(t ′)〉 = 2kBT Gδ(t − t ′), (3)

where kBT is the thermal energy.
What we are interested in this article is the effects of

long range hydrodynamic interaction with the walls of the
channel. All of the information related to the hydrodynamic
interactions with the walls are encoded in the friction tensor G.
In addition to the size of colloid, this friction tensor depends on
the distance between the particle and the walls. This friction
coefficient, should in principle be derived from solution to
Stokes equation, the equation that governs the dynamics of
fluid at the scale of micrometer. The solution to this equation,
provided that the fluid motion obeys the no-slip boundary
conditions on the walls, will reveal the detailed form of the
friction tensor. As there is no exact solution to the Stokes
equation in an asymmetric channel, we will use approximate
prescriptions for the friction coefficients.

Before considering the complicated geometry of our chan-
nel, we start by presenting the results for friction coefficients
of a particle moving in a semi infinite fluid environment that
is bounded by a single wall. Instead of friction tensor, it is
more convenient to work with the mobility tensor M that is
the inverse of friction tensor when expressed in the matrix
notation: M = G−1. Figure 2(a), shows a spherical particle
with size a immersed in a semi-infinite fluid that has a distance
h from a wall. Theoretical analysis based on perturbation
theory can give a series expansion for the mobility tensor
in terms of small parameter (a/h). In the matrix notation, the

(a) (b)

FIG. 2. (Color online) Left: A spherical particle with size a

located in a position with a distance h above a flat wall. Right: Same
problem, but seen in a frame of reference rotated with an angle α with
respect to the wall.

mobility tensor has the following components:

M =
(

Mxx Mxz

Mzx Mzz

)
. (4)

Symmetry considerations do not allow nonzero off-diagonal
elements for the mobility tensor: Mxz = Mzx = 0, and the
other components are given by [14,20]
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where μ = 1/(6πηa), is the self-mobility of a spherical
particle with size a moving in a fluid with viscosity η. Using
the above components for the mobility tensor, one can write a
perturbation series for the friction tensor as

G = G0 + δG, (5)

where G0 = 6πηaI is the friction tensor for a sphere moving
in an infinite fluid and I is the unit tensor (unit matrix in matrix
representation). Here all of the corrections due to the presence
of wall are collected in δG. Direct calculations can give the
explicit mathematical form of this correction term.

Figure 2(b) shows the same problem as above, but in a
reference frame that is rotated with an angle α with respect
to the wall. It is a straightforward geometrical calculation to
express the mobility tensor in the rotated frame. In terms of
the mobility tensor in the plate frame (frame in which the axis
are parallel and perpendicular to the wall), the mobility tensor
in the rotated frame can be given by

M = RT (α) · M · R(α), (6)

where the dot symbol represents the matrix multiplication rule
and R(α) is the rotation matrix with an angle α about axis
x̂ × ẑ.

How will a particle moving in a medium confined within the
walls of a complicated channel respond to an external force?
Exact solutions to this question occur only in a certain type
of symmetric geometries. A cylindrical channel with infinite
length and also a rectangular channel with infinite length
and infinite depth are examples with exact solutions [21].
Apart from the above symmetric geometries, there is no
analytic solution for the hydrodynamic friction problem in an
asymmetric channel. Among different approximate methods,
the direct superposition of the corrections from different walls
is the simplest approximate scheme that can give the effects of
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δ

FIG. 3. (Color online) δGzz is plotted inside a π/4 rad corner.
The gray region near the walls represents the geometrically inacces-
sible part for a rigid sphere with radius a. The effects due to the walls
decay for regions very far from the walls.

walls in a channel [22,23]. For a particle moving in a channel
with confining walls, the friction tensor may be written as

G = G0 +
∑

i

δGi , (7)

where δGi is the correction due to the ith wall of the channel.
Using this approximation we can study the dynamics of a
Brownian particle moving in the channel.

To have a feeling of the correction to the friction coefficient
due to the presence of walls, we have plotted in Fig. 3 one of the
components of δG in a corner constructed by two intersecting
walls. As the sphere has a finite radius, only a part of the corner
is accessible to the sphere. The value of the correction function
δG is plotted for the accessible region. As one can see, this
function is finite and large near the walls and it decays to zero
far from the walls. Beyond the walls, the friction coefficient
decays to its bare value G0 and hence δG goes to zero.

Now for a unit cell in our channel, three walls confine the
fluid. Here the friction coefficient will have contributions that
come from these three walls. Considering the results of Fig. 3,
we are sure that in the middle of the channel (midregion of
each cell) the effects of walls decay to zero and the friction
coefficient will reach its bare value G0.

At the entries of the channel and using the above prescrip-
tion, the vertical and tilted walls will have great contributions
that are nonphysical. We should exclude these nonphysical
contributions. As it is shown in Fig. 1, we have turned off
the hydrodynamic interactions for the regions in the entries of
channel. These two regions, where the interactions are turned
off, are shown by dotted lines (semicircles) at the entries. A
particle feels the hydrodynamic interactions when it crosses
this dotted lines. This trick allow us to exclude the effects
of nonphysical parts of the vertical and tilted boundaries.
A Brownian particle crossing these dotted lines will feel a
discontinuity in the friction coefficient. We will argue later
that such a discontinuity does not have a crucial influence on
our results.

The validity of the superposition method that is used here
is a challenging issue and it will break near the walls and
especially at the corners. At distances very near to the wall,

the short range hard core interaction dominates the dynamics
of the particle and we do not expect to see any sharp effect
from the breakdown of our approximation for hydrodynamic
interactions. Second, because of the geometrical constraints,
we will see that the particle does not allow us to reach
the corners at all. These will ensure that the superposition
approximation will correctly account for the long range
hydrodynamic interactions with the wall of channel and we
expect to have a picture that is at least qualitatively correct.

III. NUMERICAL SIMULATION

We define the current density as the number of particles per
unit length of the opening that exit from the left side of the
channel in a unit time. The density of current for the particles is
a quantity that reflects how the motion of particles is rectified.
In terms of the average velocity of the particles, we can write
the current density as

J = n〈vx〉, (8)

where n is the density of particles, the number of particles
per unit area in our two dimensional problem. As we are not
interested about the hydrodynamic interactions between the
particles, we put a single particle in our channel and study its
dynamics. For this case the density is given by n = [LxLz(1 +
1
2	 tan θ )]−1, with 	 = Lx/Lz. Averaging overN realizations
of the system, we can obtain the average velocity as

〈vx〉 = 1

N

N∑
i=1

xi(ts) − xi(0)

ts
, (9)

where ts is the time of observation (simulation time).
To numerically solve the Langevin differential equation

[Eq. (1)], we need to make it nondimensional. For this purpose
we can use a as a scale for length and τ = a2/(μkBT ) as a
scale for time and make all variables nondimensional. After
going to the dimensionless system of units, all of the dynamical
equations can be written in terms of dimensionless variables.
Denoting the nondimensional variables with an overbar, the
nondimensional overdamped Langevin equation reads

Ḡ · r̄′ = f̄0 sin(ω̄t̄ )x̂ + �̄, (10)

where the prime symbol denotes the derivative with respect to
nondimensional time. One should note that the dimensionless
Reynolds number Re = mμ/τ , which measures the relative
importance of acceleration term with respect to the dissipation
forces, is very small, Re = 10−3, for colloidal particles. For
this reason we concentrate on the overdamped equation. The
nondimensional amplitude of the external force is given by
f̄0 = (μτ/a)f0 and Ḡ = μG. The noise satisfies the following
correlation function:

〈�̄(t̄)�̄(t̄ ′)〉 = 2Ḡδ(t̄ − t̄ ′). (11)

The nondimensional current density can be written as
J̄ = J/J0, where J0 = [τLz(1 + 1

2	 tan θ )]−1. To calculate
the current density and average over realizations, we can use
the periodic boundary condition and extract the average value
of the current from a long time dynamics of a single particle.
Please note that choosing the above sort of nondimensional
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system allows us to write the average current density as

J̄ = NR − NL

N
, (12)

where NR is the number of times that the particle exits from the
right opening and NL is the number of times that the particle
enters the channel from the left side. Here N = ts/τ and ts
stands for the simulation time.

We use the method of Ref. [24] to numerically integrate
the overdamped equations of motion. To generate random
numbers, we use the Mersenne Twister pseudorandom number
generator.

Numerical parameters that define our system are as follows:
we choose a spherical particle with size a = 1 μm moving in a
channel that is filled with water and it is at room temperature.
The viscosity of water is η = 10−3 Pa sec and the thermal
energy is kBT = 0.02 eV. These will result in a characteristic
time scale that is τ = 10 sec. We choose a time step 	t =
0.005 sec that in dimensionless units is about 	t̄ = 0.0005.
Diffusion times along the axis of the channel and along a
direction that is perpendicular to its axis are defined by τ x

D =
(Lx/a)2τ and τ z

D = (Lz/a)2τ respectively. In a channel with
typical length Lx = 15a, we will see that τ x

D = 2000 sec. In
the following section we will present the results of numerical
calculations.

IV. RESULTS

Before investigating the hydrodynamic effects of the walls,
we first turn off the hydrodynamic interaction and consider
only the elastic collisions with the walls. To illustrate the func-
tionality of the Brownian ratchet, we have plotted the average
current density as a function of frequency of the external
force in Fig. 4 (left). The results have been shown for two
cases where the random noise is turned on or turned off.
The simulation time is ts = 5000 sec. One should note that,
for this small simulation time that we have chosen here,
only the results at very large frequencies are acceptable. To
obtain true physical results, we should keep in mind that
the simulation time should be large in a way that t̄s ω̄ � 1.
As we expect, the existence of thermal noise is essential for
the functionality of the Brownian ratchet. In the absence of
thermal noise, no rectification is expected. This is evident in

FIG. 4. (Color online) Dimensionless current density is plotted
as a function of frequency of external force. Left: simulations have
been performed for two cases where thermal force is present or absent.
Simulation time is ts = 5000 sec and for different simulation times
is plotted. Right: in the absence of thermal noise, the results are
shown for different simulation times. In all graphs f̄0 = 10 and the
geometrical variables are a = 1 μm, Lx = 15a, Lz = 5a.

the results, where the current at very large frequencies (the
acceptable results) disappears for the case where thermal noise
is absent. Here the diffusion time along the axis of the channel
is about τ x

D = 152τ ∼ 2000 sec and the period of external
force for a special point on the graph with ω̄ = 1 is given
by T = 2π/ω = (2π/1) × τ ∼ 60 sec. The value of current
at this frequency is J̄ = 2 which corresponds to a current
of particles that is about J = 2 × J0 ∼ 105 m−1 sec−1. Here
ts/τ

x
D = 2.5, but as a result of external force, the particle has

a greater chance to travel many times along the axes of the
channel. This would result in an overall finite value for both
NR and NL.

In Fig. 4 (right), we have studied the system that is subjected
to thermal noise, and investigated its response by changing
both the simulation time and frequency of external force.
As one can see, by increasing the time of simulation, the
height of all nonzero frequency peaks decreases. Increasing
the simulations time will result in a smoother behavior for the
current at large frequencies. Learning from the results of
these graphs, we choose a proper simulation time and inves-
tigate the other physical properties of the Brownian ratchet in
the following part.

In Fig. 5, we study how the hydrodynamic interactions with
the walls will modify the functionality of a Brownian ratchet.
We have plotted the current density in terms of both amplitude
of the externally applied force and also the asymmetry angle θ .
As one can see, in both cases the inclusion of long range
hydrodynamic interactions with the walls will significantly
decrease the average current density. In terms of the amplitude
of external harmonic force, the hydrodynamic interactions
with the wall have more influences at large amplitudes. It is
interesting that for a Brownian ratchet working at its efficient
angle, the long range hydrodynamic interactions will deeply
decrease the current.

This current reduction as a result of hydrodynamic interac-
tions may be understood in terms of the friction coefficients.
As we have pointed out in Sec. II, for a particle moving near
a single wall, the friction coefficient will be increased with a
factor proportional to (a/h). This means that for two particles,
one moving in an infinite medium and the other moving near

FIG. 5. (Color online) Left: dimensionless current density as a
function of the amplitude of external force is plotted for two cases
where the hydrodynamic long range interactions with the walls
are absent or present. Right: dimensionless current density as a
function of the asymmetry angle θ is plotted for two cases where
the hydrodynamic long range interactions with the walls are absent
or present. Simulation time is ts = 10 000 sec, f̄0 = 10, ω̄ = 100,
Lx = 15a, Lz = 5a, and a = 1 μm.
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FIG. 6. (Color online) Dimensionless current density as a func-
tion of the asymmetry angle θ for different values of Lx and Lz

is investigated. Simulation time is ts = 10 000 sec, ω̄ = 100, and
a = 1 μm.

a wall, to achieve a constant velocity for both particles, higher
force should be applied to the particle that is moving near wall.
As the fluctuations are the source of rectified motion here, the
increase in the friction coefficient will result in a reduction in
the current. This simplified picture that is inspired by a single
wall confinement can be applied qualitatively for a particle
moving in a complex geometry of a channel.

How do the geometrical parameters of this asymmetric
channel influence the functionality of Brownian ratchet? In
Fig. 6, we have investigated the influence of geometrical
parameters of the system in current density by changing both
Lx and Lz. The current density is plotted in terms of the
asymmetry angle θ . We see that, for fixed Lx(Lz), higher
current density can be achieved by choosing smaller Lz(Lx).
In all cases, the maximum current density corresponds to an
angle θ ≈ 20◦. Interplay between the size of the particle and
the available area in the corners determines the overall behavior
of the system. The trapping time for the particle that is moving
in the corners of the channel will change the efficiency of a
Brownian ratchet. Dividing the area of the channel into two
parts, one with a rectangular geometry with an area Lx × Lz

and the second part with a triangle area, we see that less area
for the rectangular part corresponds to more current density.

As we pointed out before, when a particle crosses the
boundaries where the hydrodynamic interactions are turned off
(dotted line in Fig. 1), a discontinuity in the friction coefficient
will happen. This can be treated as a discontinuity in friction
force. To estimate the order of this force one can assume that in
the worse case, the friction drop has a value of about 6πηa. For
our micron size Brownian particle moving with velocity about
1 μm/sec, one can reach a force of about 10−14N . This is

comparable with the thermal noise given by
√

6πηakBT /	t .
This shows that such discontinuity can be considered as an
extra noise in the boundaries. For a typical simulation, this
extra noise appears only in 0.01% of all time steps. This shows
that such rare events are not able to change the statistics of
noise and hence they do not influence our results.

The validity of the superposition approximation can be
understood in terms of the back flow method described in
Ref. [22]. Flow generated from a moving object propagates
and reaches the boundaries. To satisfy the no-slip boundary
condition on the walls, a back flow will be produced on
the walls as well. A scattered back flow due to a certain
wall reaches the other walls and to ensure the satisfaction of
boundary conditions on these walls, we need to add second
order scattered back flow. This will result in a hierarchy
of scattered flows from different walls. Combining all the
scattered back flows will modify the motion of a moving object
inside the confined flow. Due to the fact that flow from a point
force decays like 1/r , the N th order of scattered flow is at
least smaller with a factor like a/h with respect to (N − 1)th
order, in the region far from all walls. Simple superposition
of the effects due to different walls is an approximation that
is achieved by cutting the hierarchy of scattered back flows at
its first order. However one should note that the superposition
approximation will give an estimation for the real values of
the interactions.

In conclusion, we have considered the functionality of a
Brownian ratchet and investigate the role of hydrodynamic in-
teractions on the efficiency of this system. To take into account
the interactions with walls of the channel, we proceeded with
an approximate scheme for the mobility tensor of a colloidal
particle moving near boundaries. We discussed the limitations
and validity of this approximation. As there is no exact solution
for the mobility of a particle inside channel, to achieve more
accurate results one can perform a simulation that includes
coupled equations of motion for colloidal particles and also
the fluid particles. Although the results of such intense studies
will help to obtain more accurate results, we do not expect to
see a large qualitative deviation with the results that we have
obtained here.
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