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Abstract.  Based on a microscopic model, we develop a continuum description 
for a suspension of microscopic self-propelled particles. With this continuum 
description we study the role of long-range interactions in destabilizing 
macroscopic ordered phases that are developed by short-range interactions. 
Long-wavelength fluctuations can destabilize both isotropic and symmetry-
broken polar phases in a suspension of dipolar particles. The instabilities in 
a suspension of pullers (pushers) arise from splay (bend) fluctuations. Such 
instabilities are not seen in a suspension of quadrupolar particles.
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1.  Introduction

The dynamics of a suspension of interacting active particles, as a non-equilibrium 
problem in statistical mechanics, has attracted considerable interest in recent years 
[1–4]. Systems like schools of fish and birds [5–7], bacterial colonies [8–11], gels of 
bio-polymers [12] and interacting active Janus particles [13–15] show a wide range of 
fascinating physical behavior. Coherent collective motions, long-range orientational 
order [16, 17], large-number fluctuations and pattern formations are examples of such 
phenomena [8, 16, 18].

At first glance, the long-range order observed in two-dimensional active systems 
seems to be in contrast with the Mermin–Wagner theorem, which states that sponta-
neous breaking of continuous symmetries is impossible in low-dimensional equilibrium 
systems with suciently short-range interactions. The lack of such symmetry breaking 
is due to the divergence of spin-wave-like fluctuations that must appear after symmetry 
breaking in equilibrium systems [19]. But a theoretical work based on renormalization 
group analysis by Toner and Tu has revealed a physical scenario in which the non-
equilibrium nature of active systems can provide conditions for the appearance of the 
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true order in lower dimensions [20]. However, as a result of long-range hydrodynamic 
interaction between particles, orientational order in a wet active system is inevita-
bly unstable [21–24]. The mechanism and origin of this hydrodynamically mediated 
dynamical instability are dierent from the fluctuation divergence that follows a sym-
metry breaking in low-dimensional equilibrium systems. Hydrodynamically mediated 
instability is a non-universal size-dependent phenomenon and it is sensitive to the 
microscopic details of swimming strokes [25–27].

Long-wavelength instabilities in both dry and wet active systems have been studied 
using dierent approaches [28–35].

In addition to numerical studies [36–40], continuum descriptions can provide 
analytical tools for dealing with such non-equilibrium systems. Microscopic derivations 
[30–32, 41, 42] and symmetry arguments [20, 43–45] are two approaches that can pro-
vide the governing equations for macroscopic continuum fields. In this article we aim to 
use a microscopic approach and obtain the equations of macroscopic description. The 
continuum description derived from the microscopic model in this article will allow us 
to study the role of long-range interactions in instabilities observed in active suspen-
sions. To take into account the hydrodynamic interactions between swimmers, we will 
use an eective treatment whereby at the level of two swimmers, we eliminate the 
fluid degrees of freedom from the fluid–swimmer coupled equations and obtain eective 
interaction between swimmers. Our approach is dierent from the method used in [44], 
where the swimmer’s activity enters through an active stress into the hydrodynamic 
equations by a coarse-graining procedure. Our approach is similar to a work that con-
sidered the dynamics of a suspension confined in two dimensions [46].

Theories based on symmetry arguments reveal qualitative features of long-wave-
length instabilities in active suspensions. Microscopic-based models can help us to 
understand the origin of instabilities more quantitatively. We will show that both iso-
tropic and polar phases that can appear in active systems are unstable with respect to 
long-wavelength fluctuations.

The structure of this article is as follows: in section 2, we present the hydrody-
namic details of our microscopic model and introduce long- and short-range interac-
tions between swimmers. Then in section 3, we describe the dynamics of a suspension 
of many swimmers in terms of Langevin and Smoluchowski descriptions. Furthermore, 
we simplify the description by considering mean-field approximation. In section 4, we 
derive a continuum description for the system. Dynamical equations, their steady-state 
solutions and instability analysis are presented in this section. Finally, a discussion and 
a summary are presented in section 5.

2. Hydrodynamic model for micro-swimmers

We start with a microscopic model for a minimal autonomous micro-swimmer that 
can propel itself in aqueous media. Theoretical arguments based on symmetry grounds 
show that a minimum number of two internal degrees of freedom is necessary to cap-
ture the hydrodynamic details of a micro-swimmer [47]. To construct the model swim-
mer, consider three spheres with radii a, connected linearly by two arms with variable 
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lengths given by Lf and Lb. We label the spheres f (front), b (back) and m (middle). 
It is shown that harmonic changes in the arm lengths with a phase lag between the 
arms will result in a non-zero swimming velocity for this system [48, 49]. To see how 
the above swimmer works, one needs to solve the hydrodynamic equations  for the 
ambient fluid that are coupled to the motion of the spheres. On the micrometer scale 
with a velocity range about micrometers per second in water, the linear Stokes equa-
tion governs the dynamics of the fluid. Assuming that the arms are thin enough to 
neglect their hydrodynamic eects and eliminating the fluid degrees of freedom, one 
can obtain the eective equations that govern the dynamics of the spheres alone. Such 
equations are linear relations between the velocity of the spheres and the hydrodynamic 
forces exerted by the spheres on the fluid [50]:

vmi =
∑
j,n

Omn
ij fn

j ,� (1)

where fn
j  (vnj ) denotes the jth component of the force (velocity) of sphere n and the 

details of the hydrodynamic interactions are given by the kernel Omn
ij . This hydrody-

namic kernel is a function of the size of the spheres and their relative position. Denoting 
the distance between spheres m and n by d = xm − xn and the fluid viscosity by η and 
in the limit of d � a, Oseen’s tensor provides an approximation for the hydrodynamic 
kernel [50]:

Omn
ij =




1
8πηd

(
δij + d̂id̂j

)
for m �= n

δij
6πηa

for m = n
.� (2)

As the swimmer is autonomous, one needs to add the conditions of zero total force 
and zero total torque to the above dynamical equations. The above relations and the 
constraints that prescribe the dynamics of the arm lengths provide a complete set of 
dynamical equations that can fully determine the state of the swimmer, including its 
speed, direction and forces. The velocities and forces averaged over time are the quanti-
ties that we are interested to know. To express the results, let us assume that the arms 
oscillate around a mean value �:

Lf(t) = �+ uf(t), Lb(t) = �(1 + δ) + ub(t),� (3)

where uf and ub are periodic functions of time and δ is a parameter that makes the 
swimmer geometrically asymmetric. After solving the above equations, the average 
swimming velocities (linear and angular) and forces acting on the fluid read as [49]:

v0 = v0 t̂, Ω0 = 0� (4)

〈f f〉 = −5

4
πη(

a

�
)2(1− 17

5
δ)Φ t̂, 〈f b〉 = −5

4
πη(

a

�
)2(1 +

7

5
δ)Φ t̂,� (5a)

where v0 = − 7
12
( a
�2
)(1− δ)Φ, t̂ represents the direction of the swimmer and Φ = 〈uf u̇b〉 

with 〈. . . 〉 shows the averaging over time. Additionally 〈f m〉 = −〈f b〉 − 〈f f〉. In writing 
the above results, we assume that a � �, uf � �, ub � � and δ � 1. Throughout this 
paper we choose Φ < 0, so that v0  >  0.
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When considering the force distribution of a swimmer, the asymmetry parameter δ 
plays an essential role. For a symmetric swimmer (δ = 0), the force distribution shows 
a quadrupolar field while for the asymmetric case (δ �= 0) it shows a dipolar field [51]. 
Defining the force dipole tensor as Γij =

∑
m xm

i f m
j , we can calculate it as:

Γ = −29

10
f0 � δ t̂t̂,� (6)

where f0 =
30
7
πηav0. Based on the observation that the driving force of the motion is 

located at the head or at the tail of the swimmer, we can divide dipolar swimmers into 
two categories of pushers and pullers. For pushers, the driving force comes from the 
tail while for pullers, the driving force comes from the head. In an asymmetric three-
sphere swimmer with Φ < 0, δ > 0 corresponds to a puller (Γtt < 0) and δ < 0 results in 
a pusher (Γtt > 0). For a puller (pusher), the back (front) arm of the swimmer is longer 
than the front (back) arm. Figure 1 shows the flow field pattern for both pusher and 
puller. There is a fundamental dierence between the flow patterns for pushers and 
pullers. In the next sections we will see that the hydrodynamic interaction between the 
swimmers crucially depends on the sign of δ.

2.1. Long-range interactions

Since we want to consider a suspension of micro-swimmers, we need to calculate the 
hydrodynamic interactions between them. The above model of a micro-swimmer allows 
us to obtain an analytic formula for the interactions. The details of such calculations 
are similar to the case of a single swimmer and have been studied elsewhere [52, 53]. 
Here we only present the final results. Consider two swimmers located at positions r 
and r′ with orientations given by t̂ and t̂′. Taking into account the hydrodynamic long-
range interactions between the swimmers, the linear and angular velocities of the first 
swimmer averaged over the oscillations of both swimmers read as:

VL
(
r, r′, t̂, t̂′

)
= a1

(
�

R

)2

G1 +

(
�

R

)3

(a2 G2 + a3 G3) ,� (7)

Figure 1.  Velocity fields of a puller (left) and a pusher (right). In both cases, the 
swimmer moves upward, along the bold arrow. The velocity field decreases with 
1/r2.
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ΩL
(
r, r′, t̂, t̂′

)
= a4

(
�

R

)3

G4 +

(
�

R

)4

(a5 G5 + a6 G6) ,� (8)

where R = r− r′ and superscript L denotes long-range interaction. The coecients are 
given by:

a1 = −87

56

(a
�

)
δv0, a2 = −6

7
(2 + δ) v0, a3 = −1

2
a2,

a4 = −1

�
a1, a5 = −1

�
a2, a6 =

3

2

(
1

�

)
(2− δ) v0.

�
(9)

Regarding the above results for the interactions, the terms proportional to a1 and a4 
represent the dipolar contributions and the other terms show the quadrupolar contrib
utions. Vectors G1, · · · ,G6 are functions of the relative displacement and orientation 
of the swimmers, given by:

G1 = −3Mij(R̂) t̂i
′
t̂j

′
R̂,� (10)

G2 =
3

2
Mij(R̂) t̂i

′
t̂j

′
t̂′ +

3

2
Mijk(R̂) t̂i

′
t̂j

′
t̂k

′
R̂,� (11)

G3 = −3Mij(R̂) t̂i
′
t̂j

′
t̂+ 3Mijk(R̂) t̂i

′
t̂j

′
t̂kR̂,� (12)

G4 = 3Mijk(R̂) t̂i
′
t̂j

′
t̂kR̂,� (13)

G5 =
3

2
Mijk(R̂) t̂i

′
t̂j

′
t̂kt̂

′ − 15

2
Mijkl(R̂) t̂i

′
t̂j

′
t̂k

′
t̂lR̂,� (14)

G6 = −15

2
Mijkl(R̂) t̂i

′
t̂j

′
t̂k t̂lR̂,� (15)

where summation over repeated indices is assumed and

Mij(R̂) = R̂iR̂j −
1

3
δij, Mijk(R̂) = −R4∂k

(
Mij

R3

)
,

Mijkl(R̂) = −R5

5
∂l

(
Mijk

R4

)
,

� (16)

where we use the shorthand notation ∂i = ∂/∂Ri. To obtain the above hydrodynamic 
interactions, we assume that the swimmers are very far, R � �, and we also average 
over the internal motion of the swimmers. As seen from equations (7) and (8), the first 
non-zero terms in the hydrodynamic interaction, the terms that are proportional to 

( �
R
)2 in linear velocity and ( �

R
)3 in rotational velocity, are proportional to δ. This is 

the contribution from the dipolar field of the asymmetric swimmers. Such contribution 
changes signs for pushers and pullers [54–56].

In the above equations, we use a compact notation for the interaction terms. An 
alternative representation given in appendix B can reveal the physical picture behind 
each term. As a result of that representation, dierent terms in equations (7) and (8) 
can be considered as flow fields due to some hydrodynamic singularities like a force 
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dipole, a source dipole and higher-order multipoles. The change in the velocity of the 
first swimmer can be considered as the flow of singularities located at the position of 
the second swimmer and calculated at the position of the first swimmer. For example 
the term proportional to a1 shows the flow of a force dipole and the a2 term contains a 
source dipole and a force quadrupole.

Rich dynamical behavior that includes coherent motion in two interacting swim-
mers suggests we could see interesting phases in a system with many interacting swim-
mers [53, 57]. In the next sections we will see how the thermodynamic behavior of a 
suspension of micro-swimmers depends on the nature of two-particle interactions.

2.2. Short-range interactions

As one can see from equations (7) and (8), the long-range hydrodynamic interactions 
that we have obtained are valid only at large distances: they diverge at short distances. 
Due to the complexity of hydrodynamics at short distances, it is not possible to obtain 
simple analytic results for the short-range part of the interactions. We can use an 
approximate phenomenological model that takes into account the short-range part of 
the interactions. Inspired by the well-known Vicsek model [39], we consider a short-
range ferromagnetic interaction potential as:

US(r, r′, t̂, t̂′) =

{
−kBTU0 t̂ · t̂′ for R � �c,

0 for R > �c
� (17)

where �c is a crossover length scale that separates short- and long-range interactions. 
We assume that long-range hydrodynamic interactions act only for swimmers hav-
ing distances larger than �c. As seen from figure 2, the above potential tends to align 
nearby particles. The crossover length �c has the same order of magnitude as the linear 
dimension of the swimmers given by 2�. It should be mentioned that the above inter-
action does not consider all information on short-range interactions in real systems; 
this model only takes into account the steric interaction between nearby swimmers. In 
terms of potential energy, the short-range velocities can be written as:

Figure 2.  Short-range alignment interaction, US, between the swimmers is plotted 
as a function of the angle between their orientations. The potential has a minimum 
when two swimmers are aligned. Here we assume U0  =  1.

https://doi.org/10.1088/1742-5468/aaa795
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VS(r, r′, t̂, t̂′) = − 1

kBT
D ·∇US,� (18)

ΩS(r, r′, t̂, t̂′) = − DR

kBT
∇RU

S,� (19)

where ∇ and ∇R ≡ t̂× ∂/∂t̂ are the translational and rotational gradient operators. In 
some previous studies concerning continuum description [30, 31], a Vicsek-like short-
range alignment interaction for a collection of point particles has been considered. The 
Boltzmann–Ginzburg–Landau approach used in [30] considered both ferromagnetic 
and nematic short-range ordering and in [31], which is based on an Enskog-type kinetic 
theory, a ferromagnetic interaction was considered. The ferromagnetic interaction that 
we consider in this article introduces a polar order in the system.

In the above equations, D is the translational diusion tensor of a micro-swimmer 
and for a swimmer with elongated geometry we can decompose it into its parallel, D‖, 
and perpendicular, D⊥, components:

Dij = D‖t̂it̂j +D⊥
(
δij − t̂it̂j

)
,� (20)

and DR is the rotational diusion coecient. Through hydrodynamic calculations, we 
can obtain the translational and rotational diusion coecients [58, 59].

The details of such calculations are presented in appendix A. The final results are:

D‖ =
kBT

18πηa

[
1 +

5

2

(
1− δ

2

)(a
�

)
+O

(a
�

)2
]
,� (21)

D⊥ =
kBT

18πηa

[
1 +

5

4

(
1− δ

2

)(a
�

)
+O

(a
�

)2
]
,� (22)

DR =
kBT

12πηa �2

[
(1− δ)− 3

8

(
1− 3

2
δ

)(a
�

)
+O

(a
�

)2
]
.� (23)

3. Dynamics of a suspension

3.1. Langevin dynamics

Let us consider a dilute suspension of N  micro-swimmers moving in a three-dimen-
sional fluid medium with temperature T. To describe the dynamics of the suspension, 
we can start with Langevin description for each micro-swimmer:

∂trα = v0 t̂α +
∑
β �=α

Vint
(
rα, rβ, t̂α, t̂β

)
+ ηT

α(t),� (24)

∂tt̂α =
∑
β �=α

Ωint
(
rα, rβ, t̂α, t̂β

)
× t̂α + ηR

α(t),� (25)

https://doi.org/10.1088/1742-5468/aaa795
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where rα denotes the position vector for the hydrodynamic center of the αth swimmer 
(α = 1, . . . ,N ) and ̂tα its director. The hydrodynamic center is defined in the appendix. 
In the above relation the summation is over all other swimmers (β �= α). Vint and Ωint 
are the interaction contributions to the translational and rotational velocities of the 
swimmers. We consider two types of interactions between the swimmers: a short-range 
alignment interaction and a long-range one that is due to the fluid-mediated interac-
tions between the swimmers. So Vint and Ωint contain two terms:

Vint
(
rα, rβ, t̂α, t̂β

)
= VL +VS,� (26)

Ωint
(
rα, rβ, t̂α, t̂β

)
= ΩL +ΩS.� (27)

Recall that in the last section we have obtained the long- and short-range parts of the 
interaction. ηT

α(t) and ηR
α(t) are stochastic terms due to random forces which swimmer 

α receives from the molecules of the ambient fluid. The random forces obey the statis-
tics of Gaussian noise:

〈ηTα,i(t)ηTβ,j(t′)〉 = Dij δαβ δ(t− t′),� (28)

〈ηRα,i(t)ηRβ,j(t′)〉 = DR δij δαβ δ(t− t′).� (29)

3.2. Statistical description

In order to obtain a probabilistic description for a suspension composed of N  particles, 
we denote the N -body probability distribution function by ΨN (r1, t̂1, · · · , rN , t̂N , t). 
The distribution function is the probability of finding the αth swimmer at position rα 
with the orientation given by t̂α at time t. This distribution function obeys the follow-
ing normalization condition:

N∏
α=1

∫
drαdt̂α ΨN = 1,� (30)

and it satisfies the following continuity equation:

∂tΨN = −

(
N∑

α=1

∂

∂rα

)
· JT

N −

(
N∑

α=1

t̂α × ∂

∂t̂α

)
· JR

N ,� (31)

where JT
N  and JR

N  are the translational and rotational N -body fluxes. At a very small 
volume fraction of swimmers, where the distance between swimmers is larger than their 
size, we can treat the system at the mean-field level. In this case the N -body distribu-
tion function can be given in terms of a single-particle distribution function:

ΨN = ψ
(
r1, t̂1, t

)
· · ·ψ

(
rN , t̂N , t

)
.� (32)

Using this assumption, the single-particle distribution function, ψ
(
r, t̂, t

)
, obeys the 

following Smoluchowski equation:

∂tψ = −∇ · JT −∇R · JR,� (33)

https://doi.org/10.1088/1742-5468/aaa795
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where JT and JR are the translational and rotational one-body fluxes and are given by:

JT =
[
v0t̂+V

int
]
ψ −D ·∇ψ,� (34)

JR = Ω
int

ψ −DR ∇R ψ.� (35)

The mean-field translational and rotational velocities are denoted by V
int

 and Ω
int

. 
These mean-field terms should be calculated by integrating over the positions and ori-
entations of all the swimmers:

V
int (

r, t̂, t
)
=

∫
dr′dt̂′ Vint(r, r′, t̂, t̂′)ψ(r′, t̂′, t),� (36)

Ω
int (

r, t̂, t
)
=

∫
dr′dt̂′ Ωint(r, r′, t̂, t̂′)ψ(r′, t̂′, t).� (37)

In order to study the dynamics of an active system composed of interacting particles, 
we proceed and consider the dynamics of the moments of the distribution function. The 
density field ρ(r, t), polarization P(r, t) and nematic-order parameter N(r, t) are the 
first three moments of the distribution function, which are defined as follows:

ρ(r, t) =

∫
dt̂ψ(r, t̂, t),� (38)

ρ(r, t)P(r, t) =

∫
dt̂ t̂ψ(r, t̂, t),� (39)

ρ(r, t)N(r, t) =

∫
dt̂

(
t̂t̂− I

3

)
ψ(r, t̂, t).� (40)

Using equation  (33), we can obtain the equations  that govern the dynamics of the 
above continuum fields. These equations show that the dynamics of the nth moment is 
coupled to the dynamics of the (n− 1)th moment. So we need to cut the hierarchy at 
some point. As an approximation, we neglect the third (and higher) moment and cut 
the equations at the second moment. In this case and in terms of density, polarization 
and nematic order, the distribution function can be constructed as:

ψ(r, t̂, t) = ρ(r, t)

(
1

4π
+

3

4π
t̂ ·P(r, t) +

15

8π

(
t̂t̂− I

3

)
: N(r, t)

)
.� (41)

3.3. Mean-field interactions

Before deriving the dynamical equations for continuum fields, we need to calculate the 
mean-field form of the interaction terms. As discussed before, the interaction between 
swimmers has two contributions, short- and long-range parts:

V
int (

r, t̂, t
)
= V

S
+V

L

Ω
int (

r, t̂, t
)
= Ω

S
+Ω

L
.

� (42)

https://doi.org/10.1088/1742-5468/aaa795


Long-wavelength instabilities in a system of interacting active particles

11https://doi.org/10.1088/1742-5468/aaa795

J. S
tat. M

ech. (2018) 023201

To obtain the short-range contribution we need to insert the two-body interactions 
from equations (18) and (19) into equations (36) and (37) and then calculate the inte-
grations. To obtain the final results, the following integral should be obtained:

U
S
(r, t̂, t) =

∫
dr′dt̂′ US ψ(r′, t̂′, t).� (43)

Now, as the interaction is short-range, we can expand ψ(r′, t̂′, t) as:

ψ(r′, t̂′, t) = ψ(r, t̂′, t) + (r′ − r) · ∂rψ(r, t̂′, t) + · · · .� (44)

The leading-order terms read as:

U
S
(r, t̂, t) = −4

3
π�3cU0kBT

(
1 +

1

10
�2c ∇2 + · · ·

)
(ρ t̂ ·P).� (45)

Now the short-range contributions read as:

V
S
(r, t̂, t) =

4

3
π�3cU0 D ·∇

(
ρ t̂ ·P

)
+ · · · ,

Ω
S
(r, t̂, t) =

4

3
π�3cU0 DR∇R

(
ρ t̂ ·P

)
+ · · · .

� (46)

Long-range contributions can also be obtained by inserting (7) and (8) into equa-
tions (36) and (37). In terms of their components, the mean-field long-range interactions 
can be written as:

V
L

i (r, t̂, t) = b1T
1
i (r, t) + b2T

2
i (r, t) + b3T

3
il(r, t) t̂l,� (47)

Ω
L

i (r, t̂, t) = b1T
4
il(r, t) t̂l − b2T

5
il(r, t) t̂l + b4T

6
ilm(r, t) t̂lt̂m,� (48)

where summation over repeated indices is assumed and the coecients are given by:

b1 =
261

56
a � v0 δ, b2 = −18

35
�3 v0 (2 + δ) , b3 =

5

2
b2,

b4 = −45

4
�3 v0 (2− δ) .

�
(49)

To keep track of the singularities in equations (7) and (8), note that the terms propor-
tional to b1, b2 and b3 correspond to the terms proportional to a1, a2 and a3 or equiva-
lently all Tα correspond to the Gα defined before. Functions T1, · · · ,T6 in (47) and (48) 
are functions of position and their detailed structures are given by:

T 1
i (r, t) =

∫
dr′

R̂i

R2
Mjk(R̂) ρ(r′, t)Njk(r

′, t),� (50)

T 2
i (r, t) =

∫
dr′

1

R3
Mij(R̂) ρ(r′, t)Pj(r

′, t),� (51)

T 3
il(r, t) =

∫
dr′ ∂l

(
Mjk(R̂)

R3
Ri

)
ρ(r′, t)Njk(r

′, t),� (52)
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T 4
il(r, t) =

∫
dr′

R̂i

R3
Mjkl(R̂) ρ(r′, t)Njk(r

′, t),� (53)

T 5
il(r, t) =

∫
dr′

1

R4
Mijl(R̂) ρ(r′, t)Pj(r

′, t),� (54)

T 6
ilm(r, t) =

∫
dr′

R̂i

R4
Mjklm(R̂) ρ(r′, t)Njk(r

′, t).� (55)

Taking a look at the mean-field velocities (47) and (48), we can see that long-range 
hydrodynamic interactions have a nematic nature. Regarding the discussion about 
singularities, the most important term that appears in the interactions is a term pro-
portional to a1 or equivalently b1, which is the field due to a force dipole and is propor-
tional to T1. Results show a nonlocal dependence on the nematic tensor Njk. We will see 
in the following sections that terms with coecient b1, which are related to the nematic 
part of hydrodynamic interactions, have a significant impact on the long-wavelength 
behavior of the suspension.

In the next sections, we use the above results and study the dynamics of a suspen-
sion in the continuum limit.

4. Continuum description

Now we can calculate the dynamical equations for the hydrodynamic continuum fields. 
Starting from equation (33), multiplying both sides by powers of t̂ and integrating over 
a solid angle spanned by t̂, we can obtain the equations that govern the dynamics of 
the density, polarization and nematic-order parameter. The results of such calculations 
can be written as:

∂tρ = −v0∇.(ρP) +D1∇2ρ+D2 ∂i∂j(ρNij) + ρ̇L + ρ̇S,� (56)

∂t(ρPi) =− v0∂j (ρNij)−
1

3
v0∂iρ− 2DRρPi

+ ∂j

(
2

5
D2 ∂i(ρPj) +D3∂j (ρPi)

)
+ Ṗ L

i + Ṗ S
i ,

� (57)

∂t(ρNij) =− 1

5
v0 [∂i(ρPj) + ∂j(ρPi)] +

2

15
v0 δij∇ · (ρP)

− 6DRρNij +
2

15
D2

(
∂i∂j −

1

3
δij∇2

)
ρ

+
2

7
D2∂k

(
∂i(ρNjk) + ∂j(ρNik)−

2

3
δij∂l(ρNkl)

)

+D4∇2(ρNij) + ṄL
ij + ṄS

ij.

�

(58)
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As one can see, in addition to the diusion and swimmer activity terms, the terms 
proportional to v0, there are contributions from the interactions. Contributions from 
long-range and short-range interactions are collected in terms that are denoted by 
superscripts L and S respectively (ρ̇L, ρ̇S, etc). To keep the continuity of the text, we 
put these interaction terms in appendix C. The eective diusion coecients in the 
above equations are defined as:

D1 =
1

3

(
D‖ + 2D⊥

)
, D2 = D‖ −D⊥,

D3 =
1

5

(
D‖ + 4D⊥

)
, D4 =

1

7

(
D‖ + 6D⊥

)
.

�
(59)

Equation (56) shows the conservation of density. Convection along the intrinsic veloc-
ity is reflected by the first term; the second and third terms show diusion along the 
density and nematic gradients. The first two terms in equation  (57) show that the 
gradients in the density and nematic fields have contributions to the dynamics of 
polarization. Compared to the Navier–Stokes equation, these terms can be regarded as 
pressure gradients. The terms proportional to D2 and D3 in equation (57) with similar 
counterparts in Toner and Tu’s description [20] are diusion terms. The term −2DRρPi 

together with the last term in the short-range part of this equation (Ṗ S
i ) is responsible 

for developing a homogeneous polar phase in our system. Such terms have counterparts 
in phenomenologically derived continuum equations [2, 20, 45].

4.1. Steady-state solutions

Here we seek steady-state uniform solutions to the above dynamical equations  for 
continuum fields. Terms corresponding to long-range interactions and the swimmer’s 
activity do not contribute to uniform steady-state solutions. Steady states are solutions 
to the following equations:

∂tρ = 0,� (60)

∂t(ρPi) = −2DRρPi +
4

3
πDR�

3
cU0ρ

2

(
2

3
Pi − PjNij

)
,� (61)

∂t(ρNij) = −6DRρNij +
8

5
πDR�

3
cU0ρ

2

(
PiPj −

P 2

3
δij

)
.� (62)

The above equations show that there are two dierent homogeneous steady-state phases 
in our system. The first phase, denoted by I, is an isotropic phase and is defined by:

ρI = ρ0, PI = 0 NI = 0.� (63)
In this phase, all swimmers are distributed uniformly in the fluid and move randomly 
without any preferred direction. Increasing the density, we see that beyond a critical 
density ρ0 > ρc = 9/(4π�3cU0), a homogeneous polarized state appears. This phase is 
denoted by P and defined by:

ρP = ρ0, PP = P∞, NP = N∞.� (64)
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In this polarized phase, swimmers are distributed uniformly and move in a preferred 
direction. Steady-state polarization and the nematic-order parameter in the polar phase 
are given by:

P∞ =

√
15

4π�3cρ0U0

(
1− 9

4π�3cρ0U0

)
n̂,� (65)

N∞ =

(
1− 9

4π�3cρ0U0

)(
n̂n̂− I

3

)
,� (66)

where n̂ denotes the direction of the broken symmetry. Figure 3 shows a phase diagram 
in a space characterized by U0 and ρ0�

3
c. Appearance of the ordered phase is a direct 

consequence of the short-range (alignment) interaction between the swimmers. As is 
apparent from the equations, long-range interactions alone are not able to induce any 
ordered state in bulk [32]. It has been shown very recently that short-range hydrody-
namic interactions in symmetric squirmers are also able to induce a polar state [60].

4.2. Stability of isotropic state

In addition to the existence of steady-state phases, their stability is important to 
analyze. Thermal or non-thermal fluctuations can destabilize the above steady-state 
phases. In this section, we study the stability of the steady-state solutions.

To study the stability of the isotropic phase, we add small fluctuations to the corre
sponding fields of the isotropic state and investigate their dynamics:

ρ(r, t) = ρ0 + δρ(r, t),� (67)

P(r, t) = 0 + δP(r, t),� (68)

Figure 3.  Phase diagram showing possible thermodynamic phases for a suspension 
of swimmers. Isotropic and polarized phases are separated by a solid line in a space 
given by U0 (strength of short-range interaction) and ρ0�

3
c (density of swimmers). 

Taking into account long-wavelength fluctuations, calculations show that both 
phases are unstable. Part of the polarized phase denoted by dashed lines shows the 
states that are stable with respect to splay fluctuations. These states are unstable 
with respect to bend fluctuations.
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N(r, t) = 0 + δN(r, t).� (69)
Using the dynamical equations obtained in the above section, we can obtain the evo
lution equations of these fluctuating fields. To linearize the equations, we introduce 
spatial Fourier transformation:

f̌(k) =

∫
dr eik·r f(r).� (70)

In appendix C, we show how a typical term in the dynamical equation can be linear-
ized. Repeating the same procedure for all other terms, we can arrive at the following 
equations that describe the linearized dynamics of the fluctuations around the isotropic 
phase:

∂tδρ̌ = iv0ρ0kiδP̌i −
8πi

9
b2ρ

2
0kiδP̌i −D1k

2δρ̌− ρ0D2kikjδŇij,� (71)

∂tδP̌i =iv0kjδŇij + i
v0
3ρ0

δρ̌ki −
8πi

45
b3ρ0kjδŇij −

2

5
D2kjδP̌jki −D3k

2δP̌i

+
4

9
π�3cU0ρ0

(
1

5
D2[2kjδP̌jki + k2δP̌i] +D⊥k

2δP̌i

)
− 2DRδP̌i

+
8

9
πDR�

3
cU0ρ0δP̌i −

32πi

225
b4ρ0k

(
−k̂j k̂kδŇjkk̂i +

14

35
δŇikk̂k

)
�

(72)

and

∂tδŇij =
2

5
iv0

(
1

2
[kiδP̌j + kjδP̌i]−

1

3
kkδP̌kδij

)
− 2

15ρ0
D2kikjδρ̌

+
2

45
D2k

2δij
δρ̌

ρ0
− 6DRδŇij −D4k

2δŇij −
2

7
D2

(
kzkiδŇjz

+ kzkjδŇiz −
2

3
δijkkklδŇkl

)
+

ρ0
5

(
8π

3
b1[2k̂kk̂lδŇklk̂ik̂j

− δŇikk̂kk̂j − δŇjkk̂kk̂i +
2

5
δŇij] +

8πi

15
b2[5kkδP̌kk̂ik̂j

− δP̌ikj − δP̌jki − kkδP̌kδij]

)
.

�

(73)

These coupled equations govern the dynamics of fluctuations. As one can distinguish 
from these equations, convection (terms proportional to v0), diusion (terms propor-
tional to Di), short-range interactions (terms proportional to U0) and long-range inter-
actions (terms proportional to bi) have contributions to the dynamics.

It should be mentioned that in order to investigate the stability of the isotropic 
phase, we have to consider the nematic order as well as the polar order. This is a direct 
result of the nature of hydrodynamic interaction we derived before. According to equa-
tions (47) and (48) and their discussion above, the most important part of the interac-
tions directly takes into account the nematic order. In the absence of such a term in 
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the hydrodynamic interaction, the nematic order is subjugated to the polar order and it 
is an irrelevant field [46]. According to the above equation, the strongest contribution 
from hydrodynamic interactions appears only in nematic fluctuations (equation (73)) 
and it is a term that is proportional to b1. As analysis of the above coupled equations is 
not simple, we can use dierent approximations to understand the physical mech
anisms of possible instabilities.

As a first approximation that is at times longer than the time scale of rotational 

diusion (t � D−1
R ), we can neglect the dynamics of δP̌i and δŇij in equations  (72) 

and (73). Solving the simplified equations  for polarization and nematic fluctuations 

(∂tδP̌i = ∂tδŇij → 0), we can substitute them in equation (71) and keep the leading-
order powers of wave vector k. This results in an eective diusion equation for density 
fluctuations:

∂tδρ̌ = −Deffk
2δρ̌,� (74)

where the eective diusion constant is given by:

Deff = D1 +
v20

DR(3− 4
3
π�3cρ0U0)

[
1

2
+

8πρ0�
3

35

]
.� (75)

Since in the isotropic phase �3cρ0U0 < 9/4π, the above eective diusion coecient 
is always positive and it is greater than the diusion coecient of a Brownian 
self-propelled rod, D1 + v20/6DR [61]. As a result of the positivity of De, density 
fluctuations are damped and the isotropic state is stable if we neglect polarization and 
nematic fluctuations.

It is a well-known fact that for an active Brownian particle, orientational fluctuations 
increase the translational diusion by a term proportional to v20/DR, but what is new 
here is the eect of hydrodynamic interactions. In the above result, the second term 
in brackets, (8π/35)ρ0�

3, which is due to hydrodynamic interaction, shows that the 
hydrodynamic interaction speeds up the diusion process. The increase in diusion due 
to the hydrodynamic interaction is proportional to the density of swimmers and to the 
size of an individual swimmer.

To have more insights into fluctuations in the isotropic phase, we study the dis-
persion relation for hydrodynamic modes in the system. In this case, we do not base 
our approximation on neglecting the dynamics of polarization and the nematic-order 
parameter from the above coupled equations. It is apparent from equations (72) and 
(73) that the nematic fluctuations are coupled to the density fluctuations in higher pow-

ers of the wave vector. We are interested in long-wavelength fluctuations, so as another 

approximation we may discard nematic fluctuations (δŇij → 0) and consider only the 
coupled dynamics of density and polarization fluctuations. Assuming a time-dependent 
form for the fluctuations,

δρ̌, δP̌i ∼ eχ(k) t,� (76)
we can study their coupled dynamics and obtain a dispersion relation like χ = χ(k). Up 
to the leading orders of k, the dispersion relation reads:
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χ± =
1

54

[
− 9

(
3− 4

3
π�3cρ0U0

)
(2DR +D5k

2)− 27D1k
2

±

[(
9

(
3− 4

3
π�3cρ0U0

)
(2DR +D5k

2) + 27D1k
2

)2

+ 108

(
− 9D1k

2

(
3− 4

3
π�3cρ0U0

)
(2DR +D5k

2)

− 9v20k
2

(
1 +

16π

35
ρ0�

3(2 + δ)

))]1/2]
,

�

(77)

where D5 = 1/5 (3D‖ + 2D⊥). As we expected from the previous discussion, for 
�3cρ0U0 < 9/4π, both χ+ and χ− are negative, reflecting the fact that the isotropic phase 
is always stable. It should also be noted that although the two modes always have nega-
tive real values, if the self-propulsion speed of the swimmers is greater than a threshold 
value, they will have an imaginary part. As a result of this imaginary part, fluctuations 
of density and polarization decay with a propagating mechanism and propagating 
sound waves appear in the system [62]. In terms of the Péclet number Pe = (v0 �)/D‖ 
and the dimensionless wave vector k�, figure 4 shows the regions where these waves 
can propagate. For an intermediate k�, density waves appear at larger Pe. As seen in 
figure 4 (left), taking into account only the long-range part of the interactions, increas-
ing the density decreases the threshold Pe above which propagating waves appear. 
Taking into account both long- and short-range interactions in figure 4 (right), we see 
that lower densities of swimmers have a wider region for density waves. Interestingly, 
all these results are valid for both pushers and pullers.

The above approximations show that density and polarization fluctuations are not 
able to induce any instability in the isotropic phase. To see how nematic fluctuations 
can provide a mechanism for instability, we can study their dynamics separately. 

Figure 4.  For a system with given ρ0�
3 and depending on the value of the Péclet 

number Pe = v0 �
D‖

, a fluctuating mode with wave vector k� can propagate with 

a diusion or sound wave mechanism. Lines show the boundary between these 

two dierent behaviors. The left graph is for a system that has only long-range 
interactions and the right graph shows the results for a system that has both short- 
and long-range interactions. The numerical values we use are δ = 0.1, a/� = 0.1, 
�c/� = 1 and U0  =  1.
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Arranging the right-hand side of equation (73) in powers of k, we can study the nematic 
fluctuations at the long-wavelength limit. Keeping the leading-order term, we find that 
the nematic fluctuations are decoupled from the density and polarization:

∂tδNs =

(
−6DR +

16π

75
ρ0b1

)
δNs,� (78)

∂tδNb =

(
−6DR − 8π

25
ρ0b1

)
δNb,� (79)

where the nematic fluctuations are decomposed into their splay component 

δNs = k̂ · δŇ · k̂ and bend component δNb = k̂ · δŇ ·
(
I− k̂k̂

)
. Coecient b1 is pro-

portional to the asymmetry parameter δ and for pullers (pushers) it is positive (nega-
tive). This shows that if the density of swimmers is greater than the value given by 
ρins ∝ DR/|b1|, splay (bend) perturbations in the nematic tensor can destabilize an iso-
tropic suspension of pullers (pushers). As we discuss above, instability in a suspension 
of both pullers and pushers is due to the nematic part of hydrodynamic interactions. 
It should be mentioned that instabilities of the isotropic phase have been reported 
before [21, 27, 32, 34]. In [32] instability of an isotropic suspension of pullers and push-
ers was observed. Comparison with our results shows that for the case of pushers our 
results are in agreement but for pullers the growth of fluctuations in [32] has a diusive 
nature and is non-compatible with our results. In other works [21, 27, 34], it has been 
shown by employing a kinetic model that an isotropic suspension of pushers is always 
unstable but no instability is seen for pullers. The instability observed in these works is 
for non-spherically symmetric particles. We should emphasize that we agree with this 
result in the sense that our swimmer is also hydrodynamically anisotropic (even at the 
limit D⊥ = D‖). So the instabilities that we observe in the current work are valid for 
anisotropic particles.

4.3. Stability of polar state

To study the stability of the polar phase, we assume that the density of swimmers is 
higher than ρc, so that the polarized phase is established. Then we study the dynamics 
of fluctuations around the polarized state. Denoting by n̂ the direction of polarization, 
we suppose that the order parameter has a constant value but its direction fluctuates. 
In this case, hydrodynamic fields can be written as:

ρ = ρ0 + δρ,� (80)

P = P∞ (n̂0 + δn) ,� (81)

N = N∞
(
(n̂0 + δn)(n̂0 + δn)− I

3

)
,� (82)

where we assume n̂ = n̂0 + δn, with n̂0 denoting the average direction of polarization in 
the system. Furthermore, for small fluctuations we have n̂0 · δn = 0. Using the above 
definitions, we can linearize equations (56) and (57) and obtain evolution equations for 
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density and director fluctuations. Since we are making our calculations in the Fourier 
space, the angle between the wave vector k and director n̂0 will emerge in the linear-
ized equations. To simplify the analysis, we decompose the fluctuations into bend and 
splay distortions. A splay distortion is a fluctuation with ∇ ·P �= 0 (∇ · δn �= 0) and 
for bend fluctuations P× (∇×P) �= 0 (∇× δn �= 0). Decomposing the wave vector k 
into its parallel and perpendicular components, k = (k · n̂0)n̂0 + k⊥, we can see that 
for bend (splay) fluctuations only the parallel (perpendicular) component of the wave 
vector contributes. These two modes of fluctuations are independent and this allows us 
to study them separately.

To study the bend fluctuations, we can set k = kn̂0 and study the dynamics of the 
fluctuations. Using a linearization procedure similar to what we use in the previous sec-
tion and keeping terms up to the second order of the wave vector, we can arrive at the 
following equations for bend fluctuations:

∂tδρ̌b =
(
iχIm

ρ + χRe
ρ

)
δρ̌b,� (83)

∂tδňb =
(
iχIm

n + χRe
n

)
δňb,� (84)

where the imaginary and real parts are given by:

χRe
ρ = −16π

9
ρ0 N

∞ b1 + k2 (−D1 +N∞ D6) ,� (85)

χIm
ρ = P∞ k

(
v0 −

8π

9
ρ0 b2 +

64π

45
ρ0 N

∞ b3

)
,� (86)

χRe
n = −136π

75
b1ρ0N

∞ +
4

35
k2 D2

(
4

3
π�3cρ0U0 − 3

)
,� (87)

χIm
n =

k

ρ0P∞

(
v0ρ0N

∞ − 8π

45
ρ20b3N

∞(1−N∞)

− 4π

25
b2ρ

2
0P

∞2 − b4ρ
2
0N

∞
[
2368

(105)2
N∞ +

192

875

])
,

� (88)

with D6 = 1/3 (7D‖ + 8D⊥). As seen from the above equations, fluctuations of density 
and polarization are decoupled for the case of bend distortions. Both modes show that 
sound-like density waves can propagate in the system—regions with a dense-ordered 
population of particles propagating in a disordered background. The propagation of 
these waves is a signature of Vicsek-type flocking models [16, 40].

To analyze the stability of the polar state against bend fluctuations, let us consider 
two cases: one without hydrodynamic interactions and one with hydrodynamic interac-
tions. The terms proportional to bi in the above equations originate from long-range 
hydrodynamic interactions. In the absence of hydrodynamic interactions where bi  =  0, 
the real parts in both of the above equations are of order k2, revealing the diusing 
nature of the fluctuations. Moreover, under these conditions density fluctuations are 

damped for �3cρ0U0 <
3
4π

7D‖+8D⊥
2(D‖+D⊥)

∼ 0.9 (we use the following numerical values: δ = 0.1 
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and a/� = 0.1). These states are denoted by the dashed region in figure 3. Beyond this 
region and for �3cρ0U0 > 0.9, density fluctuations can grow and form clusters of swim-
mers. Considering the polarization fluctuations, we can see that for �3cρ0U0 > 9/4π, such 
fluctuations can always grow and make the polar state unstable.

Taking into account both short- and long-range interactions and in the limit of 
long-wavelength fluctuations (k → 0), the terms that are proportional to b1 in (85) and 
(87) are the most important terms that determine the instability criterion. Recalling 
the fact that b1 ∝ δ, we see that for pullers (δ > 0) density and director fluctuations 
diminish, but they diverge for pushers (δ < 0). The growth of bend fluctuations desta-
bilizes any polar order in a suspension of pushers [44].

To study the role of splay fluctuations, we set k = k⊥ = kn̂⊥, with n̂⊥ · n̂0 = 0. For 
splay distortions, fluctuations of density and the director are always coupled to each 
other and they obey the following equations:

∂tδρ̌s = H11δρ̌s +H12 δňs,� (89)

∂tδňs = H21δρ̌s +H22 δňs,� (90)
where

H11 =
8

9
πb1ρ0N

∞ + k2 (−D1 +N∞D7) ,� (91)

H12 = ikρ0P
∞
(
v0i−

8

9
πb2ρ0 −

2

5
πb3ρ0N

∞
)
,� (92)

H21 =
ik

ρ0P∞

(
1

3
v0(1−N∞) +

32π

135
ρ0b3N

∞(
2

7
N∞ − 1)

− 4π

25
ρ0b2P

∞2 − 16π

175
ρ0b4N

∞(
6

5
+

29

63
N∞)

)
,

� (93)

H22 =
64π

75
b1ρ0N

∞ − 3

35
D2k

2

(
4

3
π�3cρ0U0 − 3

)
,� (94)

with D7 = 1/3 (4D‖ + 11D⊥) and δňs = n̂⊥ · δň. By calculating the eigenvalues of matrix 
H, we obtain two dispersion relations for the fluctuation spectrum. In the absence of 
hydrodynamic interactions, the spectrum of fluctuations has a simpler form:

χ± = ± ikv0√
4
3
π�3cρ0U0

+ k2

(
D8 −

3D9

4π�3cρ0U0

− 2

35
π�3cρ0U0D2

)
,

� (95)

where D8 = 2/35(11D‖ + 24D⊥), D9 = 1/2(4D‖ + 11D⊥). The real part of this rela-
tion is negative for �3cρ0U0 < 0.9, reflecting the fact that in the absence of hydrody-
namic interactions, splay fluctuations decay to zero when 9/4π < �3cρ0U0 < 0.9 (dashed 
region in figure 3). But for �3cρ0U0 > 0.9, above the red dashed line in figure 3, splay 
fluctuations diverge, hence making the polarized state unstable.
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If we consider the contributions from hydrodynamic interactions in the long-wave-
length limit, the dispersion relations for the splay fluctuations read as:

χ+ =
4

5
πρ0N

∞b1 +O(k)2, χ− =
1

5
πρ0N

∞b1 +O(k)2.� (96)

As for bend fluctuations, the sign of b1 ∝ δ determines the criterion for instability. For 
a suspension of pullers (b1  >  0) fluctuations grow but for pushers (b1  <  0) fluctuations 
are damped to zero. So an ordered suspension of pullers becomes unstable because of 
the growth of splay fluctuations.

5. Summary and discussion

In this article, we start from a microscopic model for a hydrodynamic micro-swimmer 
and derive its average dynamical characteristics such as its velocity and force distribu-
tion. The swimmer that we start with is able to model both pushers and pullers. We 
show that a set of analytical expressions can be obtained for the long-range interactions 
between two swimmers. Extending the system to a three-dimensional dilute suspension 
of swimmers and considering two-body interaction between swimmers, we develop a 
continuum description that can capture long-wavelength properties of the suspension. 
Furthermore, we assume that in addition to long-range interactions, there is a short-
range interaction that can align nearby swimmers.

The aim of this article is to investigate the role of interactions in long-wavelength 
instabilities of a suspension. An isotropic phase and a symmetry-broken polar phase are 
well-known phases for systems with only short-range alignment interactions [42]. At 
a low density of swimmers, the system is in isotropic phase and increasing the density 
changes the system to a polar phase. In a system with hydrodynamic interactions, both 
of the above phases are unstable with respect to long-wavelength fluctuations.

It is long-range interaction that initiates instability in an interacting suspension. 
Our results are compatible with the well-known results of phenomenological models 
that state the origin of instability. Decomposing nematic distortions into bend and 
splay fluctuations, we show that for a suspension of pushers, bend fluctuations mediate 
instability and for a suspension of pullers it is splay fluctuation that initiates instability. 
Intuitional arguments can provide more insights into the instability of the polar phase. 
Figure  5(left) shows a regular collection of pushers with polar order. A small bend 
fluctuation is introduced to this collection by distorting the director of five selected 
swimmers. For a regular system, fluid velocity due to the other swimmers averages to 
zero at the position of each swimmer, but for the distorted case shown in this figure, 
fluid velocity has a non-zero value at the position of distorted swimmers. As shown by 
the large arrows, the velocity streamlines at the position of distorted swimmers are in 
the direction that tends to increase the initial distortions and destroy the initial regu-
lar state. Figure 5(right) shows the case for pullers with a small splay fluctuation. For 
pullers, when a small splay fluctuation is introduced, the system tends to increase it 
and destroy the polar order.
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Another interesting feature of active nematics is the appearance of bands in the 
polar state. In symmetry-broken polar phase, density waves appear. The imaginary 
parts in equations (86), (88) and (95) reflect this fact. Interestingly, in the case of splay 
fluctuations, a single group velocity for these traveling waves is seen. Finally, we should 
mention that all instabilities arising from hydrodynamic interactions apply only to 
dipolar swimmers. For a collection of neutral swimmers with quadrupolar force distri-
butions, the terms proportional to b1 in equations (47) and (48) do not contribute and 
all ordered phases are stable with respect to long-wavelength fluctuations.
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Appendix A. Hydrodynamic center and diusion coecients for a rigid swimmer

Here we want to show how the hydrodynamic center and diusion coecients for a 
swimmer can be calculated. Let us consider a rigid swimmer composed of three spheres 
with equal radii a, linked linearly by two negligible-diameter linkers. With the spheres 
labeled f , m and b, the front linkage has a length given by Lf = � and the back linkage 
has a length given by Lb = �(1 + δ). The hydrodynamic center for this rigid system is 
a point around which the translational motion is independent of the rotational motion. 
As a result of symmetry, for our three linearly linked spheres, the hydrodynamic cen-
ter lies somewhere on the longer linkage with distance x from the middle sphere. The 
hydrodynamic center is a geometrical concept and it is independent of dynamics, but it 
can benefit any dynamical problem to calculate it. Let us consider a dynamical problem 
where, as a result of an external force, the hydrodynamic center moves linearly without 
any net rotation. With respect to the hydrodynamic center, the total torque should 
vanish: xfm

⊥ + (�+ x) f f
⊥ − (�(1 + δ)− x) fb

⊥ = 0, where ⊥ denotes the components of 
vectors perpendicular to the linkages. In addition to this condition, there is a set of 

Figure 5.  Flow patterns for demonstrating bend (left) and splay (right) distortions 
in the polarized phase. An ordered suspension of pushers (pullers) is unstable 
due to the growth of bend (splay) fluctuations. Small arrows show the direction 
of the flow field in the interparticle regions and large arrows show the flow field 
calculated at the position of distorted swimmers.
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linear equations  that relate the forces and velocities: vα =
∑

β=f,m,b O
αβfβ, where O 

denotes Oseen’s tensor. We can use this set of equations and find relations between the 
perpendicular components of the forces and velocities. The rigidity condition is another 
equation that we must consider: vf⊥ = vm⊥ = vb⊥. Using the rigidity and force–velocity 
equations we can obtain relations for f f

⊥/f
m
⊥  and fb

⊥/f
m
⊥  and plugging them into the 

torque-free condition, we can obtain the following result for x:

x =
1

3
δ

(
�+

7

8
a

)
.� (A.1)

Having obtained the position of the hydrodynamic center, we can now calculate the 
translational and rotational diusion coecients. To obtain the translational diusion 
coecients, let us apply an external force fT to the system and calculate the linear 
velocity vT that the system will acquire. Then the translational diusion matrix D is 
defined by vT = (kBT )

−1D · fT. To calculate D, one should note that in addition to 
force–velocity relations, constraints of the total force f f + fm + fb = fT and rigidity 
vf = vm = vb = vT should be considered. Solving these equations yields

(kBT )
−1Dij = K(�) t̂it̂j +K(2�)

(
δij − t̂it̂j

)
,� (A.2)

where

K(�) =
1

18πηa

[
1 +

5

2

(
1− δ

2

)(a
�

)
+O

(a
�

)2
]
.� (A.3)

In terms of their parallel and perpendicular components, the diusion coecients are 
given by: D‖ = kBTK(�) and D⊥ = kBTK(2�).

To calculate the rotational diusion coecient, we apply an external torque τ 
around the hydrodynamic center; then the system rotates with angular velocity Ω 
around that center with no translation for the hydrodynamic center. Rotational 
diusion can be calculated as: Ω = (kBT )

−1DR τ . In this case, in addition to the linear 
force–velocity relations given by Oseen’s tensor, we must consider the torque equa-
tion as τ = xfm

⊥ + (�+ x) f f
⊥ − (�(1 + δ)− x) fb

⊥ and the rigidity constraints as vm⊥ = xΩ, 
vf⊥ = (�+ x)Ω and vb⊥ = − (�(1 + δ)− x) Ω. Solving all these equations simultaneously 
yields the final result:

DR =
kBT

12πηa �2

[
(1− δ)− 3

8

(
1− 3

2
δ

)(a
�

)
+O

(a
�

)2
]
.� (A.4)

Figure A1.  In an asymmetric three-sphere swimmer, the hydrodynamic center is 
located at distance x from the middle sphere.
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Appendix B. Hydrodynamic interactions: alternative representation

To gain better insight into long-range hydrodynamic interactions, we provide here 
an alternative representation for the terms in equations (10) to (15). With the help of 
hydrodynamic singularities derived from the point source (or sink) and point force, vec-
tors G1, · · · ,G6 can be re-written as:

G1 = R2 Df
ijk t̂j

′
t̂k

′
,� (B.1)

G2 =
R3

2
Qf

ijkl t̂j
′
t̂k

′
t̂l
′
+ 3R3 Ds

jk t̂i
′
t̂j

′
t̂k

′
,� (B.2)

G3 = R3 Qf
ijkl t̂j

′
t̂k

′
t̂l,� (B.3)

G4 = R3 Qf
ijkl t̂j

′
t̂k

′
t̂l + 3R3 Ds

jk t̂it̂j
′
t̂k

′
,� (B.4)

G5 =
1

2
R4 C f

ijklm t̂j
′
t̂k

′
t̂l
′
t̂m − 3

2
R4 Qs

jkl t̂j
′
t̂k

′
t̂l
′
t̂i,� (B.5)

G6 =
1

2
R4 C f

ijklm t̂j
′
t̂k

′
t̂lt̂m − 3R4 Qs

jkl t̂j
′
t̂k

′
t̂lt̂i,� (B.6)

where Df and Ds are the force and source dipoles, Qf and Qs are the force and source 
quadrupole tensors, and Cf  represents a force octupole tensor. In terms of Oseen’s ten-
sor Oij, which shows the flow field of a point force in an inertialess condition, and tensor 
Mij (defined before), the higher-order singularities can be expressed as:

Df
ijk = ∂kOij,� (B.7)

Ds
ij = − 1

R3
Mij,� (B.8)

Qf
ijkl = ∂lD

f
ijk,� (B.9)

Qs
ijk = ∂kD

s
ij,� (B.10)

C f
ijklm = ∂mQ

f
ijkl.� (B.11)

Equation (B.1) shows that the term proportional to a1 ×G1 in equation (7) is actually 
the velocity field due to a force dipole located at the position of the second swimmer 
and calculated at the position of the first swimmer. This force dipole is located along 
the direction parallel to t̂′. A similar treatment for all other terms in equations (7) 
and (8) can be obtained by the above representation. The details of the above equa-
tions show how dierent singularities are arranged with respect to vectors t̂, t̂′ and 
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R̂. Denoting the force dipole, force quadrupole and source dipole by ←→, ←�→ 
and  ±  respectively, the hydrodynamic interactions (equations (7) and (8)) can be writ-
ten symbolically as:

VL ≡ a1[←→] + a2[±, ←�→] + a3[←�→],

ΩL ≡ a4[±, ←�→] + a5[· · · ] + a6[· · · ],
�

(B.12)
where [· · · ] denotes higher-order singularities like source quadrupoles and force octupoles.

Appendix C. Details of interaction terms

In this appendix we give the details of the interaction contributions introduced in equa-
tions (56)–(58). The interaction contributions to the dynamics of the density, polariza-
tion and nematic-order parameter read as:

ρ̇L = −∂i
([
b1 T

1
i + b2 T

2
i

]
ρ+ b3 T

3
il ρPl

)
,� (C.1)

ρ̇S = −4

3
π�3cU0∂i

(
ρ ∂j(ρPk)

(
1

5
D2 (δkjPi + δikPj + δijPk)

+D⊥δijPk

))
,

�

(C.2)

Ṗ L
i =− ∂j

(
(b1 T

1
j + b2 T

2
j ) ρPi + b3 T

3
jl ρ

(
Nil +

δil
3

))

+
4

5

(
b1T

4
il − b2T

5
il

)
ρPl −

1

5
b1T

4
ll ρPi +

6

7
b4T

6
ilm ρNlm

− 1

5

(
b1T

4
li − b2T

5
li

)
ρPl −

2

7
b4T

6
mlm ρNli −

18

35
b4T

6
lli ρ

− 2

7
b4T

6
lim ρNlm,

�

(C.3)

Ṗ S
i =− 4

3
π�3c U0 ∂j

(
D2

ρ

7

(
7

15
[∂i(ρPj) + ∂j(ρPi) + δij∇ · (ρP)]

+ ∂k(ρPj)Nik + ∂j(ρPl)Nli + ∂k(ρPi)Nkj +∇ · (ρP)Nij

+ ∂k(ρPl)Nlk δij + ∂i(ρPl)Nlj

)
+D⊥ρ

(
∂j(ρPl)Nli +

1

3
∂j(ρPi)

))

+
4

3
πDR�

3
cU0ρ

2

(
2

3
Pi − PjNij

)
,

�

(C.4)
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ṄL
ij =−∇.

[(
b1T

1 + b2 T
2
)
ρNij

]

− 1

5
b3∂z

(
T 3
zjρPi + T 3

ziρPj −
2

3
δijT

3
zlρPl

)

+
ρ

7

(
7

5

[
b1(T

4
ij + T 4

ji)− b2(T
5
ij + T 5

ji)
]
+ 5b1T

4
il Njl

− 14

15
b1T

4
ll δij − 2b1T

4
li Nlj − 3b2T

5
ilNlj − 2b1T

4
ljNli + 5b1T

4
jlNli

− 3b2T
5
ljNli − 2b1T

4
llNij − 2

[
b1T

4
ml − b2T

5
ml

]
Nmlδij

)

+
4

315
b4ρ

(
− 9T 6

lliPj + 26T 6
ijlPl − 9T 6

lljPi − 9T 6
llmPmδij

+ 26T 6
jilPl − 9T 6

lijPl

)
,

�

(C.5)

ṄS
ij =− 4

3
π�3c U0 ∂k

(
ρ

(
1

35
D2

(
∂l(ρPl)Pi δjk + ∂l(ρPl)Pj δik

− 4

3
(∂l(ρPl)Pk + ∂l(ρPk)Pl) δij + ∂l(ρPi)Pl δjk

+ ∂l(ρPj)Pl δik + ∂i(ρPm)Pm δjk + ∂j(ρPm)Pm δik

+ (∂j(ρPi) + ∂i(ρPj))Pk + ∂j(ρPk)Pi + ∂i(ρPk)Pj

)

− 2

21
D5 ∂k(ρPl)Pl δij +

1

5
D4 ∂k [(ρPi)Pj + (ρPj)Pi])]

))

+
8

5
πDR�

3
cU0ρ

2

(
PiPj −

P 2

3
δij

)
.

�

(C.6)

In sections 4.2 and 4.3, where we study the linear stability of the isotropic and polar 
phases, we need to linearize the interaction contributions. Here we briefly present the 
details of such calculations for a typical term. Let us consider the first term of ρ̇L in 
density equation (C.1). We have:

−b1∂i
(
T 1
i ρ

)
= −b1∂i

(∫
dr′

R̂i

R2
Mjk(R̂)ρ(r′)Njk(r

′)ρ(r)

)
,� (C.7)

where R = r− r′. Now we can substitute the isotropic values of ρ and N from (67) and 

(69) into (C.7). Taking the spatial Fourier transform and defining Wijk =
R̂i

R2Mjk, we 

have:
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−b1∂i
(
T 1
i ρ

)
= −b1ρ

2
0 ∂i

(∫
dr′

∫
dke−ik·(r−r′)W̌ijk(k)

∫
dk′e−ik′·r′δŇjk(k

′)

)

= −b1ρ
2
0 ∂i

(∫
dk

∫
dk′δ(k− k′)W̌ijk(k)e

−ik·rδŇjk(k
′)

)

= ib1ρ
2
0

(∫
dke−ik·r ki W̌ijk(k)δŇjk(k)

)
.

�

(C.8)

To proceed further, we need to calculate the Fourier transform of Wijk. As a result of 

symmetry, the following general expression for W̌ijk can be written:

W̌ijk = Ak̂ik̂j k̂k + Bk̂iδjk + Ck̂jδik +Dk̂kδij,� (C.9)

where scalar functions A, B, C and D can depend on k and the Fourier transform is 
defined by:

W̌ijk =

∫
dR eik·R Wijk(R).� (C.10)

Multiplying the above two equations by k̂ik̂j k̂k, k̂iδjk, k̂jδik and k̂kδij, we obtain the fol-
lowing four equations for unknown functions:

A+ B + C +D =

∫
dR eik·R

1

R2

(
(k̂ · R̂)3 − 1

3
(k̂ · R̂)

)
,� (C.11)

A+ 3B + C +D = 0,� (C.12)

A+ B + 3C +D =
2

3

∫
dR eik·R

1

R2
(k̂ · R̂),� (C.13)

A+ B + C + 3D =
2

3

∫
dR eik·R

1

R2
(k̂ · R̂).� (C.14)

By evaluating the integrals, we can obtain the following result for W̌ijk:

W̌ijk = −8πi

3k
k̂ik̂j k̂k +

4πi

3k
k̂jδik +

4πi

3k
k̂kδij.� (C.15)

With a similar procedure, all other interaction integrals can be calculated.
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