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Thermal diffusion or Soret effect is the directed motion of colloidal particles in tempera-
ture gradient. In this article, by assuming local thermodynamic equilibrium, the drift ve-
locity for a molecular system composed of two connected spheres is calculated. It is shown
that for this system the positive Soret coefficient is given by: ST = (3/8)(a/l)(1/T ),
where l is the average linear size of the system, a is the radius of spheres and T is the
local temperature. To investigate the hydrodynamic coupling in a dilute suspension of
diffusers, we calculate the average drift velocity for two far diffusers. It is shown that due
to the hydrodynamic interaction, an overall attraction between diffusers can be achieved.
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1. Introduction

Directed motion of suspended colloidal particles induced by temperature gradients

is referred to as thermophoresis or Ludwig–Soret effect.1,2 Since the early experi-

mental evidences for this effect, there have been many experimental and theoreti-

cal efforts to understand its microscopic origin.3–12 Soret coefficient quantifies the

strength of this phenomena and is defined as the ratio of thermal to self-diffusion

coefficients. For a suspension of colloidal particles, the Soret coefficient is positive

when the condensation of particle happen in the colder region and it is negative

when the particles move to the high temperature region. In most experimental ob-

servations the Soret coefficient appears to be positive, but examples of negative

sign are also common in charged systems.13,14

In this article, we focus on a simplified picture for the internal structure of a

colloidal particle. We model a colloidal particle with two rigid spheres connected by

one linear spring. With this modeling, we can include the geometrical and elastic

properties of the colloid. In Sec. 2, we briefly review the hydrodynamic equations for

the colloidal motion and calculate the positive Soret coefficient for a model colloidal
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particle. The effects due to the hydrodynamic interaction in a dilute suspension of

particles are presented in Sec. 3. In Sec. 4, we present our conclusions and discussion.

2. Dynamics of a Single Diffuser

To describe the motion of immersed objects in the fluid medium, dynamics of

the flow field should be considered. To determine the flow regime, Reynolds has

defined a dimensionless number which is the ratio of inertial forces to the viscous

forces. In terms of a relevant length scale l, typical velocity U , fluid density ρ

and fluid viscosity η, Reynolds number is given by: Re = (ρlU/η). A micron-sized

colloidal particle moving with velocity U = 10 µm/s in water (ρ = 103 Kg/m3,

η = 10−3 Pa · s), has a Reynolds number Re = 10−5. This extremely low value for

Reynolds number suggests that any inertial effect in the colloidal dynamics can be

neglected.

In the low Reynolds regime, where the frictional forces dominate over the inertial

effects, the Stokes equation governs the dynamics of fluid flow. Denoting the velocity

and pressure field by u(r) and p(r) respectively, the Stokes equation is a linear

equation with respect to the velocity field. The Stokes equation relates the flow

field to the external force distribution f(r) by:

− η∇2u(r) +∇p(r) = f(r) , ∇ · u(r) = 0 , (1)

where the incompressibility condition is also assumed. Since the Stokes equation

is linear, the relation between velocity of solid bodies and viscous forces acting on

particles is linear.

Figure 1 shows a schematic view of a linear macro-molecule with a prescribed

internal structure, immersed in a fluid medium with temperature gradient. The

internal structure of this colloidal particle is modeled by two spheres with radius a

T
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l
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x

Fig. 1. Schematic view of a microscopic tracer immersed in a viscous fluid medium. Two spheres
with radius a are connected by a linear spring with average length l. The system is immersed

in a fluid medium with nonuniform temperature field. In the neighborhood of the diffuser, the
temperature field is varying linearly with ∇T = (δT /δx)x̂.
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that are connected by a linear spring. The equilibrium length of the spring is denoted

by l and its stiffness is given by K. This modeling allows us to investigate the role

of hydrodynamic interactions in the motion of colloid. A nonuniform temperature

field T (x), is applied to this diffuser. Non-equilibrium nature of the fluctuations

make the analysis of this system difficult. For a very slowly varying temperature

field, we can use the local equilibrium approximation.

We denote by fi, the hydrodynamic force acting on the ith spherical particle

that is located at position xi. The forces and velocities of the spheres obey the

linear relations:














dx1

dt
= M11 × f1 +M12 × f2 ,

dx2

dt
= M21 × f1 +M22 × f2 ,

(2)

where Mij is the hydrodynamics interaction between ith and jth spheres. The

hydrodynamic interaction depends on the sphere radius and also on the distance

between them. For the case where the distance between spheres is very larger than

the size of sphere, a perturbative result for the hydrodynamic interaction is given

by the Oseen tensor.15,16 For the present one-dimensional geometry, the Oseen’s

hydrodynamic interaction is given by:

Mii =
1

6πηa
, Mij =

1

8πη|xi − xj |
. (3)

Here we should emphasize that this result is a perturbative result which can be

systematically extended it for spheres with larger radius. To finish the formulation

we should note that, at zero Reynolds number, the hydrodynamic force acting on

each sphere should be balanced by the other forces acting on it. Thermal noise and

spring force are the forces that should be balanced. Writing the spring force acting

on the first sphere as F = −K(x2 − x1 − l) and denoting the thermal noise acting

on this sphere by ζ1, now for the two spheres we will have:

f1 = ζ1 + F , f2 = ζ2 − F . (4)

In the local thermal equilibrium with local temperature, the stochastic thermal

white noise obey the following correlation functions:17,18







〈ζi(t)〉 = 0 ,

〈ζi(t)ζj(t
′)〉 = 2M−1

ii kBT (xi)δijδ(t− t′) ,
(5)

where kBT (xi) is the local thermal energy for the ith sphere. For simplicity, we have

neglected the hydrodynamic coupling between the noises acting on different spheres.

For a diffuser in a temperature gradient with local equilibrium approximation, an

instantaneous net drift velocity can be achieved. To simplify the calculations, we

assume that the distance between the two spheres can be considered as an average

length l and a small deformation around this average value by: x2 − x1 = l + ǫ(t).
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Additionally we denote the position of the system’s center by: R(t) = (1/2)(x1+x2).

With these new variables and for small amplitude noise and small deformation of

the spring, the dynamical equations read:

ǫ̇(t) = A(ζ2(t)− ζ1(t)) − 2KAǫ(t) +O(ǫ2) ,

Ṙ(t) = B(ζ2(t) + ζ1(t)) − C(ζ2(t) + ζ1(t))ǫ(t) +O(ǫ2) ,
(6)

where A = (1/6πηa− 1/8πηl), B = (1/6πηa+ 1/8πηl) and C = 1/8πηl2. We solve

these governing equations for very small deformation. After solving these equations

and expanding the results for small sphere’s radius limit, we can average the results

over a long time to obtain the average drift velocity. For average drift velocity, we

will obtain:

V =
1

T

∫ T

0

Ṙ(t)dt = −
kB
8πηl

∇T , (7)

where ∇T = (T (x2)− T (x1))/l. As one can see, the diffuser is moving from hotter

to colder region. An interesting observation is the point that, at small ǫ(t) approx-

imation, the average velocity does not depend on the spring constant and the size

of spheres. Equilibrium distance between the two spheres is the relevant length

scale that appears in the velocity. The spring constant, the elastic properties of the

colloids, can affect the short time behavior of the system.

Soret coefficient, which is the most important macroscopic measurable quantity

in thermodiffusion phenomena, is defined as the ratio of thermal to self diffusion co-

efficients as: ST = DT /D. Thermal diffusion coefficient relates the particle velocity

to temperature gradient as: v = −DT∇T . Assuming local thermal equilibrium, we

can use Einstein’s relation to relate the self diffusion of particle to its mobility µ and

local temperature T as: D = µkBT (See Refs. 17 and 18). Regarding the fact that

our system consists of two small spheres, we see that the friction coefficient of the

colloid in the longitudinal direction is approximately two times the single sphere’s

friction.16 In this case, the mobility of colloidal particle is given approximately by

µ = 2/6πηa. Collecting all these informations we can obtain the Soret coefficient

as:

ST =
3

8

(a

l

) 1

T
. (8)

As one see, a geometrical prefactor a/l appears in the Soret coefficients. This is the

influence of hydrodynamic interactions in the Soret phenomena.13

Another interesting phenomena which we can consider here, is the effect of

temperature gradient in a sedimenting system. In this case, an external gravitational

force can be compensated by the Soret force and eventually leads the system to a

state with levitating particle. Denoting the strength of external gravitational force

acting on a single colloid by fext, we see that a temperature gradient: kB∇T =

(4/3)(l/a)fext is sufficient to levitate the particle. In this simplified picture, we

have assumed that the external force is applied to the particle in the longitudinal

direction, along the two spheres’ linker.
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Fig. 2. Two diffusers, L (Left) and R (Right), separated be a distance D are coupled by hydro-
dynamic interactions.

3. Two Diffusers

In this section, we consider an interacting system of two diffusers moving in a

temperature gradient field. The results of this section will be useful in analyzing a

very dilute suspension of diffusers.

As shown in Fig. 2, two diffusers, left (L) and right (R), are forced to move

along a one-dimensional line. The dynamical equations describing this system read:

dxi

dt
=

4
∑

j=1

Mij × fj , (9)

where, as before, fi stands for the hydrodynamic force acting on the ith sphere

and Mij is the hydrodynamic interaction between ith and jth sphere. As before,

stochastic forces with strength proportional to the local temperature is acting on

each sphere.

For the case where the distance between diffusers is much larger than the average

size of each diffuser, we can set up a perturbative expansion for the dynamical

equations. Denoting the distance between diffusers by D = 1/2(x4 + x3 − x1 − x2),

we define a small parameter λ = l/D, where l is the average linear size of each

diffuser. In the zeroth order of λ, two diffusers are decoupled and the previous results

for each individual diffuser will retain. To investigate the effect of hydrodynamic

coupling, we can proceed to the higher-order correcting terms.

Following the method which we used for a single diffuser and for small defor-

mation limit, we can solve the system of two diffusers. Again expanding the final

results for small sphere approximations, we will obtain the following approximate

average drift velocities for each diffuser:

VL = −

(

kB
8πηl

)

∇T (L) +
1

4ηD2

(

1 +
3

4

al

D2
+O(l/D)4

)

kBT (R) ,

VR = −

(

kB
8πηl

)

∇T (R)−
1

4ηD2

(

1 +
3

4

al

D2
+O(l/D)4

)

kBT (L) .

(10)

As one can see, the average drift velocity of each colloid, has a contribution from

hydrodynamic interactions with the other particle. The hydrodynamic enhancement

of the drift velocity for a diffuser, has appeared to depend on the local temperature

at the position of the other diffuser. One should note that this result is valid only

in the limit of very slowly varying temperature field. The correction terms in the

velocity of each diffuser, show an overall attraction between colloidal particles. This
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means that, in nonuniform temperature field, our modeled colloidal particles will

eventually condense in the colder region.

4. Discussion and Concluding Remarks

The main purpose of this work is to introduce a simplified model for investigating

the phenomena of thermophoresis and also analyzing the role of hydrodynamic

interactions in a dilute suspension of colloidal particles. We use a very simplified

internal structure for a single colloidal particle and obtain a size-dependent Soret

Coefficient. The model system which we use, is able to capture the geometrical as

well as elastic properties of the particles. As we have shown, in the small deformation

limit and for the long time experiments, the elastic properties may not have a

relevant manifestation in Soret coefficients.

The D−2 dependence of the interaction term in the velocity, is related to the

absence of net body force in the motion of colloid. In the first approximation, the

far field distribution for a force-free, translating particle, should behave like D−2,

that is the characteristic velocity profile of a force dipole at low Reynolds regime.

It will be interesting to use the simplified model proposed here, for more realistic

cases. Inspired by the drift motion of charged colloidal particles, we are extending

our model to investigate the electrostatic effects for charged colloidal particles.

Acknowledgments

We acknowledge useful discussion with R. Golestanian at the early stage of the

work.

References

1. C. Ludwig, Sitzungsber. Kaiser. Akad. Wiss. (Math.-Naturwiss.KI.) Wien 20, 539
(1856).

2. Ch. Sorret, Arch. Sci. Phys. Nat. Genève 3, 48 (1879).
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