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Symplectic and antiplectic waves in an array of beating cilia attached to a closed body
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By taking into account the hydrodynamic interactions in a one dimensional array of model cilia attached
to a no-slip cylinderical surface, we investigate their synchronized motion. We show how the emergence of
metachronal waves depends on the initial state of the system and investigate the conditions under which the
formation of symplectic and antiplectic waves are possible.
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I. INTRODUCTION

Cillium is a micron scale flexible hairlike appendix, and its
ensembles appear in many biological systems [1]. Mucociliary
transport in the respiratory system and the swimming of
ciliated organisms, such as Volvox and Paramecium are among
the most important examples of cilia in biology [2–6]. Using
the forces from molecular motor proteins embedded in its
molecular structure, an individual cilium can beat and produce
a flow field [7]. In most of their natural appearances, the
emergent synchronized motion in the form of a metachronal
wave developed in assemblies of cilia is an essential key
in their performances. This is due to the fact that the flow
field corresponding to an individual cilium is negligibly small
but a synchronized pattern of ciliary beating is able to either
produce a net flow of fluid in mucus or generate a swimming
mechanism for the ciliated microorganisms. The metachronal
wave is a kind of synchronized pattern of ciliary beating
that results in a traveling wave on the envelop of their tips.
Experimental studies show that the direction of a metachronal
wave can be either parallel (symplectic wave) or antiparallel
(antiplectic wave) to the direction of the power stroke in
an individual cilium [5,8]. The physical mechanism behind
this wave pattern formation is not completely understood,
but it is mainly believed that the hydrodynamic interactions
between cilia can lead their assembly to reach a synchronized
state with propagating metachronal waves [9–11]. There are
some experimental observations in artificial active colloidal
systems that support the idea of hydrodynamic mediated
synchronization in colloidal systems [12–15]. In addition to
the hydrodynamic interactions, new studies have suggested
that precise coordination of flagellar motion is provided by
contractile fibers of the basal membrane [16]. In most recent
works a flat geometry for the basal ciliated membrane has been
considered [17–23]. Motivated from the hydrodynamic effects
due to a rough wall [24], one can expect to see the effects due
to the curvature of a ciliated body in the synchronization of
its cilia. In a very recent study, the synchronization of cilia
attached to a sphere has been addressed, and it is shown that
metachronal waves can appear [25]. In this article we revisit
the emergence of metachronal waves on a curved ciliated body
and consider a ring of cilia attached to the peripheral of a
cylindrically curved body. Following the model of Vilfan and
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Jülicher, we consider each cilium as a small sphere moving
along an elliptic trajectory [17]. To take into account the
effect of curvature in the hydrodynamic interaction, we use
an approximate scheme and assume that the interaction of
two adjacent cilia can be calculated using a flat wall that is
locally tangent to the surface. We will show that, as a result of
asymmetry in the orbit, both symplectic and antiplectic waves
can emerge.

II. MODEL

In order to study the motion of an assembly of cilia,
we start by defining our simplified mechanical model for a
single cilium. To simplify the motion, instead of considering
the dynamics of a real cilium which has many degrees of
freedom, we can consider the motion of its center of mass.
Fluid flow produced by a small sphere located at the position
of the center of mass resembles the flow pattern due to the
cilium. Regarding the periodic motion of a cilium, the sphere
should move on a closed trajectory. Figure 1 (left) mimics the
trajectory on which the cilium center of mass moves. Verified
by experiments, the ciliary cycle is asymmetric, so the friction
forces are different for the first and second halves of the cycle.
These half cycles compose the power stroke and the recovery.
This asymmetry that should be reflected in the trajectory is
essential in allowing the cilium to produce a net flow of fluid
along its stroke direction. In determining the dynamics and the
shape of the trajectory, one should consider the experimental
fact that a cilium has a self sustained dynamics. As a result
of this self sustained motion the phase variable, the angle of
the motion along the trajectory, is free. This phase freedom
is essential in the synchronization of two cilia. Considering
this phase freedom, two classes of models can be considered.
In the first class of models it is assumed that the trajectory is
on average a circular path. This means that the internal forces
of molecular motors can be divided into two parts: a constant
tangential force along the preferred trajectory and an elastic
radial restoring force that guarantees an average finite radius
for the trajectory [25,26]. Such a radial elastic force allows the
system to behave like a phase-free rotator.

In the second class of models, instead of fixing a value for
the tangential force, its response function, a relation between
the force and the velocity, has been considered. In this article,
we will use this kind of modeling to consider the dynamics
of cilia [17,27]. A schematic of the model and its geometrical
parameters are shown in Fig. 1 (left). In a reference frame

2470-0045/2017/95(5)/052412(5) 052412-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.95.052412


AREF GHORBANI AND ALI NAJAFI PHYSICAL REVIEW E 95, 052412 (2017)

Flow direction

h

x
y

z

B A R
Power str

oke

FIG. 1. Left: geometry of a single cilium and right: an array of
cilia attached to the surface of a cylinder. The direction of the power
stroke and the average flow are shown in the figure.

located on the wall (laboratory frame), the sphere moves
on an elliptic orbit that is characterized by six parameters
A, B, h, x, α, and β. The lengths of the semimajor and
semiminor axes are denoted by A and B, and the position
vector of the center of the ellipse is given by (x,0,h). A rigid
wall that stands for the body is placed at z = 0. The plane of
the ellipse and the rigid wall are not parallel; the plane of the
ellipse is rotated with an angle β around its semimajor axis.
Projecting the orbit on the plane, the semimajor axis is tilted
with an angle α with respect to the x axis. For later use we
denote the eccentricity of the orbit by e =

√
1 − (B

A
)2. The

instantaneous dynamical state of the sphere moving on this
orbit is denoted by an angle φ(t). In the laboratory frame, the
instantaneous position vector for a cilium that depends on time
only through the phase variable φ(t) can be written as

r[φ(t)] =
⎡
⎣

x

0
h

⎤
⎦ + RA(β)Rz(α)

⎡
⎣

A cos φ

B sin φ

0

⎤
⎦,

where Rz(α) and RA(β) denote the rotation matrices around z

and the major axis of the ellipse. In this article we use columnar
matrices to show the vectors.

Based on an intuitional argument, we easily can distinguish
the direction of average flow produced by a cilium. It is
essential to note that only a tilted elliptic trajectory (β �= 0)
is able to produce net flow. For a tilted trajectory, we can
decompose the ciliary cycle into two subtrajectories both
parallel to the wall, one near and the other far from the wall.
The cilium has more or less the same velocity in both parts,
but the friction coefficient is greater in the near wall case. As
a result of a smaller friction coefficient, the force exerted on
the fluid is stronger at the part that is far from the wall. This
means that the motion of a cilium in a part of its trajectory that
is far from the wall determines the flow direction. Thus the
flow pattern is in the same direction as the cilium moves in its
motion where it is far from the wall. For a typical trajectory
shown in Fig. 1 (left), the direction of the flow points from
right to left. In this argument we have neglected the parts of
the trajectory that are perpendicular to the wall, and such parts
will have a contribution in flow perpendicular to the wall. In
the case of many coordinated cilia, the perpendicular part of
the velocity profile averages to zero.

In this article we aim to investigate the curvature of the
ciliated body and its role in the dynamic of cilia. In order to
attack this problem, we consider a one dimensional array of
N cilia attached to a circle around the cylinder. The circle is
wrapped around the cylinder, and it has the same radius R as

a cylinder. As shown in Fig. 1 (right), two adjacent cilia are
connected with an arc length � = 2πR/N . The geometrical
parameters of each cilium can be expressed with respect to a
flat wall that is locally tangent to the cylinder. In the case that
the length of each cilium is comparable with this arc length,
we expect to see hydrodynamical effects due to the curvature
of the body. In the next section we will summarize all of the
equations that are necessary to describe the dynamics of a
coupled system of cilia.

III. DYNAMICAL EQUATIONS

Let us consider two cilia, each represented by a moving
sphere with radii a and position vectors given by ri (i = 1,2)
and corresponding parameters for their elliptic trajectories.
Hereafter we consider similar cilia that have the same geo-
metrical and dynamical properties. On the micrometer scale
where the dissipative effects dominate over inertial effects,
the governing equations for two interacting colloidal particles
(here two cilia) can be written as linear relations between the
ith particle’s velocity vi = ṙi and the hydrodynamic forces
acting on particles denoted by fj . In terms of their Cartesian
components, we have as follows:

vi,μ =
3∑

ν=1

2∑
j=1

Gμν(ri ,rj )fj,ν, (1)

where the greek letters denote the Cartesian components of the
vectors. The hydrodynamic kernel Gμν contains information
about the geometry of the system: radii of the spheres, their
separation, and their distances to the wall. Assuming that the
sphere radius a is much smaller than all other lengths in the
system, we can write an approximate form for the component
of the hydrodynamic kernel in a semi-infinite domain confined
by a rigid wall. For ri �= rj , we have [28] as follows:

G(ri ,ri) � 3

2πη

zizj

d3

⎛
⎝

cos2 ψ sin ψ cos ψ 0
sin ψ cos ψ sin2 ψ 0

0 0 0

⎞
⎠,

(2)

where η is the fluid viscosity, zi = ẑi · ri , d =√
(xj − xi)2 + (yj − yi)2, and we have assumed that

zi,zj � d. Here ψ is defined as tan ψ = (yj − yi)/(xj − xi).
For ri = rj , we have as follows:

G(ri ,ri) � 1

6πηa

⎛
⎝

1 − ε 0 0
0 1 − ε 0
0 0 1 − 2ε

⎞
⎠, (3)

where ε = (9a/16z). Let us continue our discussion about the
case of two interacting cilia near a flat wall, then we will
discuss how the effects due to the curvature of the body can
be considered. Denoting the inverse of hydrodynamic kernel
G(rj − rj ) by matrices Mij , the hydrodynamic equations can
be rewritten as

f1 = M11v1 + M12v2,

f2 = M21v1 + M22v2. (4)

In addition to the above hydrodynamic equations, we should
provide some information about the internal forces inside each
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cilium that drive its beating. In addition to constraining forces
that enforce the particle to move on an elliptical orbit, there
is also a tangential force that results the motion along orbit.
Denoting the unit vector tangent to the trajectory of the ith
cilium by ti = d

dφi
ri , the velocity can be written as vi = φ̇iti .

The tangential component of the force reads as f t
i = t̂Ti fi ,

where the symbol T denotes the transpose of a columnar
matrix and we use matrix multiplication rules. In general, the
tangential force is related to the velocity of the sphere along its
trajectory given by vt

i = t̂i · vi . In the linear response regime,
equations, such as

tTi fi = f0
(
1 − v−1

0 |ti |φ̇i

)
(5)

capture the dynamics of the ith cilium. Here f0 is the stall
force, and it is the amount of external force necessary to
stop the motion of a beating cilium. A free cilium that
is not affected by any external force moves with velocity
v0. In this linear response approximation, two parameters
f0 and v0 are related to the microscopic details of the
cilium. For a typical cilium, f0 ∼ 10 pN, a ∼ 10 μm, and
v0 ∼ 100 μm s−1 [29,30]. Using these numerical values, one
can have an estimate for the stiffness of the cilium that is
defined by κ = f0/6πηav0 ∼ 1. This stiffness is the only
dimensionless parameter that determines the state of motion
for a cilium.

Using Eqs. (4) and (5), we can arrive at the following
coupled equations for the phase variables:

φ̇1
[
tT1 M11t1 + (f0/v0)|t1|

] + φ̇2tT1 M12t2 = f0,

φ̇1tT2 M21t1 + φ̇2
[
tT2 M22t2 + (f0/v0)|t2|

] = f0.

Solving these equations, one can reach equations that reveal
the dynamics of phases for the two cilia case.

Let us now explain how can we take into account the curva-
ture effects. In order to study the curvature, the hydrodynamic
kernel should be replaced. In a confined space that is limited by
a curved wall, the above mentioned kernel G and subsequently
its inverse given by matrix M are no longer valid. We proceed
by an approximate scheme to consider the curvature effects.
Here we assume that, for two interacting cilia, there is an
effective plane that can be used for constructing the image
system. This effective wall is a wall that is locally tangent
to the curved body at the midpoint of two cilia. We can use
the results of flat-wall confinement to obtain the approximate
interaction between two adjacent cilia. It is obvious that, with
this approximation, we do not expect to see any curvature
effect in the motion of two cilia. This approximation can only
include nontrivial curvature effects to the motion of many cilia
(more than two) attached to the cylinder, and it allows us to
develop a consistent way for applying the closed boundary
condition. This approximation is valid for the case where the
radius of curvature is larger than all other length scales in the
system, namely, R � � and R � h.

To obtain the dynamics of two coupled cilia, one should
note that, in a way that we have parametrized the orbits,
the kinematics of each cilium can be expressed by a single
phase denoted by φi(t). This phase variable is shown in
Fig. 1. Solving the dynamical equations and applying the
geometrical and dynamical constraints, we will arrive at the
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FIG. 2. Phase diagram for the state of synchronization for two or
many cilia. Synchronization of two cilia depends on initial phase
differences �φ(0) and α. Different values of �φ(0) are shown
by points on a unit circle. The synchronized states of two cilia
are represented by the long time value of their phase differences
�φ(∞) and are shown by bold dots on the circles. The arrows
show the direction of the phase evolution from the initial values
toward their final synchronized state, and different colors are used
to show the evolution to different final states. For many cilia,
both symplectic and antiplectic waves can emerge. For any β �= 0,
antiplectic (symplectic) waves emerge for 0 < α < π/2 and π < α <

3π/2 (π/2 < α < π and 3π/2 < α < 2π ). Numerical parameters
are as follows: a/h = 0.2, h/� = 0.19, B/� = 0.19, β = π/4, and
e = 0.87.

following equation [17]:

φ̇i(t) = g1(φi)ω0 + g2(φi,φj ). (6)

Here ω0 = f0/[6πηaB(1 + κ)], and the interactions between
cilia are reflected by function g2 that couples the dynamics
of the phases. It is not possible to present analytical closed
relations for functions g1 and g2, but, in principle, we are able
to evaluate and study them numerically. In the next section,
we will summarize the results of numerical investigations of
the above equation.

IV. RESULTS AND DISCUSSION

Before studying the wave propagation in a ciliated curved
body, we consider the dynamics of two coupled cilia. Recalling
the geometry of elliptic orbits, angles α and β play an important
role in the dynamics of coupled cilia. Numerical solutions to
the equations for two interacting cilia show that, for β = 0 and
β = π/2 (orbits are parallel and perpendicular, respectively,
to the wall), the long time dynamics of cilia does not show
any correlations in their beating patterns. In this case, the
hydrodynamic mediated interactions between two cilia act in
an incoherent way, and the state of motion for each cilium
is independent of the other. This result is consistent with
previous works of beating cilia near a flat wall [26,31]. When
elliptic orbits are tilted (β �= 0,π/2), temporal correlations in
the long time dynamics of interacting cilia will appear. Our
numerical studies show that, for tilted orbits, the cilia reach a
phase-locked synchronized state. At this synchronized state,
the phase difference �φ(t) = φ2(t) − φ1(t) reaches a constant
value that we will denote by �φ(∞). The steady state phase
difference �φ(∞) depends on initial conditions, the angle of
ellipses α and e. Figure 2 shows the state of synchronization
and its dependence on α, β, and �φ(0) for e �= 0(= 0.87). As
one can see from this figure, for 0 < α < π/2 and π < α <

3π/2, depending on the initial phase difference between cilia,
the final state can be either �φ(∞) = 0 or �φ(∞) = π . The
behavior for other values of α and its sensitivity to the initial
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FIG. 3. The state of synchronization in a collection of cilia can
be seen in a time-phase portrait. The vertical axes show the cilium
number n, the horizontal axes show the time and the value of
sin[φn(t)] are encoded via colors. A symplectic wave appears for
(a) α = 2π − π

4 , and an antiplectic wave appears for (b) α = π

4 . The
numerical parameters are a/h = 0.2, h/� = 0.35, B/� = 0.22, e =
0.87, and β = π/4.

phase difference can be seen in the figure. For π/2 < α < π

and 3π/2 < α < 2π, �φ(∞) approaches a constant value
π + δ where, depending on the initial phase difference, δ could
also be a positive or negative small angle. Angle δ depends on
α, and as an example, for α = −π/4, it reaches π/6. The
synchronization picture shown in Fig. 2 is valid for any e �= 0.
For a special case of e = 0 where the orbits are circular and for
0 < α < π/2 and π < α < 3π/2, we observed that the two
cilia system reaches a synchronized state with �φ(∞) = 0.
When e = 0 and for π/2 < α < π and 3π/2 < α < 2π , the
systems reach a state with �φ(∞) = π .

Let us examine the dynamics of a one dimensional array of
N = 44 cilia, attached to the circumference of a cylinder.
We took into account the hydrodynamic interactions and
considered both cases of elliptic and circular orbits separately
(e = 0 and e = 0.87). Interestingly, unlike the case of two
cilia, the emergence of synchronized states does not show any
dependence on the value of e. Figure 3 shows two examples
for the time evolution of the phase variables for all cilia. The
phase values are encoded via colors. The patterns shown in

this figure demonstrate the long time dynamics of the system.
The regularity of the long time patterns reflects the temporal
correlations in the motion of the cilia. In this case, a traveling
metachronal wave shows a synchronized state of the cilia
[9,30,31]. For a propagating wave (metachronal wave) in the
array of the cilia, the phase of the nth cilium φn(t) can be
written as φn(t) = nK − �t where the number K plays the
role of a wave number associated with a metachronal wave. In
the regular patterns shown in Fig. 3, the regions with constant
phases (same colors) make straight lines. These straight lines
are given by an equation, such as nK = �t + C, where C

is a constant. The slope of these parallel lines measures
the wavelength of a metachronal wave, and it is given by
1/K = ∂n/∂(�t). For K > 0, the wave moves in a direction
with the increasing cilium’s number n. As shown in Fig. 1, the
flow direction always points to the left (from large n to small n

cilia). So we conclude that a positive slope corresponds to an-
tiplectic and a negative slope shows a symplectic metachronal
wave. Figure 3 shows two examples of metachronal waves
for α = π/4 and α = 2π − π/4. As one can see, in the first
case [Fig. 3 (up)], a symplectic wave has appeared, and for
the second case [Fig. 3 (down)], an antiplectic wave has
appeared. The results of our numerical investigations for the
synchronization of an ensemble of cilia are shown in Fig. 2.
The results show that the emergence of such synchronized
states (simplectic and antiplectic) crucially depends on the
value of α. Independent of the value of e, the antiplectic
metachronal waves appear for 0 < α < π/2 and π < α <

3π/2. On the other hand, symplectic metachronal waves
appear when π/2 < α < π and 3π/2 < α < 2π . Changing
α to 2π − α, the average direction of the fluid flow does not
change, but the propagation direction of the metachronal wave
will change. Comparing the results for an array of cilia with
the results of two cilia, one can see that the emergence of
symplectic or antiplectic synchronization in an array of cilia
is related directly to the state of synchronization in the case of
two cilia. It is interesting that the antipletic waves accompany
many defects in their structures. Such defected waves have
been seen in a chain of model cilia [14].

In conclusion, the state of synchronization is studied for
interacting cilia. For two cilia, the synchronized state depends
on the initial phase difference and the geometrical parameters
of the trajectories given by α and β. In-phase antiphase
(δφ = 0,π ) synchronized states have been observed. For a
1 − D array of cilia attached to a curved body, we found
that both symplectic and antiplectic metachronal waves can
appear. The emergence of symplectic and antiplectic waves
in an array of cilia is in direct connection with the state of
synchronization in the two cilia case. As a result of our paper,
we understand the geometrical characteristics are key elements
in determining the state of metachronal waves. The emergence
of a symplectic or antiplectic metachronism in our model is
not an artifact of imposing a closed boundary condition. The
boundary condition in our system emerges naturally from the
closed structure of the curved body.
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