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Abstract – A recently developed theory of stochastic swimming is used to study the notion
of coherence in active systems that couple via hydrodynamic interactions. It is shown that
correlations between various modes of deformation in stochastic systems play the same role as
the relative internal phase in deterministic systems. An example is presented where a simple
swimmer can use these correlations to hunt a non-swimmer by forming a hydrodynamic bound
state of tunable velocity and equilibrium separation. These results highlight the significance of
coherence in the collective behavior of nano-scale stochastic swimmers.

Copyright c© EPLA, 2010

Introduction. – Swimming strategies for micro-
organisms and microbots need to take into account the
peculiarities that arise in low-Reynolds-number hydro-
dynamics [1–3]. When utilizing only a small number of
degrees of freedom, a careful non-reciprocal prescription of
cyclic deformations is needed to achieve swimming [4–15].
While these ideas have been primarily developed to
describe the swimming of bacteria [16], sperms [17], and
other micro-scale living systems [18], in recent years they
have attracted additional interest with the advent of
the first generation of artificial micro-swimmer proto-
types [19]. Swimmers of micro- or nanoscale need to face
an additional challenge, namely, the overwhelming fluctu-
ations that would act against their targeted mechanical
task. In its most basic form, the effect of fluctuations
on the motion of swimmers that are not directionally
constrained or steered is to randomize their orientation
via rotational diffusion [20–24]. The fluctuations can
also interfere with the propulsion mechanism and alter
the swimming velocity [25], for example via the density
fluctuations in the case of self-phoretic swimmers [26] or
fluctuations in the conformational changes in deforming
swimmers [27].
Interacting swimmers [28] are known to have rather

complex many-body behaviors [29], which can be under-
stood in terms of instabilities in the context of continuum
theories (that are constructed based on symmetry
considerations) [30]. Another fascinating consequence of

(a)E-mail: R.Golestanian@sheffield.ac.uk

long-range hydrodynamic interactions between active
objects with cyclic motions is the significance of internal
phase as a key dynamical variable [12,31,32], and the
possibility of synchronization [33]. However, most current
theoretical studies of the collective behavior of swimmers
(continuum theories and simulations) ignore the possible
effects of coherence, and it is natural to wonder if this is
justified.
One could argue that the overwhelming fluctuations

that are present at small scale may wash out any trace
of coherence among swimmers. To examine the validity of
this argument, we consider the following question: does
the notion of relative internal phase apply to stochas-
tic swimmers? We use a statistical description to model
the dynamics of systems that undergo random conforma-
tional changes while interacting hydrodynamically. Using
a specific example of a three-sphere system coupled to
a two-sphere system, we calculate the swimming veloci-
ties as functions of the statistical transition rates for the
conformational changes. We show that coherence could be
introduced in the system through the correlations between
the deformations, and that it can be used to create a stable
bound state between the three-sphere swimmer and the
two-sphere system (that cannot swim when isolated) with
a tunable equilibrium distance and velocity.

Hydrodynamic model. – Consider the a three-sphere
system that is located collinearly at a distance from a
two-sphere system, as shown schematically in fig. 1. The
two systems undergo conformational changes by opening
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Fig. 1: (Colour on-line) Schematic view of a three-sphere
swimmer interacting with a two-sphere system (top) and
the three-dimensional configuration space (middle) represent-
ing the eight possible distinct conformational states of the
combined system (bottom). We denote by (iα) the state where
the three-bead system is in state i and the two-bead system is
in state α.

and closing of the three arms, which could only lead to
net swimming for the three-sphere system (and not the
two-sphere system) when isolated, due to scallop theo-
rem [3]. When at a finite distanceD, the two systems inter-
act hydrodynamically, and their dynamics will be coupled
to each other. The system on the left (fig. 1) is made
up of three spheres of radius R that are connected by
arms of lengths L+uL1 (t) and L+u

L
2 (t), while the system

on the right consists of two similar spheres connected by
an arm of length L+uR(t). For simplicity, we assume
that the linker do not interact with the fluid. To analyze
the dynamics of the system, we use the linearity of the
Stokes equation —the equation for hydrodynamics in
zero Reynolds number— and express the velocity of each
sphere vi as a linear combination of the force fj acting on
a different sphere j:

vi =
e
∑

j=a

Mijfj , (1)

where the details of the hydrodynamic interactions are
entailed in the coefficients Mij . Using Oseen’s approxi-
mation, we can write simple closed form expressions for

the coefficients when the spheres are considerably far from
each other. Denoting the positions of the spheres by xi, we
have

Mij =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1

6πηR
, i= j,

1

4πη|xi−xj |
, i �= j,

(2)

where η is the viscosity of the fluidic medium. Equation (1)
thus gives us five equation for the ten unknowns vi and fi
(i= a, . . . , e). Maintaining force-free conditions on the two
systems, namely, fa+ fb+ fc = 0 and fd+ fe = 0, provides
two additional equations. The final three equations are
obtained by the kinematic constraints vb− va = u̇

L
2 , vc−

vb = u̇
L
1 , and ve− vd = u̇

R, where the dot denotes d/dt.
Considering the case where the two systems are far from

each other and the deformations are small compared to the
average length of the arms L, such that R≪ u≪L≪D,
we can set up a perturbative scheme to investigate the
effect of the hydrodynamic interactions [14]. Solving the
above linear system of ten equations, we can find all the
velocities and the forces, from which we can calculate
the average swimming velocity of the three-bead system
V L = 13 〈va+ vb+ vc〉 and that of the two-bead system

V R = 12 〈vd+ ve〉. To the leading order in perturbation
theory, we find

V L =
7

12

R

L2
〈

u̇L1 u
L
2

〉

−
1

2

RL

D3
[〈

uL1 u̇
R
〉

−
〈

uL2 u̇
R
〉]

, (3)

V R =
RL

D3

[

−2
〈

u̇L1 u
L
2

〉

+
3

2

〈

uL1 u̇
R
〉

+
3

2

〈

uL2 u̇
R
〉

]

. (4)

We can also extract the average forces acting on the beads.
To the leading order in deformations, this yields

〈fa〉 =
5

4
πη
R2

L2
〈

u̇L1 u
L
2

〉

− 3πη
R2L

D3
[〈

uL1 u̇
R
〉

+2
〈

uL2 u̇
R
〉]

,

〈fc〉 =
5

4
πη
R2

L2
〈

u̇L1 u
L
2

〉

+3πη
R2L

D3
[

2
〈

uL1 u̇
R
〉

+
〈

uL2 u̇
R
〉]

,

〈fd〉 = 9πη
R2L

D3
[〈

uL1 u̇
R
〉

+
〈

uL2 u̇
R
〉]

.

Note that 〈fb〉=−〈fa〉− 〈fc〉 and 〈fe〉=−〈fd〉.
The above expressions for the velocities and forces are

given in terms of the three average quantities
〈

u̇L1 u
L
2

〉

,
〈

uL1 u̇
R
〉

, and
〈

uL2 u̇
R
〉

, which correspond to the average
rates of sweeping enclosed areas in the three perpendicu-
lar sections of the three-dimensional (uL1 , u

L
2 , u

R) configu-
ration space of the system, respectively. For deterministic
conformational changes of the form

uL1 = d cos(Ωt−ϕ
L
1 ),

uL2 = d cos(Ωt−ϕ
L
2 ),

uR = d cos(Ωt−ϕR),

we can calculate them using time averaging over a period.
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This yields

〈

u̇L1 u
L
2

〉

=
1

2
d2Ωsin(ϕL1 −ϕ

L
2 ), (5)

〈

uL1 u̇
R
〉

=
1

2
d2Ωsin(ϕR−ϕL1 ), (6)

〈

uL2 u̇
R
〉

=
1

2
d2Ωsin(ϕR−ϕL2 ). (7)

The above equations manifestly show that the relative
importance of these three conformational space area-
sweeping rates is determined by the relative phases of
the deformations. We now aim to address the question
of whether such a concept can exist at small scales where
the conformational changes are stochastic.

Stochastic systems. – To construct a statistical
theory for the deformations of the two systems we
assume that they have distinct conformational states and
the deformations can be modeled as stochastic jumps
between these states that occur at given rates [27,34].
The three-sphere system can be described with four
states and the two-sphere system with two states, which
make a total of eight distinct conformational states in
the three-dimensional configuration space, as shown in
fig. 1. More specifically the states of the three-sphere
swimmer are labeled by the index i as follows: i= 1
the two arms are closed (uL1 = 0, u

L
2 = 0), i= 2 the right

arm is open (uL1 = δ, u
L
2 = 0), i= 3 the two arms are

open (uL1 = δ, u
L
2 = δ), and i= 4 the left arm is open

(uL1 = 0, u
L
2 = δ). For the two-sphere system, we only have

two possibilities: α= 1 the arm is closed (uR = 0) and
α= 2 it is open (uR = δ). To describe the instantaneous
state of the system we denote the probability of finding
the left swimmer at state i (i= 1, . . . , 4) and the right
two-bead system at state α (α= 1, 2) by Piα. These
probabilities are normalized as

∑

i,α

Piα = 1.

The kinetics of the conformational transitions of the two
coupled systems is given by introducing the corresponding
transition rates.
We assume that the conformational changes happen

one at a time, which means that transitions are only
allowed between states that are nearest neighbors in the
cubic configuration space shown in fig. 1. We denote the
transition rate for the jump from state i to state j for
the left swimmer when the two-bead system is in state
α by kLji(α). Similarly, the transition rate for the two-
bead system jumping from state α to state β when the
three-sphere system is in state i is denoted as kRβα(i).
Note that the rates for conformational changes within
each system in principle depend on the state of the other
system. The cubic configuration space has six current
loops corresponding to six faces, as shown in fig. 2. These
currents, however, are subject to an overall conservation
law, which implies that only five independent currents

(11) 
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Fig. 2: (Colour on-line) Two-dimensional projection of the 3D
configuration space of fig. 1 showing the different probability
current loops.

exist in the system. We define the following currents:

j1 = P11k
L
21(1)−P21k

L
12(1),

j2 = P21k
L
32(1)−P31k

L
23(1),

j3 = P31k
L
43(1)−P41k

L
34(1),

j4 = P11k
R
21(1)−P12k

R
12(1),

j5 = P12k
L
21(2)−P22k

L
12(2),

in terms of the probabilities and the rates, and can use
them to calculate the currents in the loops as follows (see
fig. 2):

I1 =
1

6
(−3j1+ j2+ j3+ j4+ j5),

I2 =
1

6
(3j1− 5j2+ j3+ j4+ j5),

I3 =
1

6
(3j1+ j2− 5j3+ j4+ j5),

I4 =
1

6
(−3j1+ j2+ j3− 5j4+ j5),

I5 =
1

6
(3j1+ j2+ j3+ j4+ j5),

I6 = −I1− I2− I3− I4− I5.

We can now solve the steady state master equation for the
system and calculate the probabilities and the currents.
Using the currents in the loops, we can write down

expressions for the average rates of sweeping areas in the
three perpendicular sections of the configuration space,
as shown in fig. 2. The results, which are the statistical
analogs of eqs. (5), (6), and (7), read

〈

u̇L1 u
L
2

〉

= δ2(I6− I5), (8)

〈

uL1 u̇
R
〉

= δ2(I3− I1), (9)

〈

uL2 u̇
R
〉

= δ2(I4− I2). (10)
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Due to the sign convention used in the definition of the
currents the current running through opposite faces of
the cube in fig. 2 have opposite signs. Therefore, the
total rate of sweeping a certain projected area in the
configuration space is the difference between the currents
of the corresponding opposite faces in the cube, as eqs. (8),
(9), and (10) show. The area of each projection is equal
to δ2. The above expressions can be used in eqs. (3) and
(4) to calculate the average swimming velocities of the two
systems.
In the most general case with arbitrary rates the explicit

form of the resulting probabilities and velocities is cumber-
some and therefore not shown here. To illustrate the
generic features of the solution, we focus on a simplified
example with the following choices for the transition rates.
For transitions in the three-sphere system we choose

kLij(α) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(1+ ǫ1)ω, i= 1, j = 2, α= 1,

(1+ ǫ2)ω, i= 1, j = 2, α= 2,

ω, other states

(11)

For the two-sphere system, we choose

kRβα(i) = ω, for all states.

The above choices allow us to only focus on the effect of
the correlation between the two devices, as having different
values for ǫ1 and ǫ2 means that the rate of the three-sphere
system going from state 1 to state 2, which means opening
its right arm, depends on whether the two-sphere system
is in the closed or the open state. If ǫ1 = ǫ2 = 0, detailed
balance holds and neither of the two components has a net
motion. With the above choices, the average velocities of
the two systems can be found as

V L =Rω

(

δ

L

)2
[

7

24
y0−

1

2

(

L

D

)3

y1

]

, (12)

V R =Rω

(

δ

L

)2(
L

D

)3 [

−y0+
3

2
y1

]

, (13)

where

y0 =
12(ǫ1+ ǫ2)+ 5ǫ1ǫ2

56(ǫ1+ ǫ2)+ 15ǫ1ǫ2+192
, (14)

y1 =
6(ǫ2− ǫ1)

56(ǫ1+ ǫ2)+ 15ǫ1ǫ2+192
. (15)

The term proportional to y0 in eq. (12) is the spontaneous
swimming velocity of the three-sphere system, while the
y0 contribution in eq. (13) is the passive velocity at the
location of the two-sphere system caused by the swimming
of the three-sphere system. The contributions proportional
to y1 in eqs. (12) and (13) are active contributions
originating from a coherence between uL1 and u

R in
the form of

〈

uL1 u̇
R
〉

�= 0. Note that the coherence will
disappear when ǫ1 = ǫ2.
An interesting consequence of the coherent coupling is

that the two systems can form a moving hydrodynamic

1.0 0.5 0.0 0.5 1.0 1.5

1.0

0.5

0.0

0.5

1.0

1.5

�2

�1

Stable

Unstable

Fig. 3: (Colour on-line) Phase diagram of possible states.
Steady-state solutions in the form of bound states with
constant separation (Ḋ= 0) are highlighted, and the stable and
unstable regions are shown.

bound state at a fixed separation. Noting that ddtD(t) =
V R−V L or

dD(t)

dt
=Rω

(

δ

L

)2
[

(

L

D(t)

)3

(2y1−y0)−
7

24
y0

]

, (16)

we can find the conditions at which stable and unsta-
ble bound states are possible in the effective dynamical
equation for D(t), as shown in fig. 3. The equilibrium
distance between the two systems in the stable hydrody-
namic bound states is given as

Deq =L

(

24

7

)1/3 [
−ǫ1(24+5ǫ2)

12(ǫ1+ ǫ2)+ 5ǫ1ǫ2

]1/3

, (17)

which can be controlled by changing the transition rates.
We note that the hydrodynamic-induced formation of
bound states of a pair of micro-organisms has been
recently observed experimentally [35].

Discussion. – Our analysis shows that the concept of
relative internal phase and coherence between a number
of systems that undergo stochastic deformations in a
hydrodynamic medium at low Reynolds number is well
defined. Stochastic coherence could result from average
correlations that can be induced between various modes
of the conformational transitions, and need not exist
instantaneously to lead to average correlated behavior.
Comparison between eqs. (5), (6), and (7) that are defined
for deterministic systems and eqs. (8), (9), and (10)
that are defined for stochastic systems shows how the
average relative phase between various modes of the
conformational transitions can be defined and probed in
terms of the currents in the configuration space of the
system.
In the present study, coherence between the two subsys-

tems is introduced via the rates defined in eq. (11). When
ǫ1 �= ǫ2, the rate of opening of the right arm of the three-
sphere swimmer is chosen to depend on whether the
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two-sphere system is in the closed or open state; it is
exactly this difference that leads to the correlation term
proportional to y1 in eqs. (12) and (13), as can be seen
from the explicit dependence of y1 ∝ (ǫ2− ǫ1) in eq. (15).
This means that while it is possible to have coherence
between different parts of the system when undergoing
stochastic fluctuations, this coherence still needs to be
imposed via the different rates in the kinetic equations.
Physically, what this means is that the coherence needs to
introduced in the system via correlations between differ-
ent conformational states of the system and the rates of
transitions between them. The correlations are reminiscent
of the allosteric interactions between proteins [36], and
could in principle be engineered for artificial systems using
similar strategies. These strategies could involve physical
interactions arising from electrostatic forces etc., hydro-
dynamic interactions, and other effects that could modify
the transition rates by introducing additional mechanical
energy contributions (costs) in the deformation process
and hence affecting the transition rates via the exponential
(Arrhenius) dependence on energy change. Alternatively,
these correlations could be induced via external means
such as laser pulses that would affect transition rates
only in certain conformational states. However they are
enforced, the present study asserts that such correlations
could lead to a sustainable notion of coherence between
stochastically fluctuating nano-scale devices in water.
We have considered the transition rates for the confor-

mational changes of the two small systems to be time inde-
pendent. If this assumption is not valid for any reason,
the time dependence in the rates could weaken the degree
of coherence in the system and ultimately fully elimi-
nate it if it is sufficiently strong. This is equivalent to
introducing time dependence in the phases in the deter-
ministic case (described by eqs. (5), (6), and (7)), which
could destroy the phase coherence. Such a time depen-
dence could occur due to temperature fluctuations [37],
which in local thermodynamics approximation could affect
the transition rate through a dependence of the form

ω∼ exp

[

−
fδ

kBT

]

, (18)

where f represents a typical force involved in the
conformational change. We can estimate the magnitude
of f using the typical drag force experienced by a
sphere of radius R and moving velocity v= δω, namely
f ≈ 6πηRδ2ω. In the present work we have neglected
temperature fluctuations. To examine the validity of this
assumption, we can use the complementarity relation
ΔEΔ(1/T )≈−kB, which relates the strength of energy
and temperature fluctuations, to estimate the magnitude
of temperature fluctuations as ΔT 2 = kBT

2/C, where C
is the heat capacity [37]. Using this simplified picture, we
can estimate the effect of temperature fluctuations on the
transition rates via

Δω

ω
=
fδ

kBT
×
ΔT

T
≈
6πηRδ2ω

kBT

√

kB
C
. (19)

In order to have Δω/ω≪ 1, which would guarantee that
the above assumption is valid (i.e. temperature fluctua-
tions can be ignored) the following condition must hold:

ω≪
kBT

6πηRδ2

√

C

kB
. (20)

Putting R= δ= 1 nm at room temperature for water, we
find the following condition:

ω≪
(

108 s−1
)

×

√

C

kB
. (21)

While there is a debate in the literature about the correct
choice for C, namely whether it is the heat capacity of
the entire system [38] or that of the subsystem only [39],
eqs. (20) and (21) show that in our case neglecting
temperature fluctuations is justified either way. Note also
that our analysis has ignored quantum fluctuations, which
means that the following criterion should also hold: ω≪
kBT
�
.
Finally, we note that we have made the specific choice

of a three-sphere system and a two-sphere system, because
its configuration space is 3D and can be easily visualized
(figs. 1 and 2). The same analysis can be easily generalized
to the case of two three-sphere swimmers, in which case
the configuration space will be 4D and the bookkeeping
of the projected areas in the graph where the probability
currents are flowing is slightly more delicate.
In conclusion, we have shown that stochastic swimmers

could actively couple to each other using hydrodynamic
interactions. As an example, we demonstrated that the
coupling could be tailored such that an active swimmer
could hunt a non-swimming system into a stable moving
bound state, by “tuning” into the right correlated tran-
sition rates. Our results show that the notion of internal
phase and coherence could be important even for fluctu-
ating systems that are coupled via hydrodynamic interac-
tions at the nano-scale.
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