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Instabilities in a growing system of active
particles: scalar and vectorial systems

Forouh Malekia and Ali Najafi ab

The physics of micron-scale biological colonies usually benefits from different out-of-equilibrium sources.

In bacterial colonies and cellular tissues, the growth process is among the important active sources that

determine the dynamics. In this article, we study the generic dynamical instabilities associated with the

growth phenomena that may arise in both scalar and vectorial systems. In vectorial systems, where the

rotational degrees of particles play a role, a phenomenological growth-mediated torque can affect the

rotational dynamics of individual particles. We show that such a growth-mediated torque can result in

active traveling waves in the bulk of a growing system. In addition to the bulk properties, we analyze the

instabilities in the shape of growing interfaces in both scalar and vectorial systems.

1. Introduction

The process of growth is a necessary element that brings the
meaning of life to living systems. From a physicist’s standing
point, one important and central challenge lies in understanding the
mechanism by which a non-equilibrium proliferating system forms
its overall functioning shape.1,2 Bacterial colonies,3–5 biofilms,6–8 and
growing tissues9–12 are standard examples that belong to the class of
active systems where one can study the growth phenomena. Along
this general task, self-organization and ordering in active
colonies,13–18 pattern formation in biological systems13,19,20 and
nematic ordering in bacterial colonies21,22 are studied extensively.

A growing system benefits from chemical, physical, and
biological processes at many different time and length scales.23

On the other hand, different mechanisms ranging from behavior
at the level of individual cells, cell–cell signaling, and environ-
mental feedback help a growing system to perform its job. All of
these processes are mostly based on non-equilibrium reactions
that eventually aim to provide mechanical motion. In a simpli-
fied mesoscale mechanical picture, out-of-equilibrium forces can
be modeled by active terms in a phenomenological description
that is called the active nematics.24–26 Such continuum descrip-
tions accompanied by agent-based simulations have to be com-
pared with experimental facts. Resulting from nonlinearities
hidden in continuum models, physical instabilities are among
the intriguing phenomena that can help the system to find its
overall shape. Examples of such instabilities include the buck-
ling at bulk and roughening at boundaries.27–33

In this article, we aim to determine a generic description of a
growing active matter that takes into account the growth at a
phenomenological level. To investigate our idea, we will consider
a growing matter in two categories of scalar and vectorial cases.
In a scalar system, the rotational degrees of freedom of indivi-
dual cells are neglected while in the vector case, the rotational
motion plays an important role. In the vector case, in addition to
the density, the director field is also a relevant variable that
needs to be taken into account. Based on symmetry arguments,
we consider a growth-mediated torque in our description and
investigate the instabilities in both the bulk and boundaries of a
growing system. To this end, we use a minimal model that can
capture the mechanics of a growing system.

2. Models

As shown in Fig. 1(a and b), consider a two-dimensional system
composed of motile particles with a proliferation ability. This
dense system of active particles lives in an ambient fluid, a fluid
that could be either an aqueous media (in bacterial suspension)
or extracellular fluid (in growing tissue). For biological systems,
apoptosis and cell division can contribute and result in a
positive or negative overall growth rate. We denote by g(t), the
rate by which the particles proliferate. In addition to growth,
the motility of particles would also act as another source for
initiating mechanical motion in our system. Each self-driven
motile particle can exert stress on the fluid. Denoting by a, the
amount of stress that each active particle carries, this stress
could be either positive or negative. Extensile (pusher) and
contractile (puller) active particles will be described by a 4 0
and a o 0, respectively. Two phenomena of the active motility
of particles and the process of proliferation can result in large-
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scale motion in this system. In general, the active part is more
viscous than the ambient passive fluid meaning that the time
scale for the motion in the active part of the system may be
much larger than its counterpart in the ambient fluid. As a
result of this observation and to study the long-term behavior of
the system, we only consider the dynamics of the active part.
At the continuum level, the physical state of this system can be
described by the coarse-grained fields of density r, velocity field
v(r,t) and director field n(r,t) of the active part. These fields are
subjected to the following dynamical equations:34,35

r
d

dt
v ¼ r � S� Gv; r � v ¼ gðtÞ;

D

Dt
n ¼ g�1 hþ n� sgð Þ;

(1)

where co-moving and co-rotating derivatives are defined as:
d

dt
¼ @t þ v � r and

D

Dt
¼ d

dt
þ ðI � nnÞ � D � n, respectively. Here

I denotes the unit tensor of rank two and D ¼ D� þ ADþ with
D� = (1/2)(rv � [rv]T). For spherical particles A = 0 and oblate
(prolate) particles correspond to A 4 0 (A o 0).36 In our active
system, both growth-mediated torque tg, a phenomenological
term that we will introduce later and also the thermodynamic
current S derive the system to out of equilibrium conditions.
The thermodynamic force can be written as:35

S ¼ Sd þ Sr � @F
@rn � rn� ann� PI : (2)

The term proportional to the local nematic tensor nn is the active
stress resulting from the motility of particles.37 Furthermore, the
elastic free energy density of the nematic phase and corres-
ponding molecular force can be written as:34,38

F ¼ K

2

X
i; j

@inj@inj ; hi ¼ �dF=dni:

Recalling the equation of motion (eqn (1)), the rotational friction
coefficient is denoted by g. The dissipative part of the stress tensor
is given by Sd = 2Z[D+ � 1/2(r�v)I] and reactive stress is given by:

Sr ¼ 1

2
ðnh� hnÞ � A

2
ðnhþ hnÞ. Friction with the substrate is

denoted by a single parameter G.
To capture the physics of growth in living tissues, we use a

well-established two-fluid model that takes into account both
living cells and their ambient passive fluid.39,40 It is important to
note that the number density of a growing system is not conserved.
In this case, a detailed model for the pressure should be consid-
ered. Growth pressure denoted by P is the main place where the
growth affects the dynamics. Following the well-studied two-fluid
model,39,40 we choose a simple model for this growth pressure.
Here we do not present the details of the two-fluid model, we just
present the main ingredients that are necessary for our purposes.
For an active system, for example, biological tissues, the concept of
homeostasis works. In such systems, the static steady-state can be
described by a characteristic homeostatic pressure denoted by Ph.
Slowly growing systems are very near to the homeostatic state and
the pressure can be expanded as powers of growth rate. It can be
shown that in this regime, the density r can be considered
approximately as a constant variable, furthermore, the pressure
obeys the relationship:39

P = Ph � zr�v, (3)

where the bulk viscosity for the homeostatic state is denoted by z.
For z 4 0, any local increase in the pressure would result in the
domination of apoptosis over cell division.

It should be noted that the low Reynolds condition of a
micrometer-sized system that is relevant for our purposes, will
exclude any non-linearity in terms of velocity field emerging
from the co-moving derivatives. Nutrients are also assumed to
be accessible everywhere without any limitations. This last
simplification can work well for 2-D colonies where the third
dimension always provides free space to supply the food.

How does the growth affect the orientational degree of
freedom? As a result of short-range cell–cell communications,
the growing state of a collection of cells that surround a specific
cell, can influence the motion of this cell. This will result in a
growth-mediated torque that will be denoted by sg. The existence
of such torque was discussed previously.24 The polarity and
geometrical asymmetry of the particles might influence this
scenario. In a phenomenological description, the local gradient
of growth rate can contributed to the torque sg, that is exerted on
the cells. At the leading order of the growth gradient, and
following the symmetry considerations, a term like sg B rg �
n is a possible term that we will consider. In the homeostatic
picture, the growth rate is proportional to the pressure, then the
growth-mediated torque will be written as:

sg = �bA2rP � n, (4)

where, b is a phenomenological parameter and a simple
second-order dependence on the asymmetry parameter A is
assumed, meaning that the torque law works similarly for
oblate and prolate particles. For b 4 0, as shown in Fig. 1(d),
the growth torque tends to align the particles’ polarity and
�rg. Recalling the angle between n and rg by c, for a fixed
growth gradient, c = p is an absorbing state, meaning that the

Fig. 1 (a) Schematic view of a proliferating system composed of aniso-
tropic active particles moving in an ambient fluid. (b) Detailed processes of
apoptosis and cell division. (c) A growing front with fluctuating shape. (d)
Growth-mediated torque tends to align a particle with the direction of the
growth gradient.
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particle tends to move toward a region with less growing rate. It
should be noted that the growth-mediated torque introduced
here is polar in nature and can break the nematic order. The
previous model considered the growth-mediated torque for a
system with nematic symmetry.24

It is interesting to note that different biophysical systems
may flow with different scales of speed. In a typical bacterial
colony, each bacterium moves with a velocity of order 10 mm
per second. In living tissue, for example, an epithelial tissue,
the rate of division can be of order 10 division per day. Taking
into account a typical size of 10 mm for each cell we will reach a
typical velocity that scales like 100 mm per day. Despite the fact
that bacterial colonies, biofilms, and living tissues have differ-
ent scales for their velocity, the model developed in this article
can capture their physics equivalently.

The model described so far has many ingredients describing
different physical processes that can affect the dynamics.
We try to consider the effects of different terms step by step.
First, we consider a scalar model in which we neglect the
orientational degrees of freedom of the particles by dropping
out the variable n. Later on, we will add the effects of the
nematic variable n.

3. Scalar system

To study the bulk properties of a growing scalar system, we first
consider an unbounded growing system. For a gradually growing
system in which the growth rate is very small, we linearize the
equations in terms of the velocity field u(r, t) and study its
dynamics. Defining the Fourier transform of any variable fi(r, t)

as ~fiðq;oiÞ ¼
Ð
drdtfiðr; tÞ exp½iðq � r� oitÞ�, we can observe that

the dispersion for longitudinal and transverse modes obeys the
following relationship:

ioL,T = r�1(G + (Z + AL,Tz)q2), (5)

where AL = 1 and AT = 0. Transverse and longitudinal directions
are defined with respect to the direction of wave vector q. As it is
seen, for this scalar case, any kind of fluctuation in the bulk will
eventually disappear. This result roots in the homeostatic
description where growth-mediated motion is assumed to pro-
pagate through the pressure variations. For this scalar case, all
motions are expected to take place at the boundaries. For this
reason, it is necessary to analyze the effects at the boundaries.

To study the boundary effects, we consider the case where
the system is allowed to grow in 1-dimension. In this case, the
system is limited from one side by a rigid wall and it is free to
expand from the other side. As depicted in Fig. 1(c), we choose a
reference frame with z-axis along the growth direction. The
growing front lies at z = 0 while the limited part of the system
sits at z = �N. The growing front is assumed to be a permeable
and abrupt boundary (at z = 0). On top of this permeable
boundary (z 4 0), a fluid reservoir with fixed pressure is in
contact with the growing system. The upper fluid is in mechan-
ical equilibrium with the ambient fluid at the tissue (part of the
growing system that is passive with no dynamics in our model).

Furthermore, we assume that an additional external mechanical
pressure denoted by Pext, is exerted on the active part of the
system at the position of the boundary.39 This externally applied
pressure can help us to capture the physics of growth and
homeostasis in living systems. The homeostatic state is a state
in which the external pressure is adjusted to a specific value Ph

so that the boundary reaches a non-moving still state. In this
case, the death and apoptosis processes cancel each other and
the growth rate vanishes on average. Obviously, any deviation
from the homeostatic pressure will result in a motion in the
boundary. Denoting by Pext = Ph + DP, for DP o 0, the division
dominates over death and the boundary will move upward.

To consider the dynamics, we notice that the stress tensor
for this scalar system reads as:

S = Z(rv + rvT) � Z�r�vI � PhI,

and the dynamical equation r�S = Gv takes the following form:

(Zqz
2 + Z+qx

2)vx + zqxqzvz = Gvx,

(Z+qz
2 + Zqx

2)vz + zqxqzvx = Gvz, (6)

where Z� = (Z � z). To solve these equations, we decompose the
velocity field into two parts:

v = (vz
s(z) + dvz)ẑ + dvxx̂, (7)

where the steady state solution vz
s(z) corresponds to a steady

state growth with a flat boundary. The rest shows possible
fluctuations corresponding to time-dependent nonuniformity
in the shape of the boundary. Denoting the fluctuating shape of
the boundary by function b(x,t) (see Fig. 1), the velocity satisfies
the following boundary condition:

vz(x, b) � vz(x,0) = qtb(x, t) + vx(x, b)qxb(x, t). (8)

Denoting the surface tension of the growing boundary by gs, the
components of the stress tensor should satisfy the following
relationship:

Snn(x, z = b(x, t)) = �Ph � DP � gsr�n̂s,

Snt(x, z = b(x, t)) = 0, (9)

where t̂ E x̂ and n̂s E ẑ � qxb(x, t)x̂ are unit vectors locally
tangent and normal to the boundary. In terms of Cartesian
components, the stress tensor can be written as:

Snn = Szz � 2(qxb)Szx,

Snt = Szx+ (qxb)(Szz � Sxx), (10)

with,

Sxx = Z+qxvx � Z�qzvz � Ph,

Szz = Z+qzvz � Z�qxvx � Ph,

Sxz = Z(qzvx + qxvz). (11)
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Neglecting the fluctuations, we see that the steady-state
solution reads as:

vszðzÞ ¼ vge
z=l; vg ¼

�DPffiffiffiffiffiffiffiffiffi
GZþ
p ; (12)

where, l ¼
ffiffiffiffiffiffiffiffiffiffiffi
Zþ=G

p
is the hydrodynamic screening length and

the growth velocity or the speed by which the boundary proceed
is denoted by vg. In a small region with thickness l, just below
the growing front, flow can be observed. Beyond this layer,
pressure has its equilibrium value denoted by Ph and no net
growth can be observed. For DP 4 0 apoptosis dominates and
vg o 0, showing that the boundary moves downward. For a
system in which the growth (cell division) is dominated, DP o 0
and this corresponds to positive growth velocity vg 4 0 where
the boundary moves upward.

To see how the growing front remains smooth, we consider
the fluctuations up to the first order of the height function
b(x, t). We consider a Fourier mode pattern as b(x, t) = b̃ei(qxx�ot)

and investigate the response of the system. Furthermore, we
consider the following ansatz for the velocity profile:

dv(x, z, t) = dṽei(qxx�ot)+kz,

where k�1 shows the depth within which the fluctuations
penetrate into the system. Inserting the above ansatz for the
unknown fields into the eqn (8) and (9), we can work out and
eliminate the height function to reach a simpler set of equa-
tions that takes into account only the components of the
velocity field. Then we will arrive at the following equations:

ðZk2 � Zþqx2 � GÞ izkqx

izkqx ðZþk2 � Zqx2 � GÞ

" #
d~vx

d~vz

" #
¼ 0: (13)

The non-trivial solution to the above set of equations results in
the allowed value for k that is given by k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ l�2

p
. Now, we

investigate the boundary conditions to examine the spectrum
of fluctuations. Putting the results into eqn (8), the dispersion
relationship will read as:

�io ¼ �gslqx
2

Zþ
1� vg

2gs
ð3Z� zÞ

� �
; (14)

As we expected, all fluctuations relax to zero for a homeostatic
state with vg = 0. Far from the homeostatic state where the
system grows, the flat boundary can be unstable depending on
the parameters. For 3Z4 z, we see that a flat growing boundary
(vg 4 0) is unstable for vg Z 2gs/(3Z � z). On the other hand, the
flat growing boundary is always stable for Z o z/3. In Fig. 2,

in terms of �z = z/Z+ and %vg = Z+vg/gs, we have investigated
the possible behavior of the growing boundary. This instability
criterion can be understood as a competition between surface
tension and growth. The activity corresponding to growth
amplifies the surface undulations whereas, the surface tension
provides a restoring force. The underlying mechanism for
the instability takes its roots in the fact that the variation in
the growth rate in our homeostatic model, would be roughly
proportional to the shape variations given by function b(x, t).
As a result of shape fluctuations in the moving front, a

local protrusion on the growing front would experience a
higher growth rate which will eventually result in shape
instability.

4. Vectorial system: bulk

Now we move to the vector system where orientational order
plays an important role. In this case the activity parameter a,
growth parameter vg and b, the parameter reflecting the growth-
mediated torque, contributes to the dynamics. To study the
dynamics in the bulk, consider an infinite system with coarse-
grained fields given by n = n0, Pg = Ph and v = 0. This state
describes a system that has a polar order. Denoting the fluctua-
tions by dn and dv, we linearize the dynamical equations and
neglect the effect of inertia to reach the following equations for
perturbative fields:

�Gdv�zðq � dvÞq� Zq2dvþ i

2
ð1� AÞðq � dhÞn0

� i

2
ð1þ AÞðq � n0Þdh� iaðq � dnÞn0 � iaðq � n0Þdn ¼ 0;

�iodn ¼ i

2
ð1þ AÞðq � n0Þdv�

i

2
ð1� AÞðdv � n0Þqþ

1

g
dh

� iAðdv � n0Þðq � n0Þn0 þ
bz
g
A2ðq � dvÞðq� ðq � n0Þn0Þ;

where wave vector and frequency of the perturbations are
denoted by q and o, respectively. We denote by y0, the angle
between wave vector and director field n0 (see Fig. 3). Further-
more dh/K = �(q � n0(n0�q))(q�dn) � (n0�q)2dn. The solution to
the above equation in an unbounded space gives the dispersion
relationship as:

�io = tr
�1 � iv(q, n0)q, (15)

Fig. 2 Phase diagram of a growing boundary in a scalar system is plotted
in terms of growth activity %vg and �z = z/Z+. The smooth phase corresponds
to the case where the flat boundary is stable and the rough phase
corresponds to the case where the rough boundary is the stable solution.
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where the relaxation time and group velocity of the perturba-
tions are given by:

t�1r ¼ a

G=q2 þ Z
1

2
cos 2y0 þ

A

4
gðy0Þ

� �

� Ke G=q2 þ Zþ g=4þ A

2
g cos 2y0 þ A2ggðy0Þ

� �

vðq; n0Þ ¼
bzA2 sin 2y0
gðZþ þ G=q2Þ a� 2AKq2

� �
;

(16)

here Ke ¼
Kq2

gðZþ G=q2Þ, and the function g(y0) is given by:

gðy0Þ ¼
2G=q2 þ 2Zþ zð1þ cosð4y0ÞÞ

Zþ þ G=q2
:

Reflected from the first term in tr, for a 4 0 (a o 0), splay
(bend) fluctuations tend to initiate hydrodynamic instability for
geometrically symmetric swimmers (A = 0).37 Bend and splay
elastic energy can stabilize both modes of perturbations and
this is shown in the second term in tr.

37,41 The interesting
physics is in the real part of the frequency that is denoted by
or = v(q, n0)q. When the hydrodynamic instabilities are stabilized
by nematic elastic energy or other stabilization mechanisms,42

stable traveling waves can propagate in the system with the
corresponding group velocity given by v. Propagation of such
active waves is directly related to the parameter b, the growth-
mediated torque. The polar symmetry associated with this
phenomenological torque is essential here. Active waves can be
observed in systems that either contain motile particles (a a 0,
A a 0) or contain non-motile particles with finite rotational

elasticity (K a 0, A a 0). For a system with polar order, the
velocity of such propagating modes crucially depends on the
direction of propagation. The maximum velocity of propagating
active waves corresponds to the case where the wave vector has an
angle y0 = p/4 with the nematic direction. Fig. 3 shows a snapshot
of the active wave which is propagating in a direction with its
maximum velocity. It is interesting to note that pure bend and
splay waves (y0 = 0 and y0 = p/2) cannot propagate. In addition to
the director wave, one can consider this traveling wave as a
pressure or growth wave. Local fluctuations in growth rate can
propagate in the system. More interesting is the direction of
propagation which is a right-moving wave in the sense that fixing
an angle y0, the waves can only propagate in the +q̂ direction.
In Fig. 3, we have presented an intuitional picture that can reveal
the physics behind this active wave. As seen in this picture, in a
locally ordered nematic phase, a small fluctuation in the direction
of a particle can produce a hydrodynamic flow. Divergence of this
excess flow initiates a pressure gradient and subsequently gives
rise to a gradient in the growth rate. Then, growth-mediated
torque will eventually promote the fluctuations to propagate.

5. Vectorial system: boundary

Having studied the bulk properties of an active nematic system,
we now consider a system that is bounded by a rigid wall at
z =�N and a freely growing boundary at z = 0, see Fig. 1. At very
long times the system reaches a steady state in which the
boundary moves with velocity vg. The steady-state velocity
profile is similar to the scalar case given in eqn (12), with the
growth velocity of the boundary that is replaced by:

vg ¼
�DPþ affiffiffiffiffiffiffiffiffi

GZþ
p : (17)

This steady state corresponds to the case where all elongated
particles are perpendicular to the moving front. To consider the
dynamics of fluctuations we put n = ẑ + dy(x, z, t)x̂ and denote the
shape of the interface by the function b(x, t) = b̃ei(qxx�ot). Similar
to the scalar case, we assume that all the bulk fields behave like:
dv(x, z, t) = dṽei(qxx�ot)+kz. Putting this information in the equa-
tions, we arrive at the following equation for the amplitudes:

Zk2 � Zþqx2 � G iqxzk �kðaþ dþÞ

iqxzk Zþk2 � Zqx2 � G �iqxðaþ d�Þ

k

2
þ b1qx

2

� �
�iqx

1

2
þ b1k

� �
b1
vg

l2
þ d

g

� �

2
666664

3
777775

d~vx

d~vz

d~y

2
6664

3
7775 ¼ 0;

where, d� ¼ A� 1

2
d with d = K(k2 � qx

2), b1 = bzg�1A2. The

solution to the above homogeneous system of equations, reveals
the penetration depth k�1. Note that we assumed that the
rotational dynamics of the director field are fast so we neglected
the unsteadiness of the director field in the bulk. Putting the
solutions in the boundary conditions, eqn (8) and (9), will

Fig. 3 Top: In terms of orientation and local growth rate (encoded by the
color of arrows), the active traveling wave is shown. We have chosen an
angle y0 = p/4 corresponding to a wave with maximum velocity. Here the
local growth density is encoded in the color by in which the orientation
vectors are drawn. Bottom: To see how a perturbation in the director field
can propagate, we have applied a small orientational fluctuation to the
middle cell. Cells are assumed to be contractile (puller) and their corres-
ponding flow pattern is shown by black arrows. As a result of a small
orientational fluctuation, a local velocity denoted by dv will emerge. In the
homeostatic picture, q�dv will give a pressure difference and it eventually
gives a gradient in growth rate. Taking into account the growth-mediated
torque, this will eventually provide an active source for traveling waves.
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give us:

d~y ¼ � iqx ~b; d~vz þ ~b
vg

l
¼ �io~b;

� iqxZ�d~vx þ kZþd~vz þ gsqx
2 þ Zþ

vg

l2

� �
~b ¼ 0;

Zkd~vx þ iZqxd~vz þ 2iqx
vg

l
~b� d�d~y ¼ 0:

(18)

Again, the above equations can be considered as a set of
homogenous equations incorporating the field amplitudes as
unknown variables. Looking for non-zero solutions for variables,
we will obtain a relationship that reveals the frequency of
oscillations. Up to the leading order of wave vector q, the
dispersion relationship reads as:

�io ¼ gslqx
2

Zþ
�vg xþ Z�

Zþ

� �
þ lK

2
ðA� 1Þ 1� z

Z

� �
� 1

� �
; (19)

where,

x ¼ ½2�gþ lK laðð1þ AÞ�g� 4ð�Z2 þ �z2 þ �ZÞÞ

þ 2�zA3lK lalb 1� Z�

Zþ

� �

þ 4�zA2lbð�z� �z2�vgla þ �zð1� �Z�vglaÞÞ�

� ½4�g� 8A2lalb�vg�z2 þ 2lK lað�4�zþ ð1þ AÞ�gÞ��1;

where dimensionless variables are defined as: lK = (cK/l), la = (ca/l),
lb = cb/l with cK = (K/gs), ca = (gs/al), cb = b and �g = g/Z+.

Before analyzing the growth-mediated instabilities, we note
that at the limit of %vg = 0, a passive instability can be observed.
As shown from the above relationship (setting %vg = 0), the
instability can arise from a competition between surface ten-
sion and bulk elasticity. For (A � 1)(Z � z) 4 (2Z/lK), this will
give instability. It should be noted that this instability is not a
general feature of passive systems. Here, the compressibility of
the fluid combined with the special choice of the ordered state
in which n0 is perpendicular to the boundary, triggers the
instability.

To analyze the growth-associated instabilities, we consider
the case where %vg a 0. It is seen that the elasticity, motility, and
growth-mediated torque, contribute to the instability through
their corresponding length scales denoted by cK, ca, and cb,
respectively. Among these different parameters, we investigated
the phase diagram of the system in terms of the speed of
growth %vg, particle asymmetry A and the strength of growth-
mediated torque b. The phase diagram of the system for a
special choice of parameters is plotted in Fig. 4. It is shown how
the asymmetry parameter of particles A, competes with growth
parameter %vg to result in either a smooth or rough boundary for
the system. Similar to the scalar case, there is always a thresh-
old growth speed %vg, beyond which the moving front gets
roughness. Slow growth with a speed less than this threshold
speed will result in a flat and smooth interface. Fig. 4 shows
how this threshold velocity behaves as a function of particle
asymmetry A and growth-mediated parameter b.

6. Discussion

We studied the dynamical instabilities in a growing system.
Considering the details of dynamical processes in the system,
there are a number of relevant time or length scales that may affect
the overall behavior of the system. The relaxational dynamics of
velocity and director fields that appeared in eqn (1), and time
scales corresponding to the active processes of growth and self-
motility, are the main time scales. In a typical micrometer-size
system that is the subject of our study, the Reynolds number is
very low meaning that the relaxation of the velocity field is
instantaneous and we can simply neglect any dependence on
time in the velocity field. To deal with the relaxational dynamics
of the director field, we kept a finite relaxation time for the
director field (corresponding to a finite g). In terms of length
scales, our model takes into account a number of different
length scales. As a result of friction with a substrate, the
hydrodynamic interactions are screened and l shows the corres-
ponding screening length. The elasticity of the bulk introduces
another length scale that is denoted by cK. Two other length
scales correspond to the motility and growth-mediated torque,
which are denoted by ca and cb, respectively. Our analysis shows
that for a scalar system, in the case where the orientational
degrees of freedom are neglected, all dynamical behavior is
limited to a boundary layer with a thickness l near the free
interface of the system. All variations at the bulk will rapidly
decay, but the fluctuations near boundaries can result in shape
instabilities at the interfaces. In contrast, for the vector case, the
case where the rotational degrees of particles play an important
role, nontrivial results can be observed both at the bulk and
interface. As a result of a phenomenological growth-mediated
torque, we observed an active wave that can propagate in the
bulk. The speed of this active wave is roughly proportional to
(bza/gG)q2. Increasing either the friction with the substrate or the
rotational friction of particles will decrease the propagation
speed. This wave can be considered as a wave pattern on the
pressure field in the system. As the pressure is proportional to
the growth rate, the active wave can also be considered a
propagating wave in the growth rate pattern. This kind of wave
might influence the overall dynamics of a growing colony.

Fig. 4 The phase-diagram of a growing boundary in a vector system is
plotted in terms of growth activity %vg and asymmetry parameter A. The
smooth phase corresponds to the case where the flat boundary is stable
and the rough phase corresponds to the case where the flat boundary is
not the stable solution (left: lK = la = lb = �g = 1, �z = 0.5; right: lK = la = �g = 1,
�z = 0.5, A = 0.7).
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The instabilities we studied in this work originate from two
main nonlinearities hidden in the dynamical equations. Apart
from the inertial nonlinearities that have been neglected due to
the condition of a small Reynolds number, the surface tension of
the interface and the inherent coupling in the growth-mediated
torque are the main sources of instabilities. Linearized stability
analysis enabled us to find the threshold of generic instabilities.
Such a linearization scheme is not able to find the amplitude of
diverging fields. We should emphasize here that it is necessary to
take into account both the nonlinear corrections and also the real
finite size effects to see how the unstable diverging fields saturate.
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Dev., 2018, 51, 111–119.

24 D. Dell’Arciprete, M. L. Blow, A. T. Brown, F. D. C. Farrell,
J. S. Lintuvuori, A. F. McVey, D. Marenduzzo and
W. C. K. Poon, Nat. Commun., 2018, 9, 4190.

25 A. Doostmohammadi and B. Ladoux, Trends Cell Biol., 2022,
32(2), 140–150.

26 R. Mueller, J. M. Yeomans and A. Doostmohammadi, Phys.
Rev. Lett., 2019, 122, 048004.

27 D. Boyer, W. Mather, O. Mondragón-Palomino, S. Orozco-
Fuentes, T. Danino, J. Hasty and L. S. Tsimring, Phys. Biol.,
2011, 8, 026008.

28 A. Trushko, I. Di Meglio, A. Merzouki, C. Blanch-Mercader,
S. Abuhattum, J. Guck, K. Alessandri, P. Nassoy, K. Kruse
and B. Chopard, et al., Dev. Cell, 2020, 54, 655–668.

29 M. Basan, J.-F. Joanny, J. Prost and T. Risler, Phys. Rev. Lett.,
2011, 106, 158101.

30 D. Zwicker, R. Seyboldt, C. A. Weber, A. A. Hyman and
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