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Hydrodynamics of a microhunter: A chemotactic scenario
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Inspired by biological chemotaxis along circular paths, we propose a hydrodynamic molecular scale hunter
that can swim and can find its target. The system is essentially a stochastic low-Reynolds-number swimmer with
the ability to move in two-dimensional space and to sense the local value of the chemical concentration emitted
by a target. We show that, by adjusting the geometrical and dynamical variables of the swimmer, we can always
achieve a swimmer that can navigate and can search for the region with a higher concentration of a chemical
emitted by a source.
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Propulsion mechanisms for microorganisms and artifi-
cial swimmers are subject to the exceptional constraints
of motion in low-Reynolds-number hydrodynamics [1,2].
Purcell’s scallop theorem illustrates very well how a set of
nonreciprocal body deformations is necessary to achieve a
net translational or rotational movement in simple systems
[3–10]. Experimental verification of the swimming motion
in systems with only a small number of internal degrees of
freedom has attracted interest in developing new artificial
swimmers [11,12]. Although, in biological systems, many
transport phenomena are dominated by diffusion, directed
motion is also important. The sperm cell, as a micrometer scale
hunter, uses beating flagella to swim toward its targets [13–16].
These targets are the egg cells in the fertilization process. A
concentration gradient of the emitted chemical by the source is
established in this chemotaxis phenomenon [17]. The physical
mechanism of chemotaxis in flagellated cells, such as sperm
with circular trajectories is usually described in the following
way [18]: The underlying chemical network of an active
stimulus-response system provides a concentration mediated
stimulus that periodically regulates the internal motion and
modulates the curvature of the swimming path. The input in
this signaling system is the local value of a chemical [19,20].
This scenario gives rise to a drift in the circular trajectories of
chiral flagellated swimmers [18,21].

In this paper, inspired by chemotaxis, we propose a
molecular scale swimmer or a hydrodynamic machine that
uses the navigation strategy presented in Ref. [18] to move.
This machine can navigate in two-dimensional (2D) space,
along the gradient of a stimulating chemical. We assume that
the chemical can activate a relaxation process in the swimmer
and initiate signals which change the internal motion and lead
the system to find the right track. We investigate the conditions
under which the swimmer can reach the region with higher
concentration of the chemical.

Consider a minimal hydrodynamic propeller composed of
two large and small spheres with radii R and a, where a < R.
These spheres are connected through a negligible diameter arm
that does not interact with the ambient fluid. Different internal
configurations of the system can be achieved by changing the
length and shape of the arm. As a specific case, we consider
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that the arm always stays in a 2D plane, as shown schematically
in Fig. 1. For further simplification of the model, we decrease
the number of internal configurations to three different states
denoted by states (1), (2), and (3). State (1) is a reference
state where two spheres are separated by a distance L. States
(2) and (3) are characterized by a distance ε and an angle �

with respect to the reference state (1), as depicted in Fig. 1.
The small sphere can jump between the denoted states along
the shown paths with a constant velocity v0, measured in the
reference frame of the large sphere. A complete cycle of the
motion fulfills the Purcell’s scallop theorem and eventually
leads the system to a new state with a net translational and
rotational displacement [2]. The motion is restricted to a 2D
plane that is characterized by the plane of the arm. To simplify
the description, we further assume that the radius of the small
sphere is much smaller than the other length scales of the
system, namely, R and L (a � R, a � L). In this case, the
motion of the small sphere can be regarded as a singular body
force located at the position of this sphere. Taking advantage
of this simplification and using the linearity of the Stokes
equation, we can describe the dynamics of the system for
a general internal motion. In the reference frame, which is
comoving and rotating with the large sphere, we denote the
position vector of the small sphere by r0(t). Denoting the
linear and angular velocities of the large sphere in a laboratory
frame by V and �, we can express the velocity field of the
fluid at a general point r in the comoving frame as

u(r) = −V − � × r + M · V + � × m + G(r,r0) · f, (1)

where f denotes the strength of the point force located at
the position of the small sphere. Here, the tensor M and
the vector m give the flow field due to the translational
and rotational motions of a moving sphere and are given
explicitly as M = 3

4
R
r

(I + rr
r2 ) + 1

4
R3

r3 (I − 3 rr
r2 ) and m = R3

r3 r.
The Green’s function of the Stokes equation for an infinite
flow bounded internally by a solid sphere with radius R is
denoted by G(r,r0). The explicit form of this Green’s function
has been calculated by Oseen [22]. Force and torque balances
of a self propeller system require that the total force and torque
acting on the fluid must vanish. The point force located near the
sphere has an image force with strength fi = (c1r̂0r̂0 + c2I) · f
with c1 = − 3

4 ( R
r0

− R3
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0

) and c2 = − 3
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, and I is the

unit matrix. This image force is located inside the sphere in the
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FIG. 1. (Color online) Two large and small spheres are connected
through an arm to construct a swimmer that can move in 2D space.
In a stochastic description of the motion, we assume that the small
sphere can be in one of the three distinct states as shown in the picture.

position given by r∗
0 = R2

r2
0

r0. A discussion by Higdon shows

that, in an evaluation of the force acting on the fluid, one should
carefully account for the image system [23]. In this case, the
force and torque balances read as follows:

f + fi + 6πηRV = 0, r0 × f + r∗
0 × fi + 8πηR3� = 0.

To finish with the dynamical equations, we should include
the prescribed form of the internal motion by the boundary
condition u(r0) = ṙ0. By having the force balance equations
and this boundary condition in hand, we can eliminate the
point force strength and can arrive at equations for linear and
angular velocities of the system and can obtain the velocity
of the large sphere as V = A · ṙ0 and � = B · ṙ0, where A
and B are two matrices in which the elements strongly depend
on the specific form of the internal motion given by function
r0(t) [24]. We denote the dynamical variables of the system
by x and θ , where x stands for the position vector of the large
sphere and θ measures the angle that the swimmer’s director
makes with the x axis. The swimmer’s director is defined as a
unit vector pointing from the position of reference state (1) to
the center of the large sphere. Note that ẋ = V, θ̇ = �. Now,
the differential changes of the swimmer’s variables in a general
jump from state (i) to state (j ) can be written as

�xij = R−1(θ ) · dij , �θij = αij , (2)

where R(θ ) represents the matrix for a rotation around the z

axis by the instantaneous value of angle θ . Let us consider
the case where the internal deformations are small, compared
to the average length of the swimmers, that is, ε � L. This
allows us to set up a perturbative expansion of the results. Up
to the leading order in ε and a, the differential rotations read
as follows:

α12 = −3

4

( ε

R

) ( a

R

) (
1 + L

R

)
sin �,

α23 = 3

2

( ε

R

) ( a

R

)(
1 + L

R

)
, (3)

and α31 = α12. For the leading order in ε and a, the displace-
ment vectors read as follows:

d12 =
(

δ1

δ2

)
, d23 =

(
0
δ3

)
, d31 =

(−δ1

δ2

)
, (4)
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R
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4

R

L

)
sin �,

and δ3 = −4δ2. The results are given for R � L. The scallop
theorem allows us to simply express the changes for reverse
jumps in terms of the forward jumps such that �xji = −�xij

and �θij = −�θji . We have assumed that all jumps happen
with a constant velocity v0. In this case, the time required for
jump 1 → 2 (3 → 1) is equal to τ1 = ε/v0 (τ3 = ε/v0), and
the time for jump 2 → 3 is equal to τ2 = 2 sin �ε/v0. The
trajectory of the motion for the swimmer moving in a cyclic
way (1 → 2 → 3 → 1) is a circular path with the curvature
given by κ−1

0 = (2δ2 + δ3).
To construct the stochastic model, we denote the probability

of the system to be in state (i) by Pi . The transition rate
for stochastic jump from state (i) to state (j ) is denoted
by ωij . The rates for the internal conformational changes,
in general, depend on the temperature of the fluid and the
detailed internal activity of the system. The dynamics of this
stochastic system is governed by the Fokker-Planck equations
as Ṗ1 = ω31P3 + ω21P2 − (ω12 + ω13)P1 and Ṗ2 = ω32P3

+ ω12P1 − (ω21 + ω23)P2, where the dot symbol denotes the
time derivative; also note that the probability conservation
implies that P1 + P2 + P3 = 1. The differential change of the
displacement per unit time for this stochastic system at a mean
field level can be written as

dx
dt

= P1 (ω12�x12 + ω13�x13) + P2 (ω23�x23 + ω21�x21)

+P3 (ω31�x31 + ω32�x32) ,

and a similar equation for the rate of change of θ while
we replace all �xij ’s with αij . For a system that is in the
thermodynamic equilibrium, the transition rates for all jumps
are symmetric (ωij = ωji), and the time average velocity of
this system is zero. If, for any reason, the detailed balance
violates the internal conformational changes, the system will
behave like a circle swimmer. As an example, let us assume
that the rates for all clockwise jumps are equal such that
ω12 = ω23 = ω31 = ω0 and all the other counterclockwise
jumps are set to ω0 + δω. In this case and for small δω, the
trajectory is a circle with the radius of curvature given by
κ−1 = (δω/ω0)κ−1

0 , where we have already defined κ0.
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Now, let us consider a fluid medium occupied by a
very low concentration of chemical attractants given by
ρ(x). The low concentration assumption makes sure that the
hydrodynamic properties of the medium are not affected by
this chemical. This chemical can drive the system into a
nonequilibrium concentration by affecting the internal con-
formational changes. Inspired by the chemotactic navigation
in biological microorganisms, we assume that there is a
density sensing mechanism in the system. In the signaling
network of the chemotactic systems, a dynamical mechanism
is capable of producing an output signal that depends on the
time history of the stimulating properties. Local concentration
of the chemoattractants is the stimulating property in this case.
Mathematics of this adaptation mechanism can be modeled
by a relaxational process [18,25]. In this model, an internal
adaptation variable u(t) couples to a signaling function s(t)
through the following equations:

σ ṡ = ρu − s, μu̇ = u(1 − s), (5)

where the adaptation variable u measures the dynamical
sensitivity with the time scale of adaptation given by μ.
The relaxational process in a time scale controlled by σ will
produce a stimulus s(t) that can affect the dynamical variables
of the conformational changes that are already defined by
ωij . As an example, we consider an active swimmer with a
circular trajectory where all the counterclockwise rates are
different from the clockwise rates by a factor of r as ωccw =
rωcw = rω0. Now, we assume that the adaptation mechanism
controls only one of the rates as ω13 = s(t)rω0. Here, r �= 1
sets an asymmetry for the swimmer and drives it out of
equilibrium where, for a uniform profile of the concentration,
the system reaches a steady state with s = 1 that is a circle
swimmer. Now, we can investigate the response of a circling
swimmer, embedded in a gradient of chemical concentration.
Figure 2 (left) shows a typical trajectory for the swimmer
moving in a linear gradient of chemical concentration given
by ρ(x) = a1 + a2x. A typical trajectory of the swimmer for
motion in an environment occupied by a central gradient given
by ρ(x) = a3/|x|, with a3 > 0 is presented in Fig. 2 (right).

The different trajectories of the swimmer look like a circle
with a drifting center. For a linear gradient of concentration,
the overall drift lies along a straight line that makes an angle
ψ with respect to the direction of the gradient. This angle
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FIG. 2. (Color online) Two different trajectories for the swimmer
moving in a linear, left, and a central, right, gradient of the
chemical concentration. In the left example, angle ψ discriminates
different outcomes of the motion: motion toward the higher or lower
concentration. Parameters in both graphs are given by R = 1,ω0 = 1,
a = 0.2, L = 6.1, ε = 0.6, a1 = 20, a2 = 1, a3 = 8, σ = 0.1, and
μ = 10, for the left graph, � = π/12, r = 5, while for the right
graph, � = π/6, r = 10.
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FIG. 3. Different behaviors of the trajectories in a linear con-
centration, categorized in a phase diagram. The horizontal axis �

stands for a geometrical variable of the system, and the vertical axis
shows r , the anisotropy parameter that makes the individual swimmer
an active system. Drifting trajectories going toward the region with
higher (lower) concentration, are denoted by A (R).

discriminates the states moving toward the higher or lower
values of the concentration. For a slowly varying concentration
and for the above example, a perturbation analysis shows that
the drift direction reads as follows: tan ψ = − tan(θ1 + θ2),
where as shown in Ref. [18], the phase lag between the sig-
naling function s(t) and the trajectory oscillations θ1 involves
discriminating the trajectories and tan θ2 = [�2(2 + r) + 3 +
9r + 9r2 + 6r3]/[�3 + 3�r(2 + r)]. Here, the dimensionless
frequency (with ω0) of the oscillations is given by � =
(1/2)(r − 1)(a/R)(ε/R)(1 + L/R)(1 − sin �).

Interestingly, all the results are independent of the initial
orientations of the swimmer. To get a better feeling for
the results, we summarize the different trajectories in a
linear gradient of a chemical in a phase diagram presented
in Fig. 3. In this phase diagram, attractive states in the
regions with higher concentration and repulsive states from
the higher concentrations are denoted by the labels (A) and
(R), respectively. The horizontal axis � shows the geometrical
variable of the system, and the vertical axis r is the asymmetric
parameter that makes the individual swimmer an active system.
For r = 1, the swimmer is not moving, but for r �= 1, we have
an active circle swimmer that can respond to the chemical
concentration. This picture shows that, for an active system (a
system that can move in a uniform concentration), by adjusting
the parameters, it is always possible to construct a swimmer
that can navigate in the correct direction.

Here, we should emphasize that our model captures the
features presented in a generic description of Ref. [18] and
goes beyond that description by introducing a specific detailed
hydrodynamic structure that takes the interplay between the
geometry of the swimmer and the conformational rates into
account (Fig. 3). This proposed system could, in principle, be
realized artificially by synthesizing a molecular machine from
proteins with allosteric interactions that possess sensitivity in
their conformations [26]. From the biophysical world, such
drifting trajectories are being observed for sea urchin sperm
cells [19], but one should note that, in the bacterial propulsion,
the stochastic turning events are infrequent (∼0.1–1 Hz) and
can change the swimming direction. Here, we have neglected
the effects of thermal noise. The validity of this assumption
requires that the displacement, during a typical jump due to
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the thermal fluctuations, should be less than the swimming
displacement. This condition can be translated as a criterion
for the time of the jumps. Denoting the thermal energy by
kBT , we see that the thermal noise can be neglected for
transition rates that satisfy ω−1

ij � (6πη/kBT )(ε2a2/R). For
a micrometer size system with a ∼ ε ∼ 0.1R that works in
water, the effects of thermal noise at room temperature are
negligible for ωij � 103 s−1. In a concentration gradient, the
force due to the nonequilibrium concentration is also important
[27]. Here, we have neglected the effects due to this force. A
dimensional analysis shows that, for satisfying this condition,

the following criterion must hold: |∇ρ| � ω0(aεη)/(R3kBT ),
where ω0 is a typical value for the rates of conformational
changes.

In conclusion, we have introduced a micrometer scale
system that uses the physics of biological chemotaxis to
navigate along a preferred direction into a source.
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