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ABSTRACT

In this study, we experimentally examine the deformation of a micrometer-scale soft membrane in response to a periodic shear flow. We
fabricate long and straight cylindrical-shaped soft microtubes from lipid bilayers as part of this study. A microtube with a diameter of about
1–5 lm is moved parallel to its longitudinal axes. At the same time, a polystyrene microbead, trapped by optical tweezers, is forced to stay
near the external surface of the microtube. We study the induced shape deformation in the microtube for different shearing parameters. The
effects related to the size of the bead, its distance to the surface of the microtube, and their relative speed are analyzed. The overall results
qualitatively demonstrate the impact of shearing on the shape of the soft membrane.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0215755

The hydrodynamic effects associated with the flows near flexible
surfaces and interfaces have long been the focus of classical studies in
fluid dynamics.1–9 The flexibility of the walls enables them to undergo
shape deformation in response to the motion of a nearby particle mov-
ing parallel to the interface. This softness of the interface and the mem-
branes introduces nonlinearity into the problem. One immediate
phenomenon corresponding to this shape deformation is the appear-
ance of a normal force or flow component perpendicular to a flexible
wall.10 Recently, there has been a renewed interest in exploring
hydrodynamic-induced effects near walls,11–15 their potential applica-
tions,16,17 and possible relevance in biofluid mechanics.18,19 Although
downscaling from macroscopic to microscopic experiments faced sig-
nificant practical challenges due to the smallness of the induced defor-
mations in the results compared to macro-scale experiments and the
existence of thermal fluctuations of the membrane boundary at this
scale,11 studying this phenomenon at the micrometer-scale realm is
important due to its relevance to numerous vital processes of flow
patterns near biological membranes. The cell membrane and other
lipid-bilayer structures living inside cells are flexible membranes that
are continuously affected by hydrodynamic flows. Understanding the
physics underlying the process of material transport in the confined

domain of living cells can help to develop efficient drug delivery
systems.20,21

In this study, we aim to experimentally investigate the
hydrodynamic-mediated shape deformations in a micrometer-sized
elastic membrane. To achieve this goal, we initially synthesized long
and soft cylindrical shape microtubes from lipid bilayers in an aqueous
media. The softness of these lipid bilayers can be attributed to their
surface tension and bending rigidity.22,23 Subsequently, we employed
optical tweezers to immobilize a polystyrene microbead and manipu-
late its motion in the vicinity of such a soft microtube. In this setup, we
have control over the relative distance and speed between the
microbead and the tube’s surface. Furthermore, we examine the effects
corresponding to the size of the micobead. We analyze the resulting
shape deformation of the microtube’s wall induced by the hydrody-
namic shear flow. One significant practical challenge encountered
when scaling down from macroscopic to microscopic experiments is
the smallness of the induced deformations in the results, compared to
the cases of macro-scale experiments.11 Nevertheless, our experimental
study qualitatively demonstrates that the deformation pattern of a
microtube as a result of an applied local shear flow is well observable.
We conclude our experimental study with a simplified scaling analysis
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that brings an intuitive picture, showing how normal deformation can
arise from a tangential shear.

In our experimental study, we want to investigate the response of
a flexible wall to a local shear flow. In particular, we aim to observe
how a bead moving parallel to a locally flat soft wall can result in nor-
mal stresses. Local deformations induced on the wall will be the experi-
mental manifestation of such normal stresses. We prepare long and
stiff microtubes from lipid bilayers. The surface of a microtube resem-
bles a flexible membrane. In order to exert localized hydrodynamic
shear force on the surface, one can consider a polystyrene bead that is
forced to move adjacent and parallel to the surface. As the relative
motion of the bead and the surface is important, we use an alternative
method in which the microbead is fixed by optical tweezers and the
tube is moving parallel to its longitudinal axes.

Figure 1(a) schematically shows the relative motion of an opti-
cally trapped microsphere near the upper boundary of a microtube.
When the sample is shifted to the left relative to the trapped particle
coordinate, the presence of the particle alters the stress profile of the
fluid around it, causing deformation of the microtube. In each experi-
ment, the particle is initially trapped and placed at the appropriate
depth near the microtube where the microtube edge appears sharp.
The microtube is laterally positioned at a specific distance, d, from the
microbead. The sample chamber is then moved by a piezo stage, con-
trolled by the computer. We applied a linear back-and-forth motion to
the piezo stage. During each experiment, the piezo movement is
adjusted so that the trapped particle and microtube experience a rela-
tive motion with constant speed. As seen from the Lab frame in which
the microbead is fixed, the tube moves along its longitudinal axes. To
measure the membrane’s deformation accurately, we developed a pro-
gram code for image processing to identify the membrane’s edge pixels
in recorded video frames, depicted as green lines in Figs. 1(b)–1(d)
(Multimedia view). In all our experiments, we consistently observed a
sinusoidal-like behavior just behind the bead, featuring both a mini-
mum point and a maximum point. To ensure a fair comparison across
all experiments analyzed under the same conditions, a portion of the
pattern with the greatest deformation between two extremes, marked
with D in Fig. 1(a), is fitted to a line. The slope of this line, denoted by
a, serves as the foundation for our subsequent investigations.

In the following, we will present the results of the hydrodynamic-
induced deformations of the tube. For more information about the
microtube preparation and experimental setup, refer to the before the
conclusion.

It is important to note that a variety of parameters significantly
affect the deformation of the soft membrane. These parameters include
temperature, the size of lipid microtubules, the size of microspheres,
their relative velocity, and the relative distance between the micro-
sphere and the membrane. In this study, we have employed a compar-
ative method to examine the impact of some of these parameters.
Specifically, in each experiment, we kept all parameters constant except
for one, which we varied.

It should be noted that the optical gradient force, arising from the
difference in refractive index between water and the membrane, has
the potential to deform the freshly grown palmitoyl-2-oleoyl-sn-glyc-
erol-3-phosphatidylcholine (POPC) membrane in water. To ensure
that any observed and measured deformations in the membrane are
solely due to hydrodynamic reasons and that the influence of optical
forces can be disregarded, we conducted additional experiments. These

experiments involved using an empty trap, varying laser power, and
adjusting the distance from the membrane. As a result, we observed
that the deformation caused by the gradient force is not visible at
intensities lower than 40 mW and distances greater than 1lm from
the membrane to the center of the laser focal point within the cham-
ber. Figure 2 shows a typical result of studying the effect of the pres-
ence of a moving trapped particle. As can be seen in this figure, when
an empty trap is moved in the vicinity of a microtube, the measured
slope shows a Gaussian distribution, which is the result of the thermal
fluctuation of the membrane boundary. At this distance, the gradient
force of the optical trap does not cause a specific deformation on the
membrane. However, with the same velocity and distance, when there

FIG. 1. (a) Schematic view showing the relative motion of an optically trapped
microsphere near the upper boundary of a microtube. Note that the trapped particle
remains stationary in the microscope’s field of view while the microtube moves with
respect to the particle. The radius and the relative speed of the bead are denoted
by a and v, respectively. The deformed shape of the upper portion can be character-
ized by two parameters, D and d, the longitudinal and lateral sizes of the deformed
region. The local slope of the deformed wall can be given by a ¼ d=D. (b)–(d) The
microscopic images showing the hydrodynamic induced deformations on the sur-
face of a flexible microtube. In each image, the motion of the piezo stage forces the
microtube to move along its longitudinal axes from right to left. The trapped micro-
particle remains close to the microtube. The green curve represents the result of
the image processing used to detect the near boundary of the microtube which is
then fitted to a line (red) to obtain the slope. The center of the microsphere is shifted
with respect to the center of the trapping laser focal spot (small black squares) due
to the drag force. Multimedia available online.
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is a particle in the trap, the graph of the slope shows a different defor-
mation with a reverse direction of the slope and a distribution of the
measured slope with two peaks.

After observing that an empty trap is not able to deform the tube,
we proceed and investigate the different parameters that can affect the
strength of the hydrodynamic shear force. Among different parame-
ters, we concentrate on the distance between the bead and the tube, the
size of the bead, and the relative speed of the bead and tube.

To study the effects of bead-tube separation, we choose a bead
having a diameter of about 3:21 lm and a long microtube with a diam-
eter of 2:9 lm. Then, we repeat the shearing experiment for three dif-
ferent relative positions given by d ¼ 2:8, 4.3, and 6:8 lm. Figure 3
shows the experimental results for the slope of the outer surface of the
tube as a function of time. The results are presented for a single period
of the relative motion of the tube and the bead. The angular frequency
of the piezo stage displacement, x, is used to make nondimensional
time. In addition to the dynamical variations of the slope, we also plot-
ted the histogram of the slope values. The histogram is calculated from
the numerical data collected from two cycles of piezo stage motion.

Some general features of the results in Fig. 3 can be distinguished.
First, a form of symmetry in the results for the first and second half
periods is expected to be observed. This is because the first and
second half periods of the motion correspond to the same relative
velocities of the bead and tube. This symmetry is reflected statistically
both in the dynamical data of the slope and its histogram. The slope
has the same maximum and minimum values within a complete cycle.
This symmetry ensures that the tube moves along its axes. The second
feature that is reflected in the time-dependent results for the slope is a
relaxation behavior between the first and second half periods of the
motion. At the end of the first half period of the motion, the piezo
stage changes its motion abruptly from a right to a left-moving
state. Owing to the dominance of viscous forces, the tube is not able
to respond instantaneously and it will take time to achieve its
steady state deformed shape. Some time-dependent processes related
to the dynamical responses of the ambient fluid and the tube may con-
tribute to this relaxation. We can clearly observe this relaxation time in
our data. However, regarding our limit of accuracy, the results for
relaxation time do not show any clear dependence on bead-tube
separation.

The results in Fig. 3 show that the deformation pattern of the
tube depends on the distance by which the bead and the tube are sepa-
rated. A higher separation corresponds to a smaller slope. For a separa-
tion of d ¼ 2:8 lm, the outer part of the tube experiences a slope of
about a � 0:1. This shows that a bead moving near a tube will produce
much stronger normal stress on the tube in comparison with a bead
moving at far distances.

The size of the bead and its relative speed (with respect to the
tube) are two other main parameters that can affect the normal hydro-
dynamic stress exerted on the tube. Figures 4 and 5 show the depen-
dence of deformation slope on bead size and its relative speed,
correspondingly. Similar to Fig. 4, two features of symmetry and relax-
ation time can be apparently observed here. From a simple physical
intuition, we expect to observe stronger hydrodynamic effects for large
and fast-moving beads. Figure 4 shows that a bead having a radius of
2:37 lm induces a larger slope on the tube rather than what is induced
by a bead having a diameter of about 1:09 lm. Figure 5 shows the
results of deformation for various relative speeds of the bead. Within
our experimental precision, a relative resolution between different

FIG. 2. The slope of the deformation of the boundary just behind the trapping point
as a function of the piezo stage oscillating phase in an oscillatory motion near the
membrane, along with the corresponding histogram. The slope of the deformation is
measured by linearly fitting the near-boundary region of the membrane for a trapped
particle (red triangle) and an empty trap (green square). The distance from the focal
spot to the membrane as well as the oscillating velocity are held constant at d
¼ 3:86 0:4lm and v ¼ 40 lm=s, respectively, for both measurements, while the
particle radius is 2a ¼ 4:74 lm. Each data point in the graph is an average of the
measured slopes for two cycles of data.

FIG. 3. The effect of the distance between the moving particle and the membrane:
The slope of the deformation as a function of the piezo stage oscillating phase at a
constant speed near the membrane, along with the corresponding histogram. The
trapped particle size and the oscillating velocity are held constant at 2a ¼ 3:21 lm
and 40 lm=s, respectively, while the distance from the focal spot and the mem-
brane varies as d ¼ 2:8lm (red triangle), d ¼ 4:3lm (blue circle), and 6:8lm
(green square). The curves in the histogram graph represent the normal kernel
function.

FIG. 4. The effect of particle size on the membrane deformation. The slope of the
deformation as a function of the piezo stage oscillating phase, along with the corre-
sponding histogram, in an oscillating motion near the membrane. The distance
between the focal spot and the membrane, as well as the velocity, is held constant
at d ¼ 3:7lm (average distance during a period) and v ¼ 40 lm=s, respectively,
while the particle size varies as a ¼ 2:37 lm (red triangle), a ¼ 1:61 lm (blue cir-
cle), and a ¼ 1:09 lm (green square). The curves in the histogram graph represent
the normal kernel function.
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speeds can be seen. As it is expected, higher relative speeds can induce
a relatively larger deformation.

After presenting our experimental results, we present a theoretical
insight to address the physical mechanism behind membrane deforma-
tion in the following paragraphs. The complicated geometry of a solid
sphere moving near an elastic tube does not allow for obtaining an ana-
lytic solution to the corresponding elastohydrodynamic problem. To
have a qualitative understanding of what happens when a solid body is
moving near a soft wall, we consider a simplified geometry in which a
very small and solid sphere moves near a locally flat and soft wall.
Consider a rigid sphere with radius amoving with velocity v, parallel to
a soft wall having tension c and bending rigidity j. Let us assume that
the membrane is initially flat and the center of the sphere has a distance
d from the undeformed wall. We denote by g and q, the viscosity and
density of the ambient fluid. For our purpose, the Reynolds number,
the ratio of inertia to viscosity, which is denoted by Re ¼ qva=g, is
small. Hence, the governing equations for the fluid flow reads as24

gr2u�rp ¼ 0; r � u ¼ 0; (1)

where u and p stand for velocity and pressure field in the fluid. The
velocity field should be subjected to the convenient boundary condi-
tions. At the steady state where all fields are time-independent, the
velocity on the sphere is given by v and it should vanish on the soft
wall. Furthermore, the component of the stress tensor should obey the
continuity rules on the soft wall. More importantly, the normal com-
ponent of the stress tensor should be balanced by the elastic forces of
the wall. These elastic forces depend on elastic parameters like c and j
and also they depend on the deformation pattern of the wall. This will
result in a nonlinear coupling between the flow and the shape of the
wall. The steady-state and instantaneous solution to the above-
mentioned equations show that a moving sphere near a soft wall
requires an inevitable deformed shape for the elastic wall. Denoting by
z ¼ fðx; yÞ, the deformed shape of the membrane in Monge represen-
tation, it will satisfy the following differential equation:10,11

cr2 � jr4
� �

fðx; yÞ ¼ 6
5
gvk

r‘4

h2ðr2 þ ‘2Þ2 cos/; (2)

where r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, ‘ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2aðd � aÞp
, and / shows the polar angle

in the xy-plane. The expression at the right-hand side of the

above-mentioned equation stands for the pressure distribution corre-
sponding to a moving sphere near a soft and flat wall. A dimensional
argument is useful to gain insight into the solutions of the above differ-
ential equation. As a result of azimuthal dependence, cos/, asymmet-
ric deformation of the membrane is expected to be observed. A trough
in the membrane just in front of the sphere (/ ¼ 0) and a peak at the
backward direction (/ ¼ p) are the main geometrical features of the
deformed membrane. In a qualitative picture, similar to what is
depicted in Fig. 1(d), we denote the extent of normal and lateral defor-
mations of the membrane by d and D. Here, D shows how far the
trough and the peak are apart on the membrane, and d is simply the
height of the peak. The right-hand-side of Eq. (2) shows that ‘ is a
length scale over which the stresses from the fluid acting on the mem-
brane relax to zero. This will naturally result in the extent of the lateral
deformation of the membrane being about D � ‘. Putting this result
into Eq. (2) asr � ‘�1, r � ‘ and neglecting the term proportional to
c, we obtain d � ðgv=jÞa5

2d
1
2. Just behind the sphere, the membrane

has a maximum slope in the polar direction / ¼ 0 that is given by
a � d=D. This slop can be written as

a � gva2

j
1þ O

a
d

� �� �
: (3)

Two considerations can help us to adapt this result for the case of a
bead moving near a tube. First, note that the geometry of a tube intro-
duces a new length scale R, the diameter of the tube, into the problem.
Also one may argue that the stiffness of a part of a lipid tube is not nec-
essarily the same as the stiffness of a flat layer. Regarding these consid-
erations, we can write a dimensional relation for the slope as

a ¼ gva2

jeff
f

a
d
;
d
R

� �
;

a
d
� 1 and

d
R
� 1; (4)

where the effective stiffness is denoted by jeff and dimensionless func-
tion f ðx; yÞ is used to take into account the role of different length
scales. For a typical experiment presented in Fig. 3, the relative speed is
about v � 40 lms�1, the size of the bead is about a � 3lm, and
a=d � 1. Using the viscosity of water that is given by g � 10�3 Pa: s
and considering the rigidity as jeff � 1000 kBT ,

15 we will obtain an
estimation for the slope as a � 10�1. This demonstrates that our scal-
ing analysis offers a comparable prediction to the experimental data.

In the above-mentioned dimensional analysis, for simplicity, we
focused on bending rigidity and ignored the role of tension. Since our
experimental analysis does not provide any insight into the role of the
membrane’s bending or shear elasticity, the above-mentioned analysis
can be considered a naive picture. It should be noted that a previous
theoretical study has concluded that for the motion of a sphere in the
centerline of an elastic tube,25 in-plane shear elasticity of the mem-
brane dominates over the bending mode.

In the following paragraphs, we will explain the microtube prepara-
tion and experimental setup to produce soft and long microtubes, resem-
bling elastic membranes, we adopted the commonly used method of
vesicle production from water-immersed lipid bilayers, with some modi-
fications. Contrary to the previous report where long microtubes were
produced by stretching vesicles using elongation flow,26 the method pro-
posed here involves bud formation in the presence of liquid flow, leading
to microtube formation along the flow. Initially, the desired lipid is dis-
solved in an appropriate organic solvent, such as chloroform or metha-
nol, to create a lipid solution. Subsequently, the solvent is gently
evaporated using a nitrogen gas stream or lyophilization (freeze-drying)

FIG. 5. The effect of the relative velocity between the moving microsphere and the
membrane on the deformation: The slope of the deformation as a function of the
piezo stage oscillating phase, along with the corresponding histogram, in an oscillat-
ing motion near the membrane. The distance between the focal spot and the mem-
brane, as well as the particle size, is held constant at d ¼ 3:5 lm average distance
during a period and 2a ¼ 4:74 lm, respectively, while the piezo velocity varies as
v ¼ 80 lm=s (red triangle), v ¼ 40 lm=s (blue circle), and v ¼ 20 lm=s (green
square). The curves in the histogram graph represent the normal kernel function.
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to form a thin lipid film on the container walls. In this study, to create
a microtube, the coverglass, serving as the substrate for the lipid film,
is initially washed. Then, the lipid-concentrated solution, palmitoyl-
2-oleoyl-sn-glycerol-3-phosphatidylcholine (POPC) purchased from
Avanti Polar Lipids, is applied to the cleaned cover glass in a narrow line
[Fig. 6(a)].

The sample chamber is constructed using the same coverglass
and a microscope slide, which is spaced apart by a narrow strip of
double-stick Scotch tape. The chamber, shown in Fig. 6(a), is prepared
by creating entrance and exit apertures for the flow of the aqueous
mixture onto the lipid coat. It is filled with a mixture of water and sus-
pended polystyrene microparticles, where a gentle water flow aids in
the budding process. This facilitates the accumulation of a significant
number of budding bubbles at the water–lipid interface. The pressure
gradient of water from the entrance to the exit of the chamber creates
a flow that stretches some of these lipid bilayer bubbles along the fluid
flow within the fabricated chamber. These stretched lipid bilayer bub-
bles eventually form tubular, soft lipid bilayers that have grown along
the water flow. The flow creates a pressure gradient from the entrance
to the exit of the chamber, resulting in the stretching of some lipid
bilayer bubbles along the flow. These stretched lipid bilayer bubbles
eventually form soft tubular structures that grow parallel to the water
flow within the fabricated chamber.

Figure 7(a) shows the process of microtube growth under the
microscope. The images, from left to right, show the boundary of the
lipid layer where there is no flow, flow causing membrane buds to
form, and then microtubes being formed along the flow. The flow
direction in these images is from bottom to top. Observations indicate
that the microtubes grow on a lipid coating with average flow velocities
higher than a few hundred micrometers per second. Once the micro-
tubes grow sufficiently, the entrance and exit of the chamber are
blocked using silicone glue, preventing any pure flow that can be
observed through microsphere fluctuation. Although the inlet and out-
let are fully closed, a gradual shrinking process can still be observed in
the stretched tubular POPC lipid bilayer. The rate of contraction of
microtubes varies at different points along the length of microtubes
and also varies between microtubes. On average, the contraction speed
is a few micrometers per second. However, when it comes to long
microtubes (over a few tens of micrometers) near their growth site, the
contraction speed is observed to be significantly slower for several
minutes, with minimal changes in their diameter and length.

To manipulate a microparticle near the membrane, we utilized
the optical tweezers setup. The optical tweezers setup used here
[Fig. 6(b)] is based on an inverted microscope (Olympus, IX-71) and is
similar to that described in Ref. 27. An expanded continuous wave
laser beam (Nd-YAG, Compass, Coherent, k¼ 1064nm) is introduced
to the optical path of the microscope through its side port. A phase
contrast objective lens (100�, Olympus, NA¼ 1.3, Ph3) focuses the
laser beam into the sample chamber. The sample chamber is mounted
on a 2D piezo stage (Physik Instrumente, PI-527.2 cl), which provides
2D positioning of the floated microtube relative to a trapped micro
bead with nanometer resolution. Colloidal solutions of polystyrene
(PS) beads with mean diameters of 2.18, 3.21, and 4.74lm, were
highly diluted in distilled water. The laser power was 35 mW at the
sample. We applied a linear back-and-forth motion to the piezo stage.
As a function of time, the displacement of the stage shows a symmetric
triangular pattern. To demonstrate this linear motion of the piezo stage
with time, we attached a particle to the cover glass and moved it in a
triangular manner. The movement of the particle’s center of mass due
to the piezo is shown in Fig. 6(c). The speed of this motion can be
expressed in terms of the amplitude of displacement and the durations
of a half-cycle period of the triangular pattern denoted by p=x. The
maximum displacement of the piezo stage during this triangular
motion near the membrane is 20 micrometers. The videos capturing
these movements are recorded at 50 frames per second using a CCD
camera (Pixelink, PL-B761U).

In conclusion, we conducted a series of experiments to demonstrate
how a shear flow can deform a soft wall. In our experiments, the shear
flow is produced by a polystyrene bead that is forced to move relative to
the surface of a soft microtube. Our experiments qualitatively show that
the normal deformation induced on the surface of a lipid microtube can
be adjusted by the strength of the shear flow. Due to practical difficulties
that limited our precision, we were not able to go beyond the qualitative
picture. In addition to the normal deformation of a soft wall, the normal
force on a bead moving near a soft wall is the subject of our interest. We
hope to measure such normal force in our future works.

The authors thank Farshid Mohammad Rafiee for his helpful
discussion.
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