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Abstract. Dynamics of an array of line defects interacting with a background elastic medium is studied
in the linear regime. It is shown that the inertial coupling between the defects and the ambient phonons
leads to an anomalous response behavior for the deformation modes of a defect-lattice, in the form of
anisotropic and anomalous mass and elastic constants, resonant dissipation through excitation of phonons,
and instabilities. The case of a single fluctuating line defect is also studied, and it is shown that it could
lead to formation of shock waves in the elastic medium for sufficiently high frequency deformation modes.

PACS. 63.20.Mt Phonon-defect interactions – 61.72.Bb Theories and models of crystal defects –
66.30.Lw Diffusion of other defects

1 Introduction

Topological defects have a wide range of interest in many
branches of physics. Vortices in superconductors, super-
fluids, and Bose–Einstein condensates, crystal defects in
solid bodies, topological excitations in spin systems with
continuous symmetry, and defects in liquid crystals are
famous examples of their ubiquity [1]. While they play a
pivotal role in our fundamental understanding of the su-
perfluid [2] and melting [3] transitions in two dimensions,
they are also important in determining the properties of
real materials—for example they are responsible to a large
degree for the plastic behavior of solid bodies [4,5].

Over the past decade, the problem of defect dynam-
ics has attracted a considerable attention mainly in de-
scribing the dynamics of defect–mediated phase transi-
tions [6–8], and in determining the physical properties of
vortex-lattices in type-II supercondoctors [7,9,10]. How-
ever, the interaction of defects with the excitations of the
elastic background, or phonons, is not taken into account
in these studies, because in the context of equilibrium sta-
tistical thermodynamics the defects are completely sepa-
rated from the phonons and there is no net coupling be-
tween the two degrees of freedom [11]. Quantized phonons,
however, are shown to interact with defects leading to in-
teresting effects [12–14]. The interesting observation of a
collection of quantized vortices in Bose–Einstein conden-
sates has also raised new questions about the dynamical
behavior of defects [15].

Here, we consider the classical dynamics of a collection
of line defects in the form of a regular array, which are dy-
namically fluctuating in an ambient elastic medium away
from thermodynamic equilibrium. The inertial coupling
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between the defects and the phonons of the background
medium is shown to lead to a plethora of novel effects in
the long time- and length-scale collective dynamics of the
defect-lattice: (i) The deformation modes of the defect-
lattice acquire an anomalous transverse mass, which di-
verges for modes that are in resonance with the back-
ground phonons, and a finite longitudinal mass. (ii) There
is a corresponding anomalous transverse elastic constant
in the direction parallel to the line defects, as well as a
corresponding finite longitudinal elastic constant. (iii) An
effective anomalous friction appears at the resonance, sig-
nalling the transfer of mechanical energy from the defect-
lattice to the elastic phonons. (iv) The defect-lattice be-
comes intrinsically unstable for frequencies higher than
the phononic resonance frequency for each wavevector,
due to the enhanced excitation of phonons. (v) The elastic
moduli in the perpendicular direction are anomalous, and
show an intrinsic instability for the shear modes. The case
of a single fluctuating line defect is also studied. It is shown
that deformation modes along the line defect with a phase
velocity higher than the bulk velocity of phonons lead to
the creation of shock waves. The propagation of phonons
in the periodic matrix of the defects is also studied, and it
is proposed that such arrangements may lead to formation
of frequency gaps in the phononic band structure.

2 The model

We consider a simple scalar elasticity described by the
field θ(r, t), which could be a component of the displace-
ment field in crystals, or the phase of the order parameter
for superfluids. The field is then conveniently decomposed
into two parts as θ(r, t) = θph(r, t)+ θdef(r, t): (i) a singu-
lar part θdef(r, t) that is a solution of the defect condition
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of the form
∮

dl · ∇θ = 2πn, where the integral is taken
over any closed path around the defect and n is the corre-
sponding winding number or the topological charge of the
defect, and (ii) a nonsingular part θph(r, t) that describes
the phononic degrees of freedom in the elastic medium.
While such a representation assumes a vanishing size for
the defects, we should keep in mind that in reality they
always maintain a finite core size, which is of the order of
the atomic lattice constant a in crystals. With the above
decomposition, we then consider an action as

A =

∫

dtd3r

[

ρ

2
(∂tθph + ∂tθdef)

2 −
J

2
(∇θph + ∇θdef)

2

]

,

(1)
where the coefficient ρ is a (linear) mass density, and J is

a stiffness coefficient. The quantity c =
√

J/ρ is the phase
velocity of sound waves in the medium.

3 Many defect system

To study the many-body effects in the dynamics of line
defects mediated by phonons, we consider a system con-
sisting of many line defects (with n = 1) that are arranged
on a triangular lattice (when at equilibrium) as shown in
Figure 1. In this case the defect field is given as

θdef(r⊥, {Q(R, z, t)}) =
∑

{R}
arctan

y − Q2(R, z, t)

x − Q1(R, z, t)
(2)

where r⊥ = (x, y), and Q(R, z, t) =
(Q1(R, z, t), Q2(R, z, t)) is the two dimensional posi-
tion vector of the core of a line defect in the x-y plane,
which is fluctuating around a point R of a regular two
dimensional lattice (see Fig. 1). The defect field has
a singular nature and we should be careful in dealing
with it. It’s easy to define the Fourier transform for the
derivatives of defect field as follows:

θ̇def =

∫

d3k

(2π)3
dω

(2π)
ei(k·r−ωt)g(k, ω) (3)

∂zθdef =

∫

d3k

(2π)3
dω

(2π)
ei(k·r−ωt)f(k, ω) (4)

∇⊥θdef =

∫

d3k

(2π)3
dω

(2π)
ei(k·r−ωt)P(k, ω) (5)

where the kernels are defined by:

g(k, ω) = −ic
ẑ ∧ q

q2

∫

dzdte−i(kzz−ωt−q·Q) dQ

dt
(6)

f(k, ω) = −i
ẑ ∧ q

q2

∫

dzdte−i(kzz−ωt−q·Q) dQ

dz
(7)

P(k, ω) = d
ẑ ∧ q

q2

∫

dzdte−i(kzz−ωt−q·Q) (8)

in this notation k = q+kz ẑ is the three dimensional wave
vector. Note that because of the singular nature in defect
field, it’s gradient has a component perpendicular to q.

z

Q(t,z,R)
x

y

Fig. 1. Array of fluctuating line defects in an elastic medium.
The deformation modes of the defect lattice are coupled to the
phonons of the background medium.

The corresponding Euler-Lagrange equation for the
phonon field reads

[

∂2
t − c2∇2

]

θph(r, t) =

−
[

∂2
t − c2∂2

z

]

θdef(r⊥, {Q(R, z, t)}). (9)

Note that ∇2
⊥θdef = 0. The above equation implies that

the system of fluctuating defects acts as a complicated
source for phononic waves—each defect can transmit or
absorb phonons from the medium during its motion. We
will see below that the net result of this coupling is a
dissipative effect in which the moving defects lose their
energy in the form of phonon radiation.

To study the collective dynamics of the defects in the
presence of phonons, we should eliminate the phononic
degrees of freedom in the action, and obtain an effective
action for the defect degrees of freedom {Q(R, z, t)}. For
this purpose, we assume that the line defects are only
slightly distorted from their equilibrium configurations,
so that their positions can be described as Q(R, z, t) =
R + u(R, z, t) with u(R, z, t) being much less than the
defect lattice constant b. By using the definition of Fourier
transforms and solving the wave equation for the phonons
(Eq. (9)) perturbatively in the deformation field u(R, z, t),
we can obtain the effective action up to the leading order
as:

Aeff =
1

2

∫

q∈B.Z.

d2q

(2π)2
dkz

2π

dω

2π
χαβ(q, kz , ω)

× uα(q, kz , ω)uβ(−q,−kz,−ω), (10)

where

χαβ(q, kz , ω) = J
∑

G

{

[

GαGβ

G2
−

(qα + Gα)(qβ + Gβ)

(q + G)2

]

+
(ω2 − c2k2

z)
[

(qα+Gα)(qβ+Gβ)
(q+G)2 − δαβ

]

ω2 − c2k2
z − c2(q + G)2

}

(11)

and {G} represents the reciprocal lattice of the original
defect-lattice {R}. Note that the kernel consists of two
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contributions: (i) a term which does not depend on fre-
quency and comes from the usual long-range logarithmic
interaction between the line defects, and (ii) a term with
dynamical origin describing an additional interaction be-
tween the defects mediated by phonons.

The summation over all the reciprocal lattice vectors of
the two dimensional lattice in the above kernel is difficult
to perform exactly. However, we can study the long time-
and length-scale elasticity of the defect lattice by focus-
ing on the small frequency and wavevector limit in equa-
tion (11). This can be achieved by separating the G = 0
term and expanding the other terms in powers of q/G,
kz/G, and ω/(cG). In this case the summation over G

can be performed and we obtain an analytical expression
for the kernel to the leading order as

χαβ(q, kz , ω) = (MT ω2 − K
‖
T k2

z − K⊥
T q2)(δαβ − q̂αq̂β)

+ (MLω2 − K
‖
Lk2

z − K⊥
L q2) q̂αq̂β

+ iωζT (δαβ − q̂αq̂β), (12)

where the effective transverse and longitudinal mass den-
sities are given as

MT (q, kz , ω) =
ρ

q2 + k2
z − (ω/c)2

+
ρ

κ2
, ML =

ρ

κ2
, (13)

the effective transverse and longitudinal elastic moduli in
the parallel direction as

K
‖
T (q, kz, ω) =

J

q2 + k2
z − (ω/c)2

+
J

κ2
, K

‖
L =

J

κ2
, (14)

the effective transverse and longitudinal elastic moduli in
the perpendicular direction as

K⊥
T (q) = −

J

2q2
, K⊥

L (q) =
J

2q2
, (15)

and, finally, the effective transverse friction coefficient as

ζT (q, kz , ω) =
πJc2q2

|ω|
δ(ω2 − c2k2

z − c2q2). (16)

In the above, parallel and perpendicular are defined with
respect to the line defects, and the screening length κ−1

is defined as

κ−2 =
1

2

∑

G �=0

1

G2
≃

π ln(b/a)

G∗2 , (17)

where G∗ is the lattice constant of the reciprocal lattice,
which for a triangular lattice of line defects is given as
G∗ = 4π√

3b
. Note that the real (imaginary) part of the

above kernel is even (odd) in ω, and that the causality
of the response kernel is ensured as it is analytical in the
upper-half frequency complex plane.

The above results show that the dynamics of a de-
fect lattice in an elastic medium is anomalous. While the
longitudinal deformation modes acquire finite mass and
elastic modulus in the parallel direction due to coupling
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Fig. 2. Diagram of phononic dispersion relation defined via

Ω(q) ≡
√

ω(q)2 − c2k2
z = c|q − G| in a triangular lattice of

line defects, with Ω0 = cG∗ = 4πc√
3b

. The inset shows the first

Brillouin zone of the triangular lattice.

with phonons, the corresponding mass and elastic modu-
lus in the parallel direction for the transverse modes are
frequency and wavevector dependent, and diverge in the
small wavevector and frequency limit. Moreover, whereas
the transverse mass and elastic modulus in the parallel
direction are positive for ω2 < c2(q2 + k2

z), they diverge
when the frequency and wavevectors of the deformation
modes hit that of a possible phononic excitation in the
background. In this case the defect-lattice dynamics be-
comes dissipative—as manifested by the appearance of an
imaginary part in the response kernel that defines an effec-
tive friction coefficient—which corresponds to transfer of
mechanical energy from the defect lattice to the phonons.
For ω2 > c2(q2+k2

z), the transverse mass and elastic mod-
ulus in the parallel direction become negative, signalling
an instability in the defect-lattice due to the resonant
coupling with the background phonons. The transverse
and longitudinal elastic moduli in the perpendicular direc-
tion given in equation (15) are also wavevector dependent,
and they reveal an inherent instability in the deformation
modes that is related to the well-known instability of a
system of charges in electrostatics; often alluded to as the
Earnshaw’s theorem [10,16].

Another feature of the many defect system is that
the periodic arrangement of the defect lines on a lattice
changes the spectrum of phonons, as in the case of elec-
trons in metals. This is manifested in the singular points
(poles) in the dynamical term in the response kernel of
equation (11) whose structure determines the dispersion
relation for the phononic excitations. The dispersion re-
lation Ω(q) ≡

√

ω(q)2 − c2k2
z = c|q − G| should respect

the symmetry of the reciprocal lattice G. As an example,
the phononic dispersion diagram for the case of a triangu-
lar lattice of line defects is plotted in Figure 2. The unit

vectors for the triangular lattice are b(1, 0) and b(1
2 ,

√
3

2 ),
and the unit vectors for the corresponding reciprocal lat-

tice are G∗(
√

3
2 ,− 1

2 ) and G∗(0, 1), where G∗ = 4π√
3b

is the

lattice constant of the reciprocal lattice.
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While the band diagram in Figure 2 has no gaps, one
can argue that an interaction of the phonons with the in-
terior of the defects that changes the propagation velocity
of phonons from c to c/

√

ǫ(r) in the vicinity of the de-
fects [8] can produce a gap in the band diagram, similar
to the case of photonic crystals [18]. A simple calculation
(similar to the estimation of the gap for electrons in a
weak periodic potential [4]) then shows that such an in-
teraction can lead to frequency gaps in the zone boundary
of the order of ∆ ∼ cG∗(a/b), where a is the core size of
the defect [19]. This may suggest that a rather dense array
of defects may act as a “phononic crystal,” which could
be of potential interest for applications.

4 Single defect motion

It is also interesting to consider the case where all the
line defects are frozen (to straight lines) and only a single
defect is fluctuating, which can be achieved by assuming
that uα(q, kz , ω) does not depend on q. We can then com-
bine the restricted q integration in the first Brillouin zone
and the summation over the reciprocal lattice vectors G to
a free integration over q, and calculate the response ker-

nel χsl(kz , ω)δαβ =
∫

B.Z.
d2

q

(2π)2 χαβ(q, kz , ω). The integral

over q has singularity which has physical meaning. It de-
scribes the elementary excitations of system or phononic
dispersion relation which is Ω =

√

ω2 − c2k2
z = ±c|k|.

However we should note that the frequency response of
system should be causal. By replacing ω to ω + iǫ with
ǫ → 0+ we can restore the causality in time and remove
the singularity. This yields

χsl(kz , ω) = ρslω
2 − Kslk

2
z + iωζsl, (18)

with the effective linear mass density for a single line de-
fect given as

ρsl(kz , ω) =
π

2
ρ ln

(

ω2
D

|ω2 − c2k2
z |

)

, (19)

the effective elastic modulus as

Ksl(kz, ω) =
π

2
J ln

(

ω2
D

|ω2 − c2k2
z |

)

, (20)

and the effective friction coefficient as

ζsl(kz , ω) =
π2

2
ρ

(ω2 − c2k2
z)

|ω|
Θ(ω2 − c2k2

z). (21)

In the above, the Debye frequency ωD ≃ c/a is a high fre-
quency cutoff in the system, and Θ represents the Heavi-
side step function.

The effective mass density and elastic modulus for the
line defect are logarithmically larger than the nominal
mass density and stiffness of the material in the core of
the vortex, and they are also frequency and wavevector
dependent. While they are positive for all frequency and
wavevectors, they logarithmically diverge when ω = ckz,
and in particular in the limit ω → 0 and kz → 0.

5 Energy dissipation

In the case where the phase velocity of waves on the line
defect ω/kz is greater than the phonon velocity in the
system c, the response kernel in equation (18) develops an
imaginary part, which is a reflection of a transfer of me-
chanical energy from the fluctuating defect to the elastic
medium in the form of radiating phonons. This effect is
similar to the Cherenkov radiation, where a charged par-
ticle moving in a dielectric medium with superluminal ve-
locity (i.e. a velocity greater than the velocity of photons
in that medium) radiates electromagnetic waves.

The time-averaged energy dissipation rate for the fluc-
tuating line defect can be calculated as

P =

∫

dkz

2π

dω

2π
ζsl(kz , ω) ω2 |u(kz, ω)|2. (22)

To explicitly check that the dissipation is due to phonon
radiation, we calculate the rate of change in energy for the
phonon field as

dEph

dt
=

∫

d3r
∂

∂t
T00, (23)

using the 00-component of the stress tensor Tµν [17] that
can be calculated from the phonon field action in equa-
tion (1). The result comes out exactly equal to the dissi-
pation rate as given in equation (22) above.

To estimate the radiated power, we consider an ex-
ample in which the defect is undergoing a solid harmonic
motion described via u(kz, ω) = u0(2π)2δ(kz)[δ(ω +ω0)+
δ(ω − ω0)]/2. The time-averaged radiated power per unit
length from this oscillating line defect is then calculated
from equation (22) as P/L = π2ρu2

0ω
3
0/4.

6 Conclusion

In conclusion, we have shown that the dynamical interac-
tion of defects with phonons can lead to renormalization of
mass and dissipation, which is analogous to the radiation-
reaction force for electrons and their mass renormalization
due to their interaction with electromagnetic fields [20].

We are grateful to J. Sethna and A. Kossevich for very helpful
comments, and to S. Ramanathan for invaluable discussions
during the early stages of this work.
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