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Theoretical explanation 
of rotational flow in the liquid‑film 
motor
Ali Najafi1,2* & Reza Shirsavar3

A liquid film that is under the action of two electric forces, an external electric field parallel to the film 
and a lateral voltage difference applied to both edges of the film, exhibits a universal rotational flow. 
In this article, we revisit this phenomena by considering an idealized so‑called liquid‑film motor and 
provide a theoretical description of the underlying physical mechanism that is responsible for the 
rotation. Based on this theory, the external electric field induces a non‑uniform distribution of freely 
moving charges on the film. Then the internal field that is mainly resulted from the lateral voltage 
difference, will exert forces on induced charges and subsequently will result the rotational flow. We 
show, how the fields contribute in developing a universal flow pattern.

Fluid motion and flow pumping in small scale world, either in synthetic micro-fluidic devises or aqueous bio-
logical environments, have attracted many interests recent  years1,2. Among very diverse proposed methods for 
inducing flow in small scale, the so-called liquid film motor is one of the most interesting  ones3,4. In these experi-
ments, it is shown that as a result of two externally applied electric forces, a controllable rotational flow can be 
produced in a suspended liquid film. A wide range range of isotropic fluids with different electric permittivities 
and dynamical properties like viscosity and surface tension have been used to see the rotation.

It should be mentioned that such vortex like patterns have been observed in freely suspended films of both 
 Nematic5 and Smectic liquid  crystals6–8. It is shown that the vortex patterns in such liquid crystal experiments 
can be well studied in the frame work of electro-convection based instability  theory9. In addition to dielectric 
liquids, recent experiments showed interesting dynamical phenomena in fully conducting layer or droplet of 
metallic fluids where by application of electric field the metallic layer can start to move and a range of patterns 
will  form10,11. In such experiments, the electrostatic mediated changes in surface tension and corresponding 
electro-capillary effects are responsible for the motion.

In spite of different experiments that support the idea of liquid film motors, there are some theoretical descrip-
tions that consider different physical mechanisms for the observed rotation. Charge induction mechanism studied 
in two-dimensional  geometry12,13 and three-dimensional  geometry14 are among the proposed methods. In these 
works, numerical analysis are used to demonstrate the idea of charge induction mechanism.

Our goal in this article is to provide a theoretucal electro-kinetic based description that can capture the phys-
ics behind the observed rotational flow. Our description has common features with previously studied charge 
induction mechanism. We consider that the fluid motion is driven by electric forces in the medium where, the 
electric fields can simultaneously separate electric charges and enforce them to move. To develop a theoretical 
framework, we notice that in all experiments, the fluid is almost an electrically neutral solution that usually 
contains a kind of salt molecules. Ionization of such salt molecules, provides a number of freely moving electric 
charges in the liquid film. Depending on the experiment, ionic surfactant could be considered as another source 
of free charges in the system. Even pure water when interacting with atmospheric CO2 , could have a slight degree 
of acidity with carbonic acid which adds hydronium and bicarbonate ions to the fluid. For simplicity, we will 
only consider the contribution from the salt molecules and other types of ions can be easily added to the theory 
with no complexity.

In the following sections, we first introduce the model then we will provide the dynamical equations. Analytic 
solution for a very thin film and discussion about the role of physical characteristics of the fluid, will be presented 
at the two final sections.
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Model
Figure 1(left) shows the geometry of original liquid-film experiment where, a water film is suspended horizontally 
from a square-shaped frame. We denote by ℓ and � , width and thickness of the film, respectively. Two lateral parts 
of the frame are conducting electrodes those are subjected to an electric potential difference V in . In addition to 
this electric potential, an external electric field Eex , that is initially uniform and parallel to the film, is applied 
to the system. In a reference frame that is shown in Fig. 1(left), the liquid film is located at z = 0 , the external 
field is given by Eex = Eexŷ and the edges of the frame at x = ±ℓ/2 are conducting electrodes. Emergence of a 
rotational flow in a universal direction given by Eex × x̂ , is the main result of this experiment.

Here, we aim to provide a physical explanation of the details have been observed in the liquid-film motor. We 
present a minimal 2-dimensional model that is based on electro convection  theory15 and it takes into account 
the physical characteristics of the film in the limit of � ≪ ℓ . The film thickness � , enters into our 2-dimensional 
model as a parameter that relates the physical parameters of our 2-dimensional model, like density and viscosity, 
to the bulk properties of liquid.

We simplify the geometry and replace the squared shape frame by a simple and idealized circular electrode 
(frame) having radius R. Figure 1(right), shows this geometry. The electrodes are denoted by a boundary poten-
tial, that is given by:

where ψ is the azimuthal angle, as it is shown in the figure. We believe that this simplification does not change the 
main features of the real experiments but it will allow us to obtain analytical results for the potential distributions 
and it helps us to understand the underlying mechanism responsible for the fluid motion.

Dynamical equations
Denoting the 2-dimensional flow and pressure field of the fluid by u and P, the dynamics of the incompressible 
fluid at steady state, is governed by the following equations:

where η and ρ denote the viscosity and mass density (mass per unit volume) of a bulk liquid that the film is 
extracted from and ∇s stands for the in-plane projection of the gradient operator. In the above dynamical equa-
tions, the electric body force fb (force per unit area with in-plane components), is written in terms of surface 
charge density q = q+ + q− (charge per unit area) and surface electric potential φs . Here the surface charge 
densities of positive and negative charges are denoted by q+ > 0 and q− < 0 , respectively. Furthermore, the 
fluid flow is subjected to no-slip boundary condition at the edge of the solid frame.

It is worth mentioning that the role of surface tension is to compensate the gravity and it stabilizes the hori-
zontal configuration of this liquid film. For a non-fluctuating and flat film, surface tension does not contribute 
to the fluid motion and it is ignored in the above dynamical equations.

To determine the electric body force, A full knowledge about the electric potential distribution on and in the 
vicinity of liquid film is necessary. As there is no free charges at air, the electric potential φ satisfies a 3-dimen-
sional Laplace equation. This potential is subjected to boundary conditions on the electrodes, on the surface of 
film and at infinity as:

where ρ =
√

x2 + y2.

(1)Vin(ψ) = −
Vin

2
cosψ ,

(2)�ρ(u · ∇s)u = −∇sP + �η∇2
s u + fb, fb = −q∇sφs, ∇s · u = 0, u|frame = 0,

(3)∇2φ = 0, φ|∞ = −Eexy, φ(ρ ≤ R,ψ , z = 0) = φs(ρ,ψ), φs(ρ = R,ψ) = Vin(ψ),

Figure 1.  Left: schematic view of a liquid-film motor. A suspended liquid film is under the action of two 
electrical forcing. The first field is due to a voltage difference V in that is applied to the conducting electrodes 
forming two lateral edges of the frame. The second force comes from an externally applied electric field Eex , 
asymptotically parallel to the plane of the film. As a result of these applied fields, the liquid fluid will eventually 
flow rotationally. Right: An idealized symmetric geometry where the frame is replaced by a circular frame with 
radius R. In this case a potential distribution Vin(ψ) = −Vin

2
cosψ is applied to the frame
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Assuming that the surface potential φs(ρ,ψ) is a known function, the above problem is a Dirichlet boundary 
value problem and it will provide a unique solution for φ(ρ,ψ , z) . If we know the potential, we can obtain the 
charge distribution on the surface:

where ǫ0 denotes the vacuum permitivity.
Following this strategy in solving the equations, the surface potential is a key element that is still unknown 

variable. To provide information about the surface potential and close the governing equations, we note that at 
steady state, surface electric current densities associated with positive and negative charges satisfy the continuity 
equations as ∇s · J

±
s = 0 . Denoting by µ , the hydrodynamic mobility of charges, and considering the hydrody-

namic convection and thermal diffusion of charges, we can write the overall current densities (for both positive 
and negative charges) as:

One should note that, the electric current in this system is assumed to be conducted by ions. Electric conduction 
with small charges like electrons and protons, is neglected. Valence of ionic species (both positive and negative) is 
denoted by z and Q0 = 1.6× 10−19C stands for the fundamental charge. Furthermore, for simplicity we assumed 
that all charges have similar diffusion coefficient given by D. Additionally, we will assume that the system is very 
near to thermal equilibrium so that, we put D = µkBT . For spherical ions with size a, hydrodynamic mobility is 
given by: µ = (6πηa)−1 . Electrolysis near the electrodes is an inevitable fact that can change the above scenario. 
Considering this effect, one needs to take into account the local distortions of the flow near electrodes. But, here 
for simplicity we have neglected this effect.

Taking into account the incompressibility condition, we can arrive at the following equation for surface 
charges:

where, the left-hand side corresponds to the convection and the terms in the right-hand side, correspond to drift 
(electric conduction) and diffusion currents, respectively.

Equations (3), (4) and (6), form a complete set of strongly coupled equations that can capture the electrostatic 
variables, φ, φs and q, in our system. Using these fields, we can obtain the body force fb and insert it in Eq. (2) 
to finally obtain the flow pattern in the system.

As a very important assumption in the above formulation, we have neglected the charge exchange on the 
electrodes. This is an experimental fact that the current appears in the circuit which provides the voltage differ-
ence, has a typical value of µA . This negligibly small current observed in the circuit, can be assigned to possible 
charge exchange mechanisms on the electrodes that we have neglected.

Before proceeding further, we need to examine the relative importance of different transport terms. For a 
typical experiment we  have4:

Therefore, we can define and estimate two dimensionless quantities α and β , as:

where, we have assumed that the electric field inside the film, has the same order of magnitude as the electric 
field in the air. As it is reflected from this dimensional analysis, the conduction term is the most important term 
in charge transport in the film.

It is instructive to have an estimation of the Reynolds number Re , that is defined as the ratio of inertial effects 
to dissipative forces. Regarding the typical values of the parameters, we will have:

One should note that the length in which the fluid velocity varies, is replaced by ℓ , not � . This is due to the experi-
mental fact that no velocity gradient in film thickness has been observed. This result shows that both inertia and 
viscosity may play role in stabilizing a steady state profile for the flow pattern in this system.

Conduction dominated regime
Neglecting the effects of convection and diffusion and keeping only the conduction, we can present a simplified 
picture that can reveal the underlying physical mechanism responsible for fluid motion. In this case, the dynami-
cal equations (Eqs. 3, 4 and 6) read as:

(4)q = ǫ0(∂zφ|z=0+ − ∂zφ|z=0−),

(5)J
±
s = ∓zQ0µq

±∇sφs + q±u − D∇sq
±.

(6)(u · ∇s)q
± = µ

(

±zQ0∇s ·
(

q±∇sφs
)

+ kBT∇
2
s q

±
)

,

(7)
Eex ∼ 10

5 V

m
, Vin ∼ 10V, R ∼ ℓ ∼ 10mm, u ∼ 10

−2 m

s

� ∼ 10
−6

m, η ∼ 10
−3

Pa s, µ ∼ 10
11 m

Ns
, kBT ∼ 10

−21
J.

(8)α =
conduction

convection
∼

[Q0µ∇φs]

[u]
∼ 101, β =

conduction

diffusion
∼

[Q0φs]

[kBT]
∼ 105,

Re =
inertia

dissipation
∼

[ρℓu]

[η]
∼ 101.

(9)∇2φ = 0, q = ǫ0(∂zφ |z=0+ − ∂zφ |z=0−), ∇sq · ∇sφs = −q∇2
s φs,
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where q = q+ + q− denotes the net charge. In terms of φ and q, first two equations of the above set, are linear 
but, as it is reflected from the last equation, a nonlinear relation between charge density and surface potential is 
expected. At the following part and to solve the equations, we choose a strategy that benefits the partial linearity 
of the equations.

Assuming that the surface potential is a known variable and using the linearity of Laplace equation, we can 
decompose the potential and charge density into two parts as: φ = φI + φII and q = qI + qII , respectively. These 
two fields satisfy the Laplace equations with the following boundary conditions:

Now, we can present analytic results for fields φI and φII.
Solution to the Laplace equation for φI can be obtained in the oblate spheroidal coordinate  system16. Oblate 

spheroidal coordinate system is defined by variables (ξ , ζ ,ψ) . Here 0 ≤ ψ ≤ 2π measures the azimuthal angle 
around z-axis. Different values of ξ construct a family of confocal oblate spheroids having their geometric center 
at the origin and different values of ζ show a family of confocal hyperboloids. Defining ρ =

√

x2 + y2 , the oblate 
spheroidal and the Cartesian coordinates are related as:

As one can see, ξ = 0 defines a circular disk in x − y plane with radius R (liquid film in our problem). As a result 
of separability of the Laplace equation in the oblate coordinate, the electric potential will read as:

this potential corresponds to an induced surface charge on the disk that is given by:

As we see, charges are accumulated near the edges of the disk with strong divergence at ρ = R.
To solve the Laplace equation for φII , we note that this problem can be considered as a mixed boundary value 

problem where in part of the plane z = 0 (inside a circle with radius R), the potential is given while in the other 
parts of the same plane, the electric field is given (as a result of symmetry, electric filed should vanish outside 
the circle). Solution to this problem can be written as an integral over the Bessel’s  functions17. In cylindrical 
coordinates we will have:

where the coefficients obey the following integral equations:

here the surface potential is expanded as:

Finally, the surface charge can be written as:

Now, we are in a position to obtain the surface potential φs(ρ,ψ) . Along this task we need to solve the last equa-
tion in Eq. 9. Following the expansion presented in Eq. 15 for surface charge, we expand the charge distributions 
as:

In terms of the above mentioned expansions for surface potential and surface charge, we will have:

and

(10)
φI |∞ = −Eexy, φI |on the film = 0,

φII |∞ = 0, φII |on the film = φs(ρ,ψ).

z = R sinh ξ cos ζ , ρ = R cosh ξ sin ζ , tanψ =
y

x
, 0 ≤ ξ ≤ ∞, 0 ≤ ζ ≤ π .

(11)φI (ρ, ξ) = −
2

π
ρEex

(

tan−1(sinh ξ)+
sinh ξ

1+ cosh2 ξ

)

sinψ ,

(12)qI (ρ,ψ) =
8ǫ0

π
Eex

ρ
√

R2 − ρ2
sinψ .

(13)φII (ρ,ψ , z) =
∑

n

∫ ∞

0
dke−kzJn(kρ)

(

An(k) sin nψ + Ān(k) cos nψ
)

, z ≥ 0,

(14)
{ ∫

dkJn(kρ)An(k) = φsn 0 ≤ ρ ≤ R,
∫

dkJn(kρ)kAn(k) = 0 R ≤ ρ ≤ ∞,

{ ∫

dkJn(kρ)Ān(k) = φ̄sn 0 ≤ ρ ≤ R,
∫

dkJn(kρ)kĀn(k) = 0 R ≤ ρ ≤ ∞.

(15)φs(ρ,ψ) =
∑

n≥0

(

φsn(ρ) sin nψ + φ̄sn(ρ) cos nψ
)

.

(16)qII (ρ,ψ) = 2ǫ0
∑

n

∫ ∞

0
dkkJn(kρ)

(

An(k) sin nψ + Ān(k) cos nψ
)

.

(17)q(ρ,ψ) =
∑

n≥0

(

qn(ρ) sin nψ + q̄n(ρ) cos nψ
)

.

∇2
s φs =

∑

n

(

D
2φsn sin nψ +D

2φ̄sn cos nψ
)

,
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where D 2f = f ′′ + 1
ρ
f ′ − n2

ρ2
f  and f ′ = df /dρ.

Substituting the above expansions in the relation q∇2
s φs = −∇sφs · ∇sq , we will arrive at hierarchal equations 

that relate different orders of φsn and qsn to each other. Such equations can help us to find the terms that appear 
in expansions given in Eqs. 15 and 17.

Following the above procedure, we can study in details the first two non-trivial terms. We will obtain the 
following results:

and the potential φ̄s1 satisfies:

As it is seen, this equation needs some cares about the singularities at ρ = R and ρ = 0 . We can analyze the above 
equation in two different regimes of ρ ∼ 0 and ρ ∼ R . The asymptotic equations read as:

Considering the asymptotic solutions for the potential and using the fact that potential should be continuous 
everywhere, we can obtain a unique solution that is approximately valid everywhere. Solution to these equa-
tions read as:

where we have demanded that the asymptotic solutions matches at ρ = R/2 . In Fig. 2(left), potential distribution 
is plotted. As one can distinguish, deviation from the linear behavior get much impact very near to the edge of 
film.

Flow field
Using the first order results for the surface distribution of charge and potential from previous part, we can obtain 
an analytic result for the body force that is acting on the fluid:

where z = (1− ρ
R ).

∇sφs · ∇sq =
∑

n,m

(

φ′
sn sin nψ + φ̄′

sn(ρ) cos nψ
)(

q′m sinmψ + q̄′m cosmψ
)

+
∑

n,m

nm

ρ2

(

φsn cos nψ − φ̄sn(ρ) sin nψ
)(

qm cosmψ − q̄m sinmψ
)

,

(18)q̄0 = φ̄s0 = q̄1 = φs1 = 0, q1 =
8ǫ0Eex

π

ρ
√

R2 − ρ2
,

φ̄′′
s1 +

2R2 − ρ2

ρ(R2 − ρ2)
φ̄′
s1 −

2

ρ2
φ̄s1 = 0, φ̄s1(ρ = R) = −

Vin

2
.

(19)

{

φ̄′′
s1 +

2
ρ
φ̄′
s1 −

2
ρ2
φ̄s1 = 0, ρ ∼ 0,

φ̄′′
s1 +

1
2(R−ρ)

φ̄′
s1 −

2
R2
φ̄s1 = 0, ρ ∼ R.

(20)

{

φ̄s1 ∼ − 3
5Vin

ρ
R , ρ ≤ R/2,

φ̄s1 ∼
Vin
2

(

−1+ 25/2

5 (1− ρ/R)3/2
)

, ρ ≥ R/2,

(21)fb =
8

π
ǫ0Eex

Vin

R

ρ
�

R2 − ρ2







3
5 sinψ cosψ ρ̂ − 3

5 sin
2 ψ ψ̂ , ρ ≤ R/2,

3
√
2

5 z
1
2 sinψ cosψ ρ̂ − 1

2
R
ρ

�

1− 2
2
5

5 z
3
2

�

sin2 ψ ψ̂ , ρ ≥ R/2,

Figure 2.  Left: Contribution to the surface potential φ̄s1/Vin is plotted in terms of ρ/R , distance from the 
center. Right: Angular component of force fψ = fb · ψ̂ scaled by f0 = (8ǫ0/π)Eex(Vin/R) is plotted in terms of 
ρ/R at ψ = π/2
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Before studying the results for the flow pattern, we note that the force field is characterized by a force scale 
given by f0 = (8ǫ0/π)Eex(Vin/R) . This force density (force per unit area) when we divide it with the thickness of 
film � , will give the driving force (force per unit volume) of the system. For a typical experiment, f0/� ∼ 103N/m3

.
In attempting to use non-dimensional form of the Navier-Stokes equation for our problem, in addition to 

Reynolds number, another dimensionless number that measures the relative importance of body force to viscous 
force will appear. Denoting this dimensionless number by F , we see that:

The force density given in Eq. 21 has both radial and polar components. As a result of no-slip boundary condition 
on the edge of frame, we expect to obtain a 2-dimensional rotational flow that is bounded by the circular frame. 
In Fig. 2(right), we have plotted the polar component of this force in terms of ρ/R , the dimensionless distance 
from the origin. The force field vanishes at the center but it diverges at the boundary.

To obtain the flow pattern associated to the above force field, taking into account both radial and polar com-
ponents of the force, we proceed by numerically solving the Navier–Stokes equation. As long as the Reynolds 
number is not very high, we use a numerical approach based on finite elements method for solving laminar flow.

A typical example of the flow pattern obtained by numerical integration of the equations is shown in the 
inset of Fig. 3. Reflected from this figure, a circular flow pattern will be achieved at the steady state conditions. 
By averaging over angle, we have plotted the velocity at different radii. By scaling the velocity with its maximum 
value, we compare the results of our model with experimental data. From Fig. 3, a good agreement between our 
simplified model (continuous line) and the experimental values (dots) can be observed. As it is seen from our 
linearized theory, the maximum velocity appears to happen at a universal distance from center of rotation given 
by ρ/R ∼ 0.6 . This point is universal in a sense that it is controlled by two dimensionless numbers F and Re.

Intuitive picture
Following the proposed model and the approximate solutions that we have provided in previous section, we can 
present a very simple picture of the underlying physics that is responsible for the rotation of fluid. At first glance, 
it seems that the Nonlinearity of the equations does not permit us to superimpose the effects of two electric 
fields. But our method of solution, demonstrates that at leading orders, how a simple picture for the physical 
mechanism can be constructed.

The external field Eex , is responsible to separate positive and negative charges. As shown in Fig. 1(left), and 
consistent with our analytical result in Eq. 18, and for Eex > 0 , positive (negative) charges are mainly accumulated 
near the edge of the liquid-film at y = ℓ/2 ( y = −ℓ/2 ). The potential difference applied to the electrodes, will 
produce a surface electric field and this field enforce the fluid to move. For Vin > 0 , very near to the surface of 
liquid-film, the electric field will achieve a component that is roughly in x̂ direction. This field will exert electric 
force to the accumulated charges. This electric body force will enforce the fluid to move in directions denoted by 
arrows in fig. 1(left). These local movements of fluid parcels produced in the positions of accumulated charges, 
will result a fluid circulation in the observed direction.

(22)F =
body force

viscous force
∼

[fb]

[η∇2u]
∼

ǫ0EexVinR

�ηu
∼ 104.

Figure 3.  Experimental results (dots) and theoretical results (continuous graph and colored flow pattern) are 
shown. Speed of the fluid in terms of distance to the center of rotation is plotted. For a fixed distance, the speed 
is averaged over all angles. Both experimental (dots) and numerical (line) results are scaled by the maximum 
value of velocity um . Inset shows a snapshot of numerical solution to the flow equations taking into account 
the force field obtained from our theoretical results. Arrows show the direction of flow and colors, encode the 
strength of velocity. Other numerical values are given in the text
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Discussion
The geometry that we have considered is special in a sense that the external electric field is assumed to be per-
pendicular to the alignment of the internal voltage difference. For a more general case where the external field 
and the internal field have an angle � with respect to each other, we can simply expect to see a factor sin� that 
scales all of our results. As a main approximation in our theory, we have considered only the first terms ( n = 1 ) 
in expansions in terms of sin(nψ) and cos(nψ) . Total torque applied on the fluid is given by τ = ẑ ·

∫

d2rr × fb 
and this is the main quantity that controls the circular motion of the fluid. We think that higher order terms 
that have larger oscillations with angle ψ , will have less contribution into the total torque applied on the fluid.

A very important feature that is reflected from our theory is the universality of flow field. Direction of rotation 
is given simply with Eex × Ein where, Ein shows the alignment of applied voltage difference (it points from higher 
to lower applied voltage). Interestingly the flow profile is also universal, in a sense that the flow is characterized 
with a single force amplitude f0 . Instead of geometrical dimension of the frame R, no other length scale enters 
into the results. This universal profile is reflected in Fig. 2, where angular velocity (scaled by its maximum value) 
has a universal profile in terms of radial distance scaled by R. Experimental results with different fluids and 
different electric  forces4, show velocity profile that are in good agreement with the universal result have been 
obtained in this article.

In real films that has finite value of thickness, we should take into account the 3-dimensional structure of the 
film. In addition to � , electric permittivity of the fluid should enters into the formulation. This may change the 
universal picture that we have provided for the flow structure.

In this work we have studied the conduction dominated regime where diffusion and convection of ions are 
neglected. A very important advantage of this regime is that the final results for the fluid flow are independent 
from the concentration of salt molecules. The whole system is electrically neutral but induced charges, can locally 
deviate the system from the neutrality condition. Electric charges in the system are mainly induced by electric 
fields. Irrelevance of salt concentration have been proved with experimental verifications.

It should be mentioned that in some previous  works13, the conduction current that appeared in Eq. 5 is 
replaced simply by −σ∇sφs where σ stands for the bulk conductivity of the fluid. Such assumption neglects the 
contribution from spatial variation of the charge in the current. As a result of such approximation, the nonlinear 
term in Eq. 9 will be dropped and everywhere on the film, the surface potential will change linearly (linear with 
respect to ρ).

In summary, we have provided a theoretical model for liquid-film motor in the regime of negligible thickness. 
At the linear order, this theory provides a universal flow profile for the liquid. For a real film with finite thickness, 
we are working to see how such results are universal or not.
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