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A static and a dynamical model are introduced to study the physical properties of an elastic polymer
adsorbed on a rigid membrane. We analyze the detailed microscopic model for the adhesion problem and show
that in the force ensemble a critical force is expected. Forces smaller than the critical value are not able to peel
off the filament, while larger forces will cause the filament to completely desorb from the membrane. To
demonstrate the nonequilibrium properties of the moving states for forces larger than the critical value, we
present the linear response of the system in the form of a force-velocity relation. In addition, we use a very
simple short-range static model and obtain the equilibrium phases of the system in different cases where either
a fixed force or a fixed height can be applied at the end. For the fixed force the equilibrium phases arising from
the static model are in agreement with dynamical model. Forces smaller than the critical value are not able to
peel off the filament while the larger forces will cause the filament to completely desorb as in the dynamical
model.

DOI: 10.1103/PhysRevE.78.051802 PACS number�s�: 82.35.Gh, 05.10.�a, 87.10.Pq

I. INTRODUCTION

Development of atomic force microscope �AFM�, optical
tweezers, and other experimental techniques has opened a
new era in investigation of the mechanical properties of long
macromolecules �1,2�. Such experiments, which vary from
measuring the thermal fluctuations of biological charged
macromolecules to the adhesion or desorption properties of
polyelectrolytes, are able to give a clear picture of what is
happening at the microscopic level �3–8�. Adhesion of long
elastic macromolecules to membranes plays an important
role in understanding many problems in biophysics as well
as material science. There is also much experimental and
theoretical work studying the adhesion of vesicles in contact
with substrates �9�. Such investigations are important both
for applications and from fundamental point of view �10,11�.
Microtubules, actin filaments, and DNA double strands are
examples of adhering filaments which can adhere on either
cell cortex or synthetic substrates for in vitro experiments
�12�. Examination of the response of such adhering filaments
to forces of the order of piconewtons is a problem with
physical realization both in vivo and in vitro. These forces
can be exerted by an AFM tip or molecular motor proteins,
which are present inside living cells.

There are theoretical models based on the interaction be-
tween microtubules and cell cortex. Such interactions are
essential in describing the mechanics of cell division �12�.
Since the early studies of the adhesion problem, several au-
thors have devoted many contributions to this field �13�. Bell
was the first to define and use the adhesion mechanism to
study cell-cell interaction �14�. He proposed a detailed theo-
retical framework for the analysis of adhesion between two
cells or cells and surfaces. His model is based on an
attachment-detachment mechanism for the ligand and recep-
tor molecules on the cell surface.

Here we study a detailed microscopic model for polymer
adhesion in contact with a rigid membrane. We show that the
competition between filament elasticity and the adhering
forces will lead the system to different stationary states. The
resulting stationary states can be static or moving. In the
moving state the filament is detached with nonzero rupture
velocity. For this moving state, we calculate the linear re-
sponse function of the system.

The rest of the paper is organized as follows. In the next
section we present a detailed microscopic model for an indi-
vidual elastic polymer interacting with a rigid membrane.
Then we present the numerical solution of rupture dynamics.
In the equilibrium part we study the static limit with short-
range interactions. A summary and concluding remarks are
presented at the end.

II. MODEL

Figure 1 shows a schematic view of a semiflexible poly-
mer in the vicinity of a rigid membrane. Atomic bonds be-
tween the monomers of the polymer and molecular ligands
on the substrate are responsible for mediating the interaction
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FIG. 1. Schematic view of an elastic semiflexible rod attracted
by a rigid membrane. The rod is submitted to a vertical force at the
end. Inset shows the microscopic origin of the attraction.
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at the atomic level. An external force is applied to one end of
the polymer while the other end is fixed to prevent any mo-
tion at that end. We assume that the persistence length of the
polymer is much larger than its total length. This assumption
allows us to neglect the thermal fluctuations of the polymer.

We use the position vector R�s , t�, of the sth monomer to
show the parametric configuration of the polymer in space
and time. This polymer has total length denoted by L. For the
relevant time and length scales and water viscosity in a typi-
cal biophysical experiment, the Reynolds number is very
low. For this reason we can neglect any inertial effect in the
polymer dynamics �15�. To write the dynamical equation of
the filament we can go ahead and neglect the long-range
hydrodynamic interaction between different parts of the fila-
ment. In this case the overall dynamics of the polymer is
given by

�

�t
R�s,t� = � 1

��

t̂t̂ +
1

��

n̂n̂� · �−
�G
�R

+ fa�s,t� + fe�s,t�� ,

�1�

where G is the elastic free energy density of the filament,
fa�s , t� is the adsorbing force density due to the interaction
with the substrate, and fe�s , t� denotes any other external
force. The friction coefficients for motion in the transverse
and tangential directions are given, respectively, by �� and
��. The fact that the friction coefficients in the transverse and
tangential directions are different is a result of solving the
hydrodynamic equations for a cylinder motion with no-slip
boundary conditions �15�. Here, to simplify the calculations
we use a two-dimensional modeling where the polymer ge-
ometry is confined to a plane. We use a single bending
modulus � and write the total elastic free energy as

G =
�

2
�

0

L

ds C2�s,t� +
1

2
�

0

L

ds ��s,t��t�s,t� · t�s,t� − 1� ,

�2�

where C�s , t�= 	�2R�s , t� /�s2	 is the local curvature of the
filament and t�s� is a unit vector that is locally tangential to
the filament. The condition of nonextensibility of the poly-
mer is imposed by the Lagrange multiplier ��s�. The func-
tional derivative of the bending free energy gives the elastic
forces. By defining the energy density by G=
0

LG ds, we ar-
rive at the following equation:

�G
�R

= − ��C�s�Ċ�s� + �̇�s��t̂ + ��C̈�s� − C�s���s��n̂ , �3�

where the overdot indicates the derivative with respect to s
and the tension profile is defined through ��s�=��s�
+�C2�s�.

To determine the adsorbing forces, we choose a molecular
picture and introduce the molecular forces through the direct
interaction between monomers and the molecules on the sur-
face. These molecules could bind together and enforce the
polymer to adhere to the membrane. In this manner any
monomer could be in a bound or unbound state. Considering
the typical binding energy of molecules, which is compa-
rable with the thermal energy, thermal fluctuations are

present in bond formation. We can define the probability to
find a monomer in the bound state. Due to thermal fluctua-
tions, any attached monomer could detach at some rate
�16–18�. Denoting the probability of finding the sth mono-
mer in the bound state with nb�s , t� and the corresponding
probability to be in the unbound state with nu�s , t�=1
−nb�s , t�, we can write the following deterministic dynamical
equation for these probabilities:

�

�t
nb�s,t� = �onnu�s,t� − �offnb�s,t� , �4�

where �on and �off stand for the attachment and detachment
rates. Following Kramer’s theory the transition rates are
modified in the presence of external forces. Such modifica-
tions are due to the fact that the mechanical energy, which
depends on the external force, enters the probabilities of the
different states through a Boltzmann factor �19,20�. Now the
force-dependent detachment rate is given by

�off = �off�0�exp� fb�

kBT
� , �5�

where kBT is the thermal energy and � is a microscopic
length scale representing the distance between the bound
state and the energy barrier separating bound and unbound
states. When a molecule goes to the bound state, there is a
force fb�s� between two attached molecules. The force be-
tween attached molecules depends on the relative configura-
tions of the molecules. For simplicity, we consider the case
where the binding forces are modeled as perpendicular
springs: fb�s , t�=−kbŷ ·R�s , t�. Here we assume that the
spring constant for the harmonic interactions between at-
tached molecules, kb, is uniform along the whole polymer
length. Collecting all the descriptions above we can write the
adhesion forces as

fa�s,t� = nb�s,t�fb�s,t�ŷ . �6�

By simultaneous solution of Eqs. �1� and �4� with suitable
boundary conditions, we can determine the whole dynamics
of the polymer that is subjected to the external boundary
forces given by fe�s , t�.

In the rest of this paper we concentrate on the stationary
as well as equilibrium states of a polymer that is subjected to
as external force at its end, namely, fe�s , t�= f��s−L�ŷ.

III. NUMERICAL SOLUTION

So far we have formulated the problem of an adhering
filament subjected to an external force at its end. Here we
consider the dynamical response of this system. Equations
�1� and �4� govern the dynamical equation of this system. A
numerical solution of these equations reveals the filament
dynamics.

Defining a microscopic molecular length scale a and us-
ing a microscopic time scale a3�� /�, we go to nondimen-
sional equations. For this purpose we use � /a2 to make non-
dimensional forces. To estimate numerical values, we
consider a microtubule which is interacting with the cell
membrane. Such microtubules can form a spindlelike struc-
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ture which is responsible for the cell division. In this case we
choose a=1 	m, �=10−22 N m2, �on=�off�0�=1 s−1, kb
=10−6 N m−1, �=1 nm, T=300 K, ��=2�� =4
	 / ln�a /d�
=10−2 N s /m with 	=10−3 N s /m2, and d is the diameter of
the filament �12�.

By applying a constant force of the order of piconewtons
at one end of a completely horizontal rod, we study the dy-
namics of an adhering polymer. Letting the polymer reach
the equilibrium state, we see that there is a critical force as
shown in Fig. 2; for forces smaller than the critical value the
polymer cannot be peeled off. For this case the equilibrium
state is a completely attached filament. As the external force
goes beyond this critical value, there is a tendency to peel off
from the surface with a certain peeling velocity. The critical
force depends on different parameters, such as bond
strengths and rates. We will present a very simple description
for the critical force.

By applying a very small force deviation from the critical
value we can investigate the dynamical behavior of the sys-
tem. To demonstrate the nonequilibrium properties of the
moving states for forces larger than the critical value, we
present the linear response of the system in the form of a
force-velocity relation. To avoid numerical errors related to
the boundary effects of the polymer, we choose a long poly-
mer and investigate the peeling velocity at intermediate
lengths.

Figure 3 shows the numerical results for the peeling ve-
locity in terms of the small force deviation from the corre-
sponding critical values for different attachment rates. As we
can see, change of the attachment rate causes a change of the
response. For constant force deviations small attachment
rates correspond to small peeling velocities. This is a result
of the fact that the critical force also depends on the attach-
ment rate. The inset of Fig. 3 shows that large attachment
rates correspond to large critical forces.

IV. EQUILIBRIUM STATES

Let us consider the equilibrium state of a polymer inter-
acting with a solid membrane and subjected to different
boundary conditions at its end. Many theoretical works are
devoted to analysis of the stationary states of this system
�21�. We distinguish two general different classes of the
problem: height and force ensembles. In the height ensemble
we keep one end of the polymer at a constant height while in
the force ensemble a constant vertical force is applied to one
end of the polymer. In both cases the other end of the poly-
mer is fixed and attached to the membrane to prevent any
motion. Each case corresponds to different accessible experi-
mental situations.

In each category we use a simplified energy method to
investigate the equilibrium phases of the system. Actually, by
assuming a very short-range nature for the interaction with
the membrane, we can define a critical point along the poly-
mer that is the border line separating the attached and de-
tached parts of the polymer; we call this point the attachment
point. Now we can assign an adhesion energy proportional to
the length of the attached part of the polymer. There is a
competition between the external force that makes the poly-
mer bend and the adhesion energy that increases the adhe-
sion length. Analysis of the details of this competition will
reveal the different equilibrium states of the system.

A. Height ensemble

Here we study the equilibrium behavior of a semiflexible
polymer constrained by a fixed height at its end. Represent-
ing the angle between the local tangent to the polymer and x
axis with ��s� and introducing a Lagrange multiplier � to
enforce a constant height h at the end, we can write the free
energy functional of an elastic filament as
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FIG. 2. �Color online� Equilibrium shape of the filament, for
different values of the external force. We have chosen �on

=�off�0�=1 s−1. It can be seen that there is a critical force, below
which the whole of the rod is attached and beyond which the rod
completely peels off from the substrate.
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FIG. 3. �Color online� Linear response of an adhering polymer
to small force deviation from the critical value represented by plot-
ting the rupture velocity in terms of the external force. Inset: the
behavior of the critical force in terms of the attachment rate.
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E =
�

2
�

s0

1

�̇2ds − ws0 − ���
s0

1

sin���ds − h� , �7�

where the first term is the bending energy and the second
term stands for the adhesion contribution, representing the
short-range interaction with the substrate. Here w is the mac-
roscopic adhesion energy per unit length of the polymer and
s is the arclength along the rod. s0 is the length of polymer
that is attached to the membrane. The partial derivative with
respect to s is shown by an overdot. Physically, � is the
corresponding constraint force which makes a constant
height at the end.

For the next calculations we use dimensionless quantities
denoted by an overbar. The polymer length L, characteristic
force � /L2, and energy scale � /L are used to make nondi-
mensional quantities.

As one can see from Eq. �7�, the energy is a functional of
the ��s̄� and s̄0 variables. To determine the equilibrium shape
we should study the variation of this energy functional with
respect to these variables. Calculating the variation with re-
spect to s̄0, we get an equation that is actually a boundary
condition for the torque at the adhesion point, namely,

�̇�s̄0�=�2w̄ �20�. At the other hand, by calculating the varia-
tions with respect to ��s̄�, we arrive at a differential equation
for the polymer profile:

�̈ + �̄ cos��� = 0. �8�

We use the boundary conditions �̇�s̄0�=�2w̄, ��s̄0�=0, and
choose a particular value for the external torque at the end
�s̄=1� to solve the above differential equation and find the
equilibrium position of s̄0 and equilibrium profile for the fila-
ment, ��s̄�.

We need to investigate whether the derived equilibrium
states are stable or not. To answer the question of stability of
the equilibrium solutions we use another equivalent method.
First we assume that s̄0 is given, then, by using the boundary

conditions ��s̄0�=0, �̇�1�=0 �zero torque at the end� and not-
ing that 
s̄0

1 ds̄=1− s̄0, we can find the polymer profile in
terms of s̄0. Using this solution we can eliminate ��s� from
the free energy and express the energy in terms of s̄0:

Ē�s̄0� = �
0

��1� c + w − �̄ sin���
�2c − �̄ sin���

d� . �9�

In order to find the unknown coefficients we apply the con-
ditions of constant height and constant filament length in the
detached part:

�
0

��1� 1

�2�c − �̄ sin����
d� = 1 − s̄0, �10�

�
0

��1� sin���
�2�c − �̄ sin����

d� = h̄ . �11�

Now using the condition of zero torque at the end we see
that the angle at the end, ��1�, is related to the Lagrange

multiplier by c= �̄ sin���1��.

Figure 4 shows the energy of the filament �Eq. �9�� in
terms of the attached length s0 for different values of the
filament height at its end. We can see that for each value of
the height there is an equilibrium state with a well-defined
attached length. Regarding the energy landscape, this equi-
librium state is obviously stable. Increasing the height at the
end will decrease the equilibrium value of the attached
length. The inset of the graph shows the behavior of the
height versus the equilibrium value for the detached length
of the polymer.

B. Force ensemble

In addition to the height ensemble here, we consider the
case where a constant vertical force is applied at the end of
polymer. We use the same method of the previous section to
investigate the stationary states of this constant force case.
The total dimensionless energy of the filament can be written
as

Ē =
1

2
�

s̄0

L

ds �̇2 − w̄s̄0 − f̄ ȳ�1� . �12�

To incorporate the effects of the external force f , we have
inserted it through the mechanical work that is necessary to
displace the end point of the polymer from zero height to an
equilibrium height denoted by y�L�.

Minimizing this free energy with respect to the filament
profile, we arrive at the same differential equation given by
Eq. �8� in which � is replaced by f . We solve this equation
with required boundary �zero torque at the end� conditions
and eliminate the � field to obtain the energy as a function of
s0. Figure 5 shows the energy as a function of s0. As this
figure shows, our system does not have stable equilibrium
states with finite adhesion length. The energy profile has a
local extremum which is not a minimum. This equilibrium
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FIG. 4. �Color online� Total dimensionless energy of the fila-
ment versus the attached length of the filament, taking w=50.0 and
L=1. The graphs are plotted for different values of heights at the
end. Inset: height versus the equilibrium value of the length of the
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point is not stable and the system will go to a global mini-
mum that critically depends on the force value. For forces
less than a critical value, the stable state corresponds to a
case where the whole of the filament is attached to the mem-
brane �we call it complete adhesion� while for forces beyond
it the stable equilibrium state will be a detached state with
divergent detached length. This state corresponds to a com-
pletely peeled-off filament. In the previous section we inves-
tigated this moving stationary state in more detail.

These two ensembles are equivalent in the sense that the
thermodynamic free energies Eqs. �7� and �12� are connected
through a Legendre transformation. This means that a simple
mathematical transformation could also be used to obtain the
results for height ensembles directly from those of the force
ensemble.

Instead of applying zero torque at the end, we can con-
sider a fixed angle at the end. Following the same procedure
as described above, we can solve the differential equation for
the polymer profile and eliminate corresponding degrees of
freedom in free energy. The energy functional, which is not
reported here, shows that for f sin���1��w the energy plot
shows a stable equilibrium state with a finite length of the
detached part. For forces greater than this critical force, the
polymer will eventually go to the completely peeled-off
state.

V. CRITICAL FORCE

The physics of the critical force which usually appears in
problems with a stochastic nature is a challenging issue �22�.

Here in our model, inspired by the results of the equilibrium
calculations, we saw that the adhesion energy w is a measure
of the critical force �content of Fig. 5�. Here we try to un-
derstand the microscopic origin of the adhesion energy. In
terms of the microscopic parameters, the adhesion energy
can be approximated by the amount of mechanical work that
is necessary to peel off a connected bond. So we expect a
relation like

fc
0 =

1

a
�

0

�

dy kby
�on

�off + �on
. �13�

We have assumed that the stationary value of the binding
probability appears in the mechanical work as a weight func-
tion. Here a is the microscopic length scale representing the
distance between adjacent bonds on the membrane. This
length scale can have a value about the same as the micro-
scopic length scale defined by �.

Defining the dimensionless quantity �=�on /�off�0�,
we can express the result of the above integral in terms
of a polylogarithmic function as fc

0=−��kBT�2 /
kba�2�polylog�2,−��. For small attachment rates we can ex-
pand this result to reach fc

0=−��kBT�2 /kba�2���− 1
4�2

+O��3��. It is expected that the critical force is a character-
istic of the equilibrium phase diagram of the system and does
not depend on dynamic properties of the system. Here the
critical force depends on �, which is an equilibrium param-
eter.

However, we use the result of this simplified picture just
as a reference value for the critical force. Figure 6 shows the
critical force divided by this fc

0 versus the attachment rate. As
one can see for large attachment rates the above simple pic-
ture makes a better theoretical framework for the critical
force.
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VI. SUMMARY AND CONCLUDING REMARKS

We have presented a dynamical approach to study the
behavior of an elastic filament interacting with a rigid mem-
brane. We investigated the properties of the filament for two
different general categories, namely, force and height en-
sembles. The general aspects of filament dynamics in the
force ensemble are investigated numerically. The simulation
results shows that a critical force is expected. For forces
smaller than the critical value, the system reaches an equi-
librium state where the polymer is completely attached to the
substrate. When the strength of the external force is in-
creased, the system goes to a stationary state with a peeling
velocity. For large forces the equilibrium state is a com-
pletely peeled-off filament. To demonstrate the nonequilib-
rium properties of this moving state, we have presented the
linear response function of the system, in the form of a force-
velocity relation for very small force deviation from critical
force. Because of the equivalence of these ensembles, which
was mentioned before, the physical observations in the dy-
namic part are not sensitive to the nature of the external
force.

With a static phenomenological description we investi-
gated the equilibrium states of the filament. For the force
ensemble we found two different subclasses for the equilib-
rium phases: �a� For the case with zero torque at the end,
competition between the external force and the adhesion en-
ergy determines the equilibrium states. Small forces corre-
spond to complete adhesion while large forces correspond to
complete rupture; the critical force is the border between
these two states. �b� In the case with nonzero torque or fixed
angle at the end, the equilibrium state is a phase with a finite
equilibrium adhered length for the polymer. The results of
case �a� are in agreement with the dynamical model. For the
height ensemble, where the end point is fixed at a constant
height, the polymer will reach a stable equilibrium state with
finite attached length for the polymer.
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