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Multiple sequence alignment (MSA) is one of the basic and important problems in molecular
biology. MSA can be used for di®erent purposes including ¯nding the conserved motifs and
structurally important regions in protein sequences and determine evolutionary distance be-
tween sequences. Aligning several sequences cannot be done in polynomial time and therefore
heuristic methods such as genetic algorithms can be used to ¯nd approximate solutions of MSA
problems. Several algorithms based on genetic algorithms have been developed for this problem
in recent years. Most of these algorithms use very complicated, problem speci¯c and time
consuming mutation operators. In this paper, we propose a new algorithm that uses a new way
of population initialization and simple mutation and recombination operators. The strength of
the proposed GA is using simple mutation operators and also a special recombination operator
that does not have problems of similar recombination operators in other GAs. The experimental
results show that the proposed algorithm is capable of ¯nding good MSAs in contrast to existing
methods, while it uses simple operators with low computational complexity.

Keywords: Multiple sequence alignment; genetic algorithms; ¯tness function; genetic operators.

1. Introduction

Analyzing biological sequences is one of the important areas of study in biology. One

of the basic problems in this area is alignment of protein and DNA sequences. This

problem is called sequence alignment and when more than two sequences are to be

aligned, the problem is called multiple sequence alignment (MSA). There is no

polynomial time algorithm for solving MSA and several approximate methods have

been used to ¯nd near optimal solutions. MSA can be de¯ned formally as the fol-

lowing.1 Given n sequences S¼ fs1, s2, . . . , sng, de¯ned on alphabet A where each

sequences i has length of li. Let a new alphabet A0 ¼A U f−g, where \−" is a gap
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character. A new sequence set S0 de¯ned on A0 is called an alignment if the following

conditions hold:

(i) All sequences in S0 have the same length, l0, such thatmax1�i�nli � l0 � P
j lj.

(ii) Omitting gap characters, each sequence in S0 is equal to its equivalent sequence

in S.

(iii) If we align sequences in S0, there is no column containing all gap characters.

So we can consider a multiple sequence alignment as a matrix of n rows, each row

containing one sequence with extra gap characters. In the case of DNA sequences, the

alphabet A consist of four nucleotides (A, T, C, G) and in the case of protein

sequences the alphabet consist of twenty amino acids. If there are only two

sequences, the alignment is called a pairwise alignment, and if number of sequences is

more than two, the alignment is a multiple sequence alignment. Figure 1 shows some

examples of pairwise and multiple sequence alignment on DNA sequences.

The quality of an alignment of protein sequences is measured by alignment score,

which is a function of aligned amino acids scores. Amino acid alignment scores can be

gained from substitution matrices like PAM or BLOSUM. Usually a gap penalty is

considered for amino acids that aligned with gaps in other sequences. Alignment

score may be de¯ned as sum of scores of amino acid pairs aligned together, and a gap

penalty is usually decreased from this score. Some examples of alignment scoring can

be seen in Refs. 2, 3 and 4. As mentioned before, MSA cannot be solved in polynomial

time and using exact methods like dynamic programming for solving MSAs is not

computationally feasible. Therefore other methods are used for ¯nding approximate

solutions for this problem. Progressive algorithms, evolutionary algorithms and

hidden Markov models (HMM) methods are some methods to ¯nd approximate

MSAs.

In progressive methods, dynamic programming is used to incrementally align

sequences. Once a sequence is added to the alignment, gaps cannot be removed from

it anymore. So if there are misalignments in early steps, they are remained in ¯nal

alignment too. Due to this greedy approach that may create a wrong solution which

C  A  -  T  G  A  G  -  A  T 

-  A  C  T C  A  G  T  A  -  2

1

(a)

C  A  -  T  G  A  G  -  A  T 

-  A  C  T C  A  G  T A  -  C2

3

1

C  A  -  A  G  -   G  -  A  T C  

G  -   -  T  C  A  G  T A  -  C4

(b)

Fig. 1. Example of (a) pairwise alignment on DNA sequences s1 ¼ CATGAGATC and s2 ¼
ACTCAGTAC (b) and multiple alignment on DNA sequences s1 ¼ CATGAGATC, s2 ¼ ACTCAGTAC,

s3 ¼ CAAGGATC and s4 ¼ GTCAGTAC.
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cannot be corrected in further steps of the algorithm, the order in which sequences

are added to the alignment, is very important. The popularity of progressive methods

is due to their good running time. This is why sometimes alignments gained from a

progressive algorithm are used as a seed in population based MSA methods.

MULALIGN,5 MULTUL,6 PILEUP,7 ClustalW,8 Muscle9 and T-Co®ee10 are some

examples of progressive algorithms for multiple sequence alignment. Some progres-

sive methods such as ClustalW, MULTALIGN and PILEUP use a guide tree for

making alignments. The former method uses neighbor-joining method11 for making

the tree, and the two later algorithms use UPGMA.12 The guide tree can help

progressive alignment to avoid doing pairwise alignment on all of existing sequence

pairs.

Evolutionary methods are one of iterative methods used to solve MSAs. Evolu-

tionary methods use an initial population of potential solutions and try to improve

the population (and maximum ¯tness) using mutation and crossover operators.

Finally, after reaching stopping criteria (like maximum ¯tness, or maximum number

of generations) the best member of the population is introduced as the answer of

problem. Evolutionary methods are very °exible because they have no special limi-

tation on objective function to be optimized; they can correct misalignments of early

generations and they can use primary knowledge (as seeds) in the initial population.

SAGA,4 IterAligne,13 MSA-EA,3 AlineaGA14,15 are examples of evolutionary algo-

rithms for MSA. The problem with existing evolutionary algorithm is their use of

complicated operators which make the algorithm computationally expensive.

Methods for generating initial population and also for crossing over and mutating the

population members in these algorithms are described in Sec. 2.

HMM is also one of iterative methods for solving MSAs. MUMMALS16 and

ProbAlign17 are examples of HMM solutions for MSA. HMM is a probabilistic model

which is used to align a new sequence with an existing alignment. The sequences are

added one after another to the model to form the multiple sequence alignment. This

is useful for example in cases where we want to check if a protein sequence belongs to

a protein family or not. The main drawback of HMM is that the number of sequences

should be large enough in order to create a statistical model.

In this paper, a new genetic algorithm is proposed for solving MSA problem that

uses simple mutation and recombination operators. The strength of the proposed GA

is because of using simple mutation operators and also a special recombination

operator that does not have problems of similar recombination operators in other

GAs. The new genetic algorithm is implemented in java and the results are tested on

BAliBASE2.01dataset.18 Results of experiments show that this algorithm is com-

parable to other algorithms in BAliBASE column score and sum-of-pairs score, while

its running time is considerably less than other genetic algorithms for ¯nding MSAs.

The considerable point in the result is that it shows it is not necessary to use com-

plicated operators for solving complicated problems like MSA, but it is necessary to

de¯ne precise operators that are able to improve genetic population and transfer

good building blocks to the next generations.
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The rest of this paper is organized as follows: In Sec. 2 we have a review on related

works and our motivation in the proposed method. In Sec. 3 the proposed method is

explained and experimental results are presented in Sec. 4. In Sec. 4, two other meth-

ods are compared with our algorithm, the ¯rst experiment compares the new method

with two other genetic algorithmsMSA-GA2 and the algorithmVDGA Decomp

proposed in Ref. 15 and progressive algorithmClustalW8 on BALIBASE2.0 dataset,

and the second experiments compares the number of matched columns in ¯nal align-

ments in the new method withAlineaGA14 and T-COFFEE.10 AlineaGA algorithm

concentrates on¯nding fullymatched columnsand in the resultwe compare thenumber

of fully matched columns with it. Section 5 concludes the paper.

2. Related Works

In this section, we brie°y review existing genetic algorithms for solving MSA prob-

lem. The method of population initialization and de¯ned mutation and recombina-

tion operators are important elements of a genetic algorithms. In this section, these

elements are reviewed in existing genetic algorithms and their e®ect on the perfor-

mance of the algorithm and quality of result is discussed.

2.1. Mutation and crossover operations

Several di®erent genetic algorithms have been developed for solving MSA in the

literature. Because of the complicated nature of the problem, most of these methods

use complicated operators, and of course a complicated algorithm with high running

time. SAGA,4 which is one of the ¯rs e®ective ones, used di®erent complicated

operators with special operator scheduling. In other algorithms like GA in Ref. 19,

MSA-EA,3 PRALINE,20 and AlineaGA method14,21 the same technique is used;

operators are very complicated and local search methods are used to bias the

operations toward ¯nding a potentially good alignment. Some of these operators try

to ¯nd local similarities and align these areas in di®erent sequences and some try to

¯nd fully matched columns in alignment. In Ref. 15, single point and multiple point

crossover were used. These crossover operators select one or several random points as

a vertical crossover point in two parents. In single point crossover the ¯rst part of the

child is selected from the ¯rst vertical half of the parent having bigger local score in

that half and the sequences are completed from the other part of the second parent,

in order to complete the ¯rst part. In multiple point crossover with two cut point for

example, the ¯rst and last parts of the child is selected from the parent which have

higher score in that parts, and the part between these two part, is selected from the

other parent in order to complete the sequences. The method introduced in Ref. 15

uses guide trees in its mutation operator. For the selected member for mutation,

which is a MSA, a distance table22,23 is calculated. Then a new guide tree is built on

these sequences. Sequence numbers are shu®led in the guide tree generation each

time in order to gain a better guide tree. The process of guide tree generation is
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repeated until a successful tree is generated or the maximum threshold of 50

unsuccessful attempts has done. In this method, authors have used vertical decom-

position for breaking the alignments into sub alignments, and then merge these sub

alignments to gain the full alignment again. This helps in aligning long sequences as

we will see in Sec. 4.1 in experimental results.

Beside these complicated algorithms, we found the method MSA-GA2 used simple

and random operators but produced acceptable ¯nal results. This was our motivation

to study this method and see why it has great result and why other algorithms have to

use complicated operators if simple ones also will work properly in this problem. The

main di®erence is its objective function. Normally, the objective function used for

MSA is a weighted sum of pair of amino acid alignment scores minus a gap penalty.

Gap penalty is necessary to avoid inserting lots of gaps in the sequences and it makes

the objective function a better approximate of biological alignment ¯tness.

Considering gap penalty in the objective function, when a gap is inserted into an

alignment, its score is decreased. So mutated genes with gap insertion will have a

lower ¯tness than what they had before mutation. Because of this reason, mutation

operators in GAs considering gap penalty, have to be somehow biased to compensate

this ¯tness reduction. If these operators are not designed speci¯cally for ¯nding

better aligned columns, mutated genes will have a decreased ¯tness and therefore less

chance for being transferred to future generations. This will actually repress muta-

tion operator and interfere its a®ectivity. In fact the ability of technique given in

MSA-GA to improve generations without using complicated operators is because

they omit gap penalty in the objective function. Although omitting gap penalty leads

to a worst objective function from biological point of view, it gives the freedom to

mutation operator to put its e®ect in the genes and let the mutated genes to have an

improved ¯tness. The experimental results given in Fig. 2 show that if gap penalty is

added to this objective function, the algorithm will not act as good as previous and

even in cases that it uses an initial CLUASTALW seed it will remain in the local

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MSA-GA

MSA-GA
with gap

Clustal
W

1aab 1tvxa 1ped

SPS

Fig. 2. Gap penalty e®ect on sum of pairs score (SPS) in Gondro and Kinghorn's method (MSA-GA).
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maximum around seed score. This is because of this fact that seed has a high ¯tness

value and inserting gaps in it leads to a decrease in ¯tness. So genes gained from a

mutated seed would not be chosen as the best gene of the population and the maxi-

mum found by GA remains at seed. These results are shown on sequence sets 1aab,

1tvxa and 1ped from BAliBASE. In Fig. 2, we can see that two sets 1aab and 1ped are

remained at local optima of seed after adding gap penalty to the ¯tness function. This

is because there is not a complicatedmutation or crossover operation that can improve

the seed score enough to overcome gap penalty decrease in the objective function, and

even if gaps are removed from the seed by these operators they lead to a worst score

because seed is an approximate alignment with a good ¯tness that omitting gaps

randomly from itmore likely decreases its ¯tness. In 1ped, the result is even worse than

seed (although the ¯tness function has increased) since omitting gap from ¯tness

function makes it a worst approximate of biological facts than a ¯tness function using

gaps. InMSA-GA, the authors have used di®erent parameter setting for this sequence

set in order to improve the results. In 1tvxa both ¯tness functions are not good

approximates for a biological ¯tness value, so the results are not good. But we can see

that adding gap penalty to ¯tness function have a positive impact on the result in this

sequence set. In other sets we have the similar observation; in cases that ¯tness

function without gap penalty resulted in better alignments, adding gap penalty to it

made the ¯nal results a little worse than non-using gap state.

But what is the problem with complicated operators? The ¯rst problem is that

these operators are so time consuming. Furthermore, they are biased toward gen-

erating a special property in the population members (like trying to generate fully

matched columns in the new) and there is no fact that guarantee the ¯nal answer is

also good when having fully matched columns. In fact in a typical GA, operators are

applied on population to improve individuals and to transfer building blocks to

future generations. A crossover operation is successful if it can generate an o®spring

with more building blocks than its parents.24 However, in these complicated opera-

tors, genes are manipulated in a special direction and building blocks are changed

after applying the operators. So these operators are not necessarily good genetic

operators. Some algorithms like AlineaGA use complicated biased recombination

operators too. It is shown in Ref. 25 that SAGA is highly dependent on its compli-

cated mutation operators and ordinary crossover has not a special role in this

method. In fact these are biased operators that play important role in these algorithms.

InMSA-GA, two crossover operators are de¯ned; horizontal recombination [Fig. 3(a)]

and vertical recombination [Fig. 3(b)]. It selects each sequence in o®spring randomly

from one of the parents [Fig. 3(a)]. The vertical recombination, which needs more

attention, chooses two genes (alignments), and randomly speci¯es a cut point for

recombining the parents. The o®spring ismade bymerging the parents, one from index

1 to cut point and the other one from cut point to the end of the sequences. The

recombination operator merges the parents if their two parts are compatible.

Vertical recombination seems to have no problem at ¯rst. It ensures integrity of

sequences because of its compatibility check. But this operator merges two genes just
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if they are compatible; this shows that in the marginal cut points (near to start or end

of sequences) there is more possibility to have two compatible genes than innermost

points because the number of amino acids to be equal is less in these marginal cut

points. In fact selected cut points for recombination are happening more likely at

marginal indexes. As Fig. 4 shows, the average number of vertical recombination

that has occurred in each index ��� on sequences from Ref. 1, 1aab set of

BAliBASE ��� approves our statement. In this diagram, when a cut point is not

suitable, the selection is repeated until an appropriate index is selected. In other

subsets of BAliBASE a similar result was also obtained.

This is a serious problem that biases crossover operation. In many cases, the

crossover will choose the start point of genes to merge them, i.e., no recombination is

done. In contrast to this vertical recombination, another vertical recombination

proposed in SAGA.4 This operator selects a cut point and chooses the ¯rst part of

o®spring from one of the parents. For the other part, sequences from the second

parent (which is not used for the ¯rst part of o®spring) are selected in a way that can

be joined to right side of the ¯rst part's sequences ��� it means that sequences may be

selected from di®erent starting indices in the second part. This operator does not

have the problem of biased cut points but it has a more important problem of

disruption of building blocks. The problem is that because sequences from the second

parent are selected from di®erent indices and the aligned sequences are not inherited

0

200

400

600

800

1000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81

nu
m

be
r 

of
 v

er
tic

al
re

co
m

bi
na

tio
n 

at
 e

ac
h 

in
de

x

indexes of genes (possible cut points)

Fig. 4. Average number of successful vertical recombination at each index of alignments in MSA-GA.

AAATTTCCC--CCT

AAAT--CCCCC--T

AAATTTCCCGGCC-

--AAATTTCCCCCT

AAAT--CCC--CCT

AAATTTCCCGGC-C

AAATTTCCC--CCT

AAAT--CCC--CCT

AAATTTCCCGGCC-

(a) Horizontal recombination

AAATTT--CCCCCT

AAAT--CCCCCT--

AAATTT-CCCGGCC

AAATTTCCC--CCT

--AAATCCC--CCT

AAATTTCCCGGCC-

AAATTTCCC--CCT

AAAT--CCC--CCT

AAATTTCCCGGCC-

(b) Vertical recombination

Fig. 3. Horizontal and vertical recombination de¯ned in MSA-GA.2
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to o®spring anymore. The problem of building blocks disruption is called linkage

problem in Ref. 26. In uniform crossover operator, which is de¯ned in SAGA, dis-

ruptive nature of this single point crossover also exists. This operator is designed to

swap blocks which are between two consistent positions. From these studies we

conclude that complicated and biased operators are not necessarily good for GA,

especially in MSA case which the ¯tness function is itself an approximation of an

unknown fact of evolution.

2.2. Population initialization

Some GAs for MSA, use random population initialization. This initialization method

leads to late convergence of GA to a good solution, because the search space for this

problem is very large (all possible alignments). In a few methods, an initial seed,

gained from a progressive approach, is added to the initial population and therefore

the algorithm task is to improve the seed2,3; however using an initial seed can cause

the algorithm to entrap in local optima.3,25

In MSA-GA,2 a special method is used for population initialization. Instead of

creating random sequences, each sequence in a gene is selected from the set of all its

pair-wise alignments with other sequences. This method has a good e®ect on the ¯nal

result, but as we can see in Fig. 5 that in this algorithm ¯nal answer is highly

dependent on its initial population. In fact it is the initial population that leads to a

good result. It can be seen that the speci¯c method for population initialization lead

to a good score at the ¯rst populations and operators cannot improve this population

much further; this can be the problem of entrapping in local optima mentioned in

Refs. 3 and 25. As a conclusion we can say that although randomness is not good for

initial population in a large problem space like what we have in MSA, using a very

speci¯c initial population may also not be a good solution.

3. The Proposed Method

In this section, we propose a new GA based algorithm, which is given in Fig. 6, for

solving MSA problem. The proposed idea is to de¯ne a new way for population
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Fig. 5. Average ¯tness of the best gene MSA-GA with/without seed.
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initialization and also a new operator that does not have problems of existing

operators. Our goal in designing new operators is to have simple, unbiased operators,

which are able to transfer building blocks to further generations. By unbiased we

mean that we do not want our operators to specially work on a speci¯c goal, like

creating fully matched columns; because in addition to adding to complexity, these

biased operators usually destroy building blocks, also this approach of using biased

operators is a greedy local method which may not necessarily improve the whole

alignment. In this section, we ¯rst explain our genetic algorithm and then we spe-

ci¯cally explain our new method for population initialization and operator de¯nition

in the following subsections.

Gene representation: Each individual in the population is represented as a matrix.

In some of existing methods a maximum length is set for alignments. This will

manage sequence lengths and avoids alignments to be unlimitedly long. We use the

same maximum length for alignments which is 20% longer than the longest sequence

length.2

Population initialization: Each gene in the population is a possible alignment.

These alignments are generated in a new way of population initialization which will

be described later in this section.

Mutation and recombination operators: Mutation operators used in algorithm

consists of: openGap (which opens a new gap in a randomly selected sequence of the

gene), extendGap (which chooses an arbitrary gap block from a gene and extends it

by adding one gap character), and reduceGap (which select an existing gap block

from the gene and reduces its size). The only crossover operation we used in our

algorithm is a new operator which is designed to be simple and also useful for

multiple sequence alignment problems. Description of this operator is given later in

this section.

Objective function: The objective function is sum-of-pairs score (SPS). Also a gap

penalty is decreased from this score in order to prevent from too much gap insertion

in genes.

Gene selection: We keep a predetermined percent of top genes in each selection

phase. This percent is a parameter (the parameter setting for our result is speci¯ed in

1) Generate the first generation of n MSAs
2) Evaluate alignment score for each chromosome
3) While true

(a) Create a new generation by applying new operators and selection method; each gene in the new 
generation is selected by applying cross over or mutation operators on parents. Operators are 
chosen according to probability parameters for each.

(b) If termination criteria(maximum number of generations) is reached break

Fig. 6. The proposed genetic algorithm for MSA.
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result section). Other genes are selected by performing crossover with the determined

probability. If no crossover were done, one of the genes will be mutated with a speci¯c

probability and copied to the next population. Finally, this gene will be copied to the

next generation if no mutation is performed too.

Any population initialization method, mutation or crossover operators, and

selection method may be used in this algorithm generally. In Step 1, ¯rst generation

is initialized (In Sec. 3.1 our method for population initialization will be discussed).

In each gene selection phase, we use the gene selection method for creating the next

generation. If a crossover has to be applied on a gene in gene selection, a second phase

of choosing crossover method type is done. In this phase, a random number is gen-

erated; if it is less that horizontal recombination probability, this recombination is

applied on genes and the crossover method returns the child with larger ¯tness, else

another number is generated and if it is less than vertical recombination probability

this recombination is applied and a child will be returned. Horizontal and vertical

recombinations will be described later in Sec. 3.2. The same process is done to select

the appropriate mutation operator; we use openGap, reduceGap and extendGap

probabilities instead. Finally, the genetic algorithm terminates after a certain

number of generations.

3.1. Population initialization

As mentioned before, using an initial population that is not very limited and neither

completely random is appropriate for problem of MSA. Also we saw that using an

initial population with a seed, could increase the probability of entrapping GA in

local optima and specialize initialization of genes will restrict the search space. Here,

we give a new method, as given in Fig. 7, for population initialization that is anin-

termediate method which is not completely random, and also not very determined.

In this ¯gure, L is the length of the largest sequence and M is the size of the

smallest sequence, and seedProb is a predetermined parameter showing the proba-

bility of using seed. Seed is an alignment of sequences by ClustalW method. The

number of gaps is determined experimentally. Initially seedProb in most of our

experiments is selected such that in every two gene of the population, there exists at

least one sequence of initial seed. For small number of sequences, it, was necessary to

For each gene in the initial population:
For each sequence in the current gene: 

• Choose a random number with uniform distribution in the interval [0, 1]
• If random number is less than the probability parameter, seedProb, select this sequence from seed and 

put it into current gene
• Else generate a random number of gaps from interval [0, (L-M)/2] and add it to the original sequence; 

then put this new sequence in the gene

Fig. 7. The proposed algorithm for population initialization.
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decrease this value, because it caused the population to be uniform. But in larger

sequence sets, like 1taq, even choosing value of 0.5 (a large value) had positive e®ects

on results.

3.2. Operators

In the proposed method, we want to use just simple operators. The mutation

operators are de¯ned as: openGap (which opens a new gap in a randomly selected

sequence of the gene), extendGap (which chooses an arbitrary gap block from a

gene and extends it by adding one gap character), and reduceGap (which select

an existing gap block from the gene and reduces its size). In designing the

crossover operator we consider two objectives. First we should be careful about

linkage problem (discussed in Sec. 2.1); we do not want the proposed crossover to

disrupt building blocks. Second we want the operator to be less computationally

expensive.

We propose a new crossover operator that does not have biased indexes problem

(discussed in Sec. 2.1) and we have tried to minimize linkage problem in it. The new

operator is called cross-mutate because it is a combination of crossover and mutation

operators; and operates as given below:

. For parents P1 and P2, choose a cut point randomly

. Copy the ¯rst part of o®spring from P1, and the second part from P2 to generate

child C1, and copy the ¯rst part of P2 and the second part of P1 to generate child

C2.

. Mutate the redundant amino acids (which are repeated in the second part too) in

the ¯rst parts and convert them into gap characters.

. If some amino acids are omitted from o®spring, choose equal number of gap

characters from the ¯rst part respectively from cut point to start; and put those

amino acids instead of gap characters respectively.

. Select the child with highest score as the ¯nal o®spring.

The proposed cross-mutate operator ensures integrity of sequences, because the

number and order of amino acids are not changed in the o®spring, and it does not

have biased cut point problem because it performs the recombination at every se-

lected index. It slightly changes the alignment in the ¯rst part but does not change

the whole structure of the alignment gained by the ¯rst parent, therefore its linkage

problem is very much less than that of single point crossover in SAGA. An example

of cross-mutation is shown in Fig. 8. In this ¯gure, C2 is the child with larger score

and therefore is selected as the ¯nal o®spring.

Wherever a column consisting of only gap characters is visited in genes, it is

removed by a pruning operation. The pruning operator also checks whether all

sequences in the alignment have the same length, and adds gap characters to make

them equal in length.

A New Genetic Algorithm for Multiple Sequence Alignment
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4. Experimental Results

In order to evaluate performance of the proposed algorithm, we have performed some

experiments and compared the proposed algorithm with some related algorithms.

The proposed algorithm is implemented in Java and the results are tested using

BAliBASE2.01 dataset.18 This free dataset is a collection of semi-automated and

human made alignments and therefore is not biased toward any speci¯c method. We

use its sequences in our experiments and ¯nal results are compared to alignments in

this reference set. SPS (sum-of-pairs score) from baliscore program available in

BAliBASE is used to compute alignment scores for comparing ¯nal results.

We have two sets of experiments. In the ¯rst one, we compare SPS scores with

some existing algorithms. This is explained in Sec. 4.1, in which current method is

compared to genetic algorithms MSA-GA and VDGA Decomp,15 and also ClustalW.

This comparison is done on BALIBASE2.0 data and based on SPS values of ¯nal

alignments. In the second experiment, Sec. 4.2, results are compared with AlineaGA

and T-COFFEE. The criteria for comparison in this experiment is the number of

matched columns in ¯nal alignments. Fitness values are not compared in this section

because we were not sure about gap opening and gap extension penalty. Sequences in

this section are subsets 1, 2 and 3 (Subset 1: Human alpha and beta Hemoglobin;

Subset 2: Subset 1 sequences, Duckbill platypus alpha and beta Hemoglobin;

Fig. 8. New cross-mutate operator.

Z. Narimani, H. Beigy & H. Abolhassani

1250023-12

In
t. 

J.
 C

om
p.

 I
nt

el
. A

pp
l. 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 8
8.

19
8.

13
4.

17
1 

on
 0

2/
04

/1
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



Subset 3: Subset 2 sequences, Anasplatyrhynchos alpha and beta hemoglobin) se-

lected from Uniprot database27 in Ref. 14 for testing results. We are using this

comparison to compare the number of matched columns in the proposed method

which uses very simple operators, with AlineaGA which its operators and even

objective function are completely designed toward ¯nding matched columns.

4.1. Comparison of the results with MSA-GA and VDGA Decomp

Sequences selected in this experiment are a subset of selected sequences in Ref. 2.

Reference sets are selected in three main categories according to the sequence

identity;

. Less than 25% identity: 1tvxa (small), kinase (medium), 1ped (large)

. 20–40% identity: 1ses (small), 1ad2 (medium), 1ycc (large)

. More than 35% identity: 1krn (small), 1amk (medium), 1taq (large)

In Table 1, average and best result of proposed method is given on selected data. This

result is demonstrated using SPS (Sum of Pairs Scores: the portion of pairs which are

aligned according to reference alignment) and CS (Columns score: the portion of

columns in ¯nal alignment which is completely matched to the reference alignment)

score. Average results are gained from 20 run with omitting outliers. Best scores are

given by selecting the best score in 10 independent runs. The new method uses 2000

genetic generations in each run.

In Table 2 best SPS results of new method are compared to MSA-GA and

VDGA Decomp. Results from MSA-GA and VDGA Decomp are chosen from ex-

perimental results given in Ref. 15. MSA-GA result is demonstrated on two columns,

one without ClustalW seed and the other with pre aligned seed. In VDGA Decomp 2,

3 and 4, vertical decomposition decomposes the alignments into 2, 3 and 4 parts,

respectively. VDGA Decomp3 is the best setting of VDGA in the results of the

original paper and if we omit its result our algorithm would have the best result in

most of sets.

Table 1. Average and best SPS and CS of proposed method
on BAliBASE2.01 dataset (number of generations = 2000).

Avg SPS Best SPS Avg CS Best CS

1aab 0.856 0.872 0.781 0.804

Tvxa 0.267 0.301 0 0

Kinase 0.640 0.662 0.484 0.519

1ped 0.720 0.785 0.650 0.721

1ycc 0.662 0.712 0.429 0.560

1ad2 0.888 0.904 0.792 0.804

1sesA 0.913 0.941 0.810 0.871

1krn 0.947 0.982 0.883 0.954

1amk 0.960 0.975 0.910 0.937

1taq 0.764 0.823 0.525 0.724

A New Genetic Algorithm for Multiple Sequence Alignment
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We can see that in kinase, 1ped and 1krn our algorithm shows highly improved

results over other methods. In sets 1amk and 1sesA our method does not perform

better, but near the best method. Still in these cases our method performs better that

MSA-GA. In 1taq our result is not good, and this is mainly because of long sequence

length of this set. VDGA decomposes alignments into sub alignments and aligns sub

parts separately; therefore length of input sequences cannot have a strong e®ect on

the performance of this algorithm. In 1ad2 which has sequences with medium size,

the same problem may result in lower e±ciency of our method. But in this set still

new algorithm performs better than MSA-GA and ClustalW. Although

VDGA Decomp uses guide trees and also its powerful decomposition method, our

simple method still shows comparable results with that.

4.2. Compare matched columns with AlineaGA and T-COFFEE

The purpose of this experiment is to compare the proposed algorithm with

AlineaGA14 and also comparison with T-COFFEE given in AlineaGA.14 We choose

AlineaGA which was a new genetic algorithm for solving multiple sequence align-

ment. AlineaGA14 is an improvement of previous version of AlineaGA in Ref. 21.

There are several mutation and crossover operation de¯ned in AlineaGA. Crossover

operator used in AlineaGA are single-point crossover (like SAGA crossover with

linkage problem), and recinbineMatchCols19 that combines two genes trying to keep

matched columns of both genes. Mutation operators are gap insertion, smart gap

insertion, gap shifting, smart gap shifting, merge space, smart merge space, and

columnGapRemover. These are some operators, some with smart versions of them

which uses local search in order to perform the mutation or cross over in a more

e®ective way.

It is obvious that some of these operations are biased toward ¯nding fully matched

columns. The ¯tness function used in AlineaGA is also a weighted sum of pairs score

and number of fully matched columns. We could not ¯nd a proof for usefulness of

considering matched columns but lots of methods have took it into consideration; but

Table 2. Comparing maximum ¯tness gene SPS values on BAliBASE2.01 dataset (number of

generations = 2000) with best results of MSA-GA and VDGA Decomp.

MSA-GA

MSA-GA

W PreAlign CIastalW

VDGA

Decomp2

VDGA

Decomp3

VGDA

Decomp4

Proposed

Method

tvxa 0.295 0.209 0.042 0.316 0.316 0.310 0.301

Kinase 0.295 0.488 0.479 0.531 0.545 0.548 0.662

1ped 0.501 0.687 0.592 0.443 0.482 0.451 0.785

1ycc 0.650 0.653 0.643 0.752 0.839 0.685 0.712

1ad2 0.821 0.843 0.773 0.939 0.950 0.941 0.904

1sesA 0.620 0.913 0.913 0.917 0.962 0.923 0.941

1krn 0.908 0.825 0.893 0.942 0.960 0.892 0.982

1amk 0.963 0.959 0.943 0.982 0.984 0.982 0.975

1taq 0.525 0.826 0.826 0.938 0.959 0.944 0.823
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in an intuitive point of view it seems that it helps to ¯nd more matched areas and

therefore better alignments. On the other hand, not considering matched columns

score in the objective function may leads to another problem: consider the situation

that operators try very hard for forming matched columns and because the objective

function does not care about it, improved genes will not be considered as good genes.

This approach can help if we know that having fully matched columns really improve

the result. In our experiments, there were some cases that considering number of fully

matched columns in objective function made the results even worst; because ¯nding

fully matched columns was acting in a greedy way that destroyed other parts of the

alignment. We cannot say certain statements about this, but there is a need for

studying the e®ect of this factor in a scienti¯c way.

In Ref. 14, four sets of sequences have been selected, and SPS score, number of

matched columns and number of inserted gaps are compared to the progressive

T-COFFEE method. It should be mentioned here that because the operators and

objective function are biased toward ¯nding fully matched columns, it cannot be a

fair factor for comparison; anyway we compared our method results on the same set

of sequences on both sum of pairs score and number of matched columns. Sum of

pairs score comparison was omitted here because the information about gap penalty

was not given in the paper. We found some factors leading to the same result but

because of not being sure, the result is omitted here. AlineaGA is acting very greedy

for ¯nding fully matched columns so it is possible that it inserts lots of gaps into the

sequences, therefore the designers of algorithms have put the number of inserted gaps

as an input parameter for the algorithm. Tables 3 and 4 compares our result in

number of fully matched columns and number of inserted gaps with Ref. 14.

AlineaGA uses three di®erent con¯gurations for each test. In each con¯guration

the number of allowed gap insertion, the probability of each operation and other

genetic algorithm parameter setting is speci¯ed (Table 1 of Ref. 14 contains the

parameter setting for each con¯guration). Comparing the results given in Tables 3

and 4 shows that although our method is very simple and does not consider matched

Table 3. Comparing number of matched columns in new method with AlineaGA on the sequence set

1, 2 and 3 of Ref. 14.

Sequence Set

AlineaGA

Con¯g

Average

AlineaGA

Best

AlineaGA T-COFFEE

Average

New Method

Best

New Method

1 1 65.3 65 61 64.1 65
2 64.9 65

3 64.7 65

2 1 42.9 48 46 40.4 48

2 43.1 47

3 43.2 49

3 1 29.9 32 39 30.8 36
2 29.2 37

3 30.4 36

A New Genetic Algorithm for Multiple Sequence Alignment
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columns in the objective function, its results are comparable to a complicated

method like AlineaGA.

5. Conclusion

In this paper, we proposed a simple genetic algorithm for multiple sequence align-

ment. The proposed algorithm uses simple, random and not problem speci¯c

operators and this makes our algorithm very fast in contrast to existing genetic

algorithm. We showed through simulation that it is not necessary to use complicated

operators for complicated problems. The proposed operators consist of simple

mutation operators, a recombination operator and a new operator called cross-

mutation. Cross-mutation is in fact a new way for better vertical recombination of

two genes which does not have the problem of biased cut points and minimizes the

linkage problem. Another problem in existing methods was about their population

initialization. We proposed a new method for population initialization that has the

advantage of randomness and using initial seeds. The advantage of this method is

that it does not use initial seed directly into its ¯rst population; hence it does not

have the problem of getting entrapped in the local optima of seed. We also used

ordinary ¯tness function (sum of pairs score plus gap penalty), which is a suitable

objective function from biological point of view too. The experimental results show

the suitableness of this objective function in contrast to other objective functions.

The new method showed better e±ciency on shorter sequences. For future work we

can use our new operators beside a vertical decomposition technique to solve the

problem of large sequences.
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Table 4. Comparing number of inserted gaps in new method with AlineaGA on the

sequence set 1, 2 and 3 of Ref. 14.

Sequence Set AlineaGA Con¯g Best AlineaGA T-COFFEE Best New Method

1 1 9 9 9
2 9

3 9

2 1 20 20 20

2 20

3 36

3 1 46 29 77
2 41

3 41
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