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Ensemble learning from ensemble 
docking: revisiting the optimum 
ensemble size problem
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Despite considerable advances obtained by applying machine learning approaches in protein–ligand 
affinity predictions, the incorporation of receptor flexibility has remained an important bottleneck. 
While ensemble docking has been used widely as a solution to this problem, the optimum choice of 
receptor conformations is still an open question considering the issues related to the computational 
cost and false positive pose predictions. Here, a combination of ensemble learning and ensemble 
docking is suggested to rank different conformations of the target protein in light of their importance 
for the final accuracy of the model. Available X-ray structures of cyclin-dependent kinase 2 (CDK2) 
in complex with different ligands are used as an initial receptor ensemble, and its redundancy is 
removed through a graph-based redundancy removal, which is shown to be more efficient and less 
subjective than clustering-based representative selection methods. A set of ligands with available 
experimental affinity are docked to this nonredundant receptor ensemble, and the energetic features 
of the best scored poses are used in an ensemble learning procedure based on the random forest 
method. The importance of receptors is obtained through feature selection measures, and it is shown 
that a few of the most important conformations are sufficient to reach 1 kcal/mol accuracy in affinity 
prediction with considerable improvement of the early enrichment power of the models compared 
to the different ensemble docking without learning strategies. A clear strategy has been provided in 
which machine learning selects the most important experimental conformers of the receptor among a 
large set of protein–ligand complexes while simultaneously maintaining the final accuracy of affinity 
predictions at the highest level possible for available data. Our results could be informative for future 
attempts to design receptor-specific docking-rescoring strategies.

Abbreviations
SVC	� Support vector classifier
CDK2	� Cyclin-dependent kinase 2
AD4	� Autodock4
RF	� Random forest
BRT	� Boosted regression trees
MW	� Molecular weight
ALP	� AlogP estimation of lipophilicity
PSA	� Polar surface area (PSA)
NHA	� Number of hydrogen bond acceptors
NHD	� Number of hydrogen bond donors
NRB	� Number of rotatable bonds
NAR	� Number of aromatic rings
NNH	� Number of nonhydrogen (heavy) atoms
LOO	� Leave-one-out
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ANS	� 8-Anilino-1-naphthalene sulfonic acid
ntree	� Number of trees
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ELC	� Electrostatic interaction energy
TOR	� Torsional loss of entropy

Intermolecular interactions are the basis of almost all biological processes, and different experimental methods 
and computational techniques have been developed to analyze them. Specifically, in the case of healing treat-
ments, structure-based drug design attempts to design candidate drugs according to their interaction with the 
three-dimensional structure of the target proteins1–3. In this direction, docking technologies have been improved 
considerably with two main goals: accurate prediction of the geometry of binding (pose prediction) and reliable 
scoring of different binding geometries (affinity prediction)4–6. Many docking software programs have also been 
developed in which each of them adopts one or more different binding paradigms from the earliest lock-and-key 
models to more sophisticated search and scoring conformational selection strategies7,8. These tools have been the 
subject of continuous assessments over many years regarding their ability for pose and affinity prediction. Two 
widely used free and open-source docking packages are Autodock4 (AD4)9 and Autodock Vina (Vina)10, with 
thousands of citations and many cases of successful discovery stories since their initial release dates11. A recent 
comparative investigation benchmarked these two packages on a diverse set of protein − ligand complexes12. The 
results show that in general, Vina reproduces more accurate binding poses, while AD4 gives binding affinities 
that correlate better with experimental values12. However, the results are receptor dependent, and for a specific 
target, it seems that a specific benchmarking is desirable to decide on the best docking tool.

The flexibility of the receptor and the way of incorporating it in the docking procedure has remained the 
most challenging problem in protein-small molecule studies. It is now a well-known fact that proteins should be 
considered as an ensemble of conformations not only for intrinsically disordered cases but also for describing 
native states of ordered globular ones13,14. The dynamics of proteins over their conformational ensembles enable 
them to harness thermodynamic fluctuations for specific recognition of their targets, including small molecules15. 
This diversity adds an additional search dimension in docking procedures, and as a result, different approaches 
have been designed to incorporate receptor flexibility through ensemble docking16,17. A receptor ensemble can 
be constructed computationally via molecular dynamics simulations or other phase space sampling methods18–21. 
The alternative is using available experimental structures of the receptor reported in complex with different 
small molecules at the binding site. Currently, for some important proteins, there are hundreds of reported 
X-ray structures in the protein data bank that provide an informative image of the conformational diversity of 
bound states of that receptor. However, the main challenge is how to select a representative set of structures for 
an efficient docking simulation considering the fact that the computational cost of ensemble docking increases 
with the number of receptor conformations. Another challenge in ensemble docking is the problem of false 
positive predictions that generally show an increased rate with the enlargement of the receptor ensemble22,23.

Even with a perfect set of receptor conformations and corresponding binding geometries, their correct scor-
ing would be the bottleneck of a pipeline for reliable pose or affinity prediction. Many scoring functions have 
been developed in recent years, and some of them have been revisited with the considerable increase in available 
experimental geometry and affinity data24–26. Three conventional schemes, including force-field, knowledge-based 
and empirical scoring functions, have shown severe limitations in their potential for improvement with the rapid 
growth of training data6,24,27,28. Although these schemes differ from each other in how they consider well-defined 
physically meaningful contributions of protein–ligand interactions, all of them are restricted to a parametric form 
of a linear combination of these contributions. On the other hand, modern machine learning scoring functions 
go beyond these additive and linear assumptions, and with the increase in available experimental data, it seems 
that they can provide more promising solutions not only for the case of protein–ligand interactions but also for 
other cases of molecular recognition in biological systems29–31. Different machine learning methods have been 
applied to affinity prediction problems, including support vector regression, artificial neural networks, random 
forest (RF), and boosted regression trees (BRT)32–35. Comparison of the linear and nonlinear regression over 
training datasets of different sizes showed that the efficiency of linear methods remained constant, while the 
efficiency of the RF method magnificently increased29,36. In another assessment that compared 16 conventional 
and six machine learning scoring functions, it was shown that ensemble prediction methods such as RF and 
BRT outperform other scoring schemes. The authors also reported steady gains in the performance of these two 
methods as the training set size and type and number of features were increased37.

Notably, both well-performing methods, RF and BRT, belong to the ensemble learning paradigm in supervised 
learning. As a machine learning counterpart for the so-called wisdom of the crowd, ensemble learning methods 
combine the results of multiple base learners (decision trees in the case of RF and BRT) to compensate for the 
errors of each learner via a weighting and aggregating procedure36–38. The improved predictive performance of 
ensemble learning methods is a result of avoiding overfitting of a single learner in the case of a small amount of 
data. Moreover, they avoid trapping in a local optimum and provide an extended representation of the problem 
beyond the space of any single model. Another advantage related to the goal of the current study is tackling 
the curse of dimensionality. For a fixed size of data and a large number of features, single learners become less 
generalizable, while some of the ensemble methods can lessen the problem via attribute bagging38. From a point 
of view, different ensemble learning methods can be classified as bagging or boosting. In 1994, the bagging idea, 
presented by Breiman, was retrieved from bootstrap aggregating meaning39. In bagging algorithms, a dataset is 
sampled with replacement to create several subsets of the original data. The learning process is applied to each 
subset, resulting in a collection of models. The prediction (or regression) process uses the maximum vote (or 
output mean) of the models, resulting in a lower variance of the overall model. RF is a popular bagging-based 
method. The boosting method refers to an effective method of combining a set of weak learners, with an emphasis 
on previously misclassified samples in each learner, to achieve one strong learner40.
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In this study, we combined ensemble learning methods with the ensemble docking procedure to address the 
problem of optimum selection from a set of X-ray structures and to keep the computational cost and false positive 
prediction rates as low as possible while achieving a receptor-specific affinity predictor as accurate as possible. In 
this procedure, cyclin-dependent kinase 2 (CDK2) was selected as a test case. This enzyme belongs the serine/
threonine kinases family and has the main role in controlling the cell cycle and meiosis. CDK2 plays a role in 
balancing cell proliferation, cell death and DNA restoration in human embryonic stem cells41. The activity of this 
kinase is regulated through the binding of cyclin subunits and phosphorylation at specific sites42. Regarding its 
role in cancer cell proliferation43, inhibition of CDK2 in its free or cyclin-bound states has been the subject of 
many experimental and computational studies44. Accordingly, the availability of numerous ligand-bound X-ray 
structures and independent measured binding affinity values for many drug-like molecules makes CDK2 an 
ideal test case for the current study.

Results and discussions
Diversity of CDK2 structures.  CDK2 has a bilobal structure enriched with beta-sheets in the N-terminal 
domain (small lob) and alpha helices in the C-terminal domain (large lob)42 (Fig. 1a). The ATP binding site 
(Fig. 1b) is the main target of most inhibition studies44. The presence or absence of cyclin induces a conforma-
tional change in CDK2, as highlighted for two representative structures in Fig. 1a. Most affected is an intrinsically 
disordered segment denoted as the activation loop, which is relocated in the presence of cyclin. The function-
ally important residue Thr160 is also located in this segment, and its phosphorylation can further stabilize the 
cyclin-free configuration43. Due to dynamic disorder, this loop and some other parts of the sequence have been 
reported as missing residues in many structures. As shown in Fig. 1c, the pattern of missing residues becomes 
completely different in the presence of cyclin. Two segments corresponding to residues 35–47 and 147–164 have 
some missing residues in almost all structures in the absence of cyclin, while a long segment around 220–252 has 
some missing residues in many CDK2 structures complexed with cyclin. Since in each part of Fig. 1c the struc-
tures are sorted by reported resolution, it can be said that these patterns of disordered segments do not depend 
on the quality of X-ray structures although cyclin-free CDK2 chains have a better resolution in comparison with 
cyclin-bound cases (Fig. 1d).

Among 315 chains in the curated receptor ensemble (listed in Table S1), 26 chains contain an ATP/ADP 
molecule, and the remaining chains contain a diverse set of coccrystallized small molecules in the ATP binding 
site or its vicinity (see Table S1). To be generalizable for subsequent applications, the extended binding pocket 

Figure 1.   (a) Side and top views of two representative CDK2 structures (1FQ1B in cyan and 1JSTA in pink). 
ATP molecules in binding sites are in wireframe. The activation loop is colored in blue (1FQ1B) or red (1JSTA) 
with a bead in position of Thr160 (1FQ1B) or its phosphorylated form Tpo160 (1JSTA). (b) Extended binding 
region around ATP molecule (1JSTA). Only residues with more than 50% ligand contact among 315 structures 
were depicted. (c) Pattern of missing residues in initial receptor ensemble of CDK2 chains and position of 
residues in extended binding region along sequence. (d) Resolution of X-ray CDK2 structures complexed with 
or without cyclin.
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(Fig. 1c) was defined by considering all 41 residues that are in contact with any ligand in any receptor (see 
Table S2). Among them, 11 residues have contact with more than 50% of ligands. The most frequent binding 
residues are Leu83, Ala31, Leu134 and Glu81, which are in contact with ligands in 98%, 95%, 95% and 94% of 
complexes, respectively. However, in our strategy, every residue matters, even those 6 residues that show only 
one contact with a single ligand in all curated structures (see Table S2).

Clustering vs. graph‑based redundancy removal.  The size of the curated receptor ensemble is much 
larger than that applicable in an ensemble docking strategy. In addition to the computational cost, it has been 
shown that a larger receptor ensemble increases the rate of false positive predictions in ensemble docking45,46. 
The routine solution is choosing a reasonably small set of structures via a representative selection strategy, which 
is almost always clustering based on the RMSD measure over the relevant part of the structure, i.e., the ligand 
binding region. Such a “cluster-based” and “average-preferred” way of thinking loses less frequent patterns of 
binding reflected in the conformational diversity of the binding region. Moreover, an all-at-once calculation of 
RMSD, for all important residues, has the known disadvantage of diminishing rare but important differences of 
some residues in the “mean” character of RMSD47. To avoid this problem, Tij (Eq. 2) and Nij (Eq. 3) dissimilar-
ity matrices were introduced and used in a routine clustering approach (see Fig. 2). Splitting all receptors into 
two clusters (the second uppermost arrow in Fig. 2a) separates the free CDK2 chains from cyclin-bound chains. 
Thus, even in the extended binding region and irrespective of the type of ligand, the main factor of structural 
diversity is the availability of cyclin. This nontrivial fact is also reflected in the structure of dissimilarity matrices 
(Figs. 2c,d) and the distribution of their elements (Fig. S1).

Indeed, choosing two representative receptors from two clusters of free and cyclin-bound CDK2 is not 
reasonable since the maximum intracluster dissimilarity is 21. In other words, in one of the clusters, there are 
two receptors that differ from each other in 21 residues of the extended binding region. Other arrows in Fig. 2a 
show how the heterogeneity of clusters is reduced by increasing the number of clusters. This heterogeneity 
affects the meaning of the “representative” structure and shows the extent of ignored diversity of binding pat-
terns below a truncation level. Even in the case of 60 clusters, at least one cluster has two structures that differ 
from each other in 6 residues of the extended binding region. Moreover, prior selection of a specific truncation 
level is to some extent an arbitrary subjective choice without other stifications. In this regard, we decided to 
let machine learning not only rescores the results of ensemble docking but also decides which members of the 
curated receptor ensemble are more important to be included in the docking ensemble. The suggested approach 

Figure 2.   (a) Hierarchical clustering of curated receptor ensemble based on dissimilarity matrix N . For better 
presentation a logarithmic scale was used vertically. The arrows point to some possible levels of dendrogram 
truncation for which the first number in parenthesis is the number of clusters and the second one is the 
maximum intra-cluster dissimilarity. (b) Redundancy graph of curated receptor ensemble. Nodes are receptors 
scaled by their centrality and edges are redundancies ( Nij = 0 or Aij = 1 ). Red nodes are 126 members of non-
redundant receptor ensemble selected via an iterative centrality-based procedure. (c) Dissimilarity matrix T . (d) 
Dissimilarity matrix N . (e) Adjacency matrix A . In all plots, the first 183 receptors are without cyclin.
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has less arbitrariness and puts the selection of receptor structures in an objective perspective based on the final 
performance of ensemble learning.

However, it is wise to remove redundant structures via a redundancy criterion before performing docking 
simulations. Based on the well-known 2 Å cutoff for RMSD, two receptors were considered the same if none of 
their residues in the extended binding region had RMSD values larger than 2 Å (i.e., Nij = 0 ). The lowermost 
arrow in Fig. 2a shows that at least 162 clusters should be considered to reach a level for which all members 
but one within any cluster are redundant (all intracluster Nij = 0 ). This number could depend on the adapted 
clustering algorithm or its specific features (for example Ward linkage used here). As an alternative, a robust 
graph-based redundancy removal is suggested here that does not depend on any user-defined parameter except 
the 2 Å cutoff in the definition of Nij . The corresponding redundancy graph built from the Aij matrix (Eq. 3 and 
Fig. 2e) is depicted in Fig. 2b with 126 selected nonredundant receptors highlighted. The iterative procedure 
of selection based on graph centrality is justified by design since it considers the adjacencies among receptors. 
The number of nonredundant receptors, 126, is the possible minimum that is smaller than the number obtained 
from clustering, 162, which needs some postprocessing to remove redundancies between cluster representatives.

Orthosteric, allosteric and optimum docking regions.  Since the aim of the current study is ML- and 
structure-based rescoring of docking poses in conjunction with ML-derived importance of receptor structures, 
the correct definition of docking box plays a vital role that affects the generalizability and robustness of the 
whole pipeline. As shown in Fig. 3, most cocrystallized ligands (except 2AN and LQ5) are located near the posi-
tion of ATP/ADP molecules, although their positions differ slightly, as reflected by enclosing boxes, geometric 
centers and their principal components. Some ligands do not penetrate completely in the ATP binding pocket. 
This space was considered the orthosteric site and must be covered in docking. On the other hand, behind the 
orthosteric pocket, an allosteric site with separate entry has been suggested based on the binding behavior of 
8-anilino-1-naphthalene sulfonic acid (ANS) molecules, denoted here as 2AN48. This molecule has a moderate 
affinity and low inhibitory potential, but it has been shown that its allosteric binding has positive cooperativity 
with some orthosteric inhibitors but is relatively noncooperative with ATP49. This allosteric site provides inter-
esting clues for selective and/or combinatory treatments of CDK2 in cancer, but almost all cocrystallized ligands 
are in the orthosteric site, and the underlying assumption made here is that the set of ChEMBL ligands used in 
affinity prediction bind to this site. Accordingly, the docking box should be defined such that it prevents binding 
in the 2AN allosteric site to decrease the rate of false positive pose predictions. The same is true for the large 
binding pocket of the LQ5 ligand, which is a type II inhibitor targeting the inactive DFG-out state of CDK244. A 

Figure 3.   (a) Center of geometry of ligands in CDK2 structures. Size of spheres are rescaled relative to the 
ligand size. (b) Spatial extension of ligand enclosing boxes. (c,d) Three principal components of ligand centers. 
(e) Position of common docking box (orange) used for all receptors on a representative structure (1JSTA) 
including ATP molecule compared to bounding boxes of LQ5 (red) and 2AN ligands in the allosteric site 
(magenta).



6

Vol:.(1234567890)

Scientific Reports |          (2022) 12:410  | https://doi.org/10.1038/s41598-021-04448-5

www.nature.com/scientificreports/

state with the tripeptide DFG motif in outward flip conformation. The final docking box, shown in Fig. 3e, cov-
ers both enclosing boxes of ATP/ADP and orthosteric ligands with additional asymmetric padding such that it 
provides some overlap with 2AN and LQ5 pockets but does not leave enough room for posing ligands in these 
pockets during docking. It should be noted that receptors with 2AN or LQ5 outside of the orthosteric space 
(3PXFA and 5A14A) and without any other ligand within it are still members of the nonredundant receptor 
ensemble (see Table S1). This means that the presence of these ligands out of the docking region induces some 
unique conformational changes within it.

Docking without learning.  The ligands obtained from ChEMBL for affinity prediction (Table S3) are rea-
sonably diverse, as reflected by their simple molecular properties in Fig. S2 and their reported experimental 
affinities depicted in Fig.  S3. After docking these ligands to all 126 members of the nonredundant receptor 
ensemble, energetics of the best scored pose for each receptor along with 8 simple molecular properties were 
used as features (512 in total) for ensemble learning. However, before assessing the benefits of ensemble learn-
ing, it is interesting to check the performance of different single receptor or ensemble docking scenarios without 
any ML rescoring. The MSEs of docking affinity predictions of all 126 receptors are compared in Fig. 4a. The 
most accurate results were obtained from docking to the 3QRTA receptor (MSE = 2.586), which will be referred 
to as the 1ChainBestMSE model. In the same manner, the 1ChainWorstMSE model is the result of docking to 
3PY1A with an MSE of 9.03. The accuracy of any random single chain model would be between these values. 
Notably, there was no meaningful difference between the docking accuracy of free CDK2 and cyclin-bound 
CDK2.

The smallest ensemble docking scenario can be made of a pair of receptors. Ensemble docking prediction 
can be either the average prediction of members (mean scenario) or the best affinity prediction of members 
(min scenario). As shown in Fig. 4b, the mean scenario has lower MSE values for all possible combinations of 
receptor pairs. The ensemble {3QRTA, 3R7IA} with MSE values of 2.594 (in the mean scenario) and 2.904 (in 
the min scenario) is the most accurate ensemble in both scenarios. These two receptors are the most accurate 
single receptor models (Fig. 4a), and their combination does not provide any advantage in comparison with the 
single chain results. In other words, there is no 2-chain ensemble docking strategy that performs better than the 

Figure 4.   (a) MSE of docking predictions of all 126 chains of the non-redundant receptor ensemble. (b) MSE 
of all 7875 ensemble dockings to pairs of receptors. “min” and “mean” refer to using the minimum or average 
affinities of each ensemble. (c,d) Same as (a) and (b) for the Pearson’s correlation coefficient between docking 
predictions and experimental values. (e) Distribution of docking MSE upon selection of best receptor from a 
random fraction of data (seen data) and using it on the rest of data (unseen data) compared with docking MSE 
distribution for a randomly selected receptor applied to the same data. (f) Docking MSE values of ensembles of 
different size composed of representative receptors obtained from partitioning of curated receptor ensemble to 
different numbers of clusters compared to random ensembles of the same size. “min” and “mean” refer to using 
the minimum or average affinities of each ensemble.
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1ChainBestMSE model. The same conclusion can be drawn on the Pearson’s correlation coefficient, as depicted 
in Figs. 4c and 4d. Both single chain and 2-chain docking predictions show poor correlations with experimental 
affinities. The 1ChainBestRank model corresponds to docking to the 3R7IA receptor ( ρp = 0.34 and ρs = 0.33 ), 
and the 1ChainWorstRank corresponds to docking to the 3R8UA receptor ( ρp = ρs = 0.08 ). In the case of 
2-chain ensembles, the mean scenario performs slightly better than the min scenario, but for some pairs of 
receptors, one can find slightly better correlations by using the min of ensemble instead of its mean. Again, none 
of the 2-chain ensembles can produce correlations better than the 1ChainBestRank model.

These results were obtained by searching all docking possibilities over whole data. It’s also noteworthy to ask 
what would be the performance of receptor selection with respect to the enlargement of data. In other words, to 
what extent the best docking models obtained from a fraction of “seen data” can perform well on the remaining 
“unseen data”. To address this question, the data were split into different seen/unseen fractions, and the best chain 
with the lowest docking MSE over the seen data was used to predict unseen data. To compare the performance 
of this receptor selection strategy with a random situation, the seen/unseen MSE values of a randomly selected 
receptor were also calculated at each split. The whole procedure was repeated 1000 times, and the corresponding 
MSE distributions are depicted in Fig. 4e. A random chain model has a constant performance with an average 
MSE of approximately 4.6 and a large variance. The best selected chain is meaningfully better than random, 
with an average MSE that decreases slightly from 2.9 to 2.6 over unseen data. The selected best chain seems to 
be robust, as reflected in the variance of MSE values. With 10% of the data, the most selected receptors were 
3QRTA, 3R7IA and 3LE6A in 55.1%, 11.6% and 5.6% of random splits, respectively. Note that these are the three 
best single chain models in Fig. 4a. The propensity of selecting the 3QRTA receptor increases very fast to 84.3%, 
92.7%, 99.4% and 100% by enlarging the seen data to 30%, 50%, 70% and 90% of the whole data, respectively. 
Accordingly, the 1ChainBestMSE model is detectable with a high probability by screening of receptors over a 
small random fraction of whole data.

The last ensemble docking strategy that was assessed is the selection of representative receptors through 
clustering. From 2 to 10 clusters were considered corresponding to different levels of truncation in Fig. 2a. A 
representative receptor from each cluster was chosen that has the least dissimilarity to other members of the 
cluster. Both min and mean scenarios were applied, and the results are compared to random ensembles of the 
same size in Fig. 4f. In all cases, the ensembles formed by cluster representatives perform slightly better than the 
random ensembles of the same size. Increasing the size of the ensemble worsens the results of the min scenario 
for both random ensembles and those formed by cluster representatives. With the mean scenario, the MSE val-
ues do not change considerably by enlargement of the ensembles except that the larger random ensembles have 
lower MSE variance as a result of consensus. It should be noted that the 2VTRA receptor, which is the single 
representative structure of all 315 receptors (the uppermost arrow in Fig. 2a), has a docking MSE of 3.61 lower 
than almost all values in Fig. 4f. Accordingly, none of the assessed clustering-based ensemble docking strategies 
provide superior results, especially if one considers computational cost issues.

Random forest hyperparameters and trends of error.  In the following, our main emphasis is on 
the RF method since it is easier to tune, more interpretable to select important features, more stable with 
respect to outliers in the case of small datasets and has provided promising results in the case of protein–ligand 
interactions35,50,51. While there are some rules of thumb for implementing an RF machine, we decided to provide 
a comprehensive analysis of errors and their trends with respect to hyperparameters, accuracy of models and the 
results of feature importance rankings.

Initial assessments showed that a value of 500 is sufficient for the number of trees (ntree), and larger forests 
have similar trends of sensitivity to other parameters. After a random split of data to 80% train and 20% test sets, 
the OOB and Test MSE values were calculated over a grid of mtry and maxnode parameters. The results were 
depicted in Fig. 5a,b. As a result of randomness, repeating this procedure provides different landscapes of errors 
except that both errors become independent of the maxnode parameter larger than a value of approximately 75. 
Accordingly, the maximum number of terminal nodes that controls the depth of trees in the forest was set to 80, 
and only the value of mtry was considered an effective hyperparameter in subsequent analyses. The effect of 8 
simple molecular features on the distribution of OOB and Test MSE is shown in Fig. 5c for two different values 
of the mtry parameter. While a minor improvement is reflected in this figure for the Test MSE with molecular 
features, it will be shown that when shrinking the receptor ensemble and reducing the number of receptor-
dependent features, the role of these molecular features becomes more prominent.

In Fig. 5d, OOB and Test MSE are depicted for different values of mtry. For each value of mtry, different frac-
tions of train/test sets were considered to obtain the trend of errors with respect to enlargement of data. Each 
box plot represents the distribution of errors obtained by 500 random repeats of the whole procedure from data 
splitting to model building. The enlargement of data successively improves the model accuracy in terms of the 
median of distributions of both metrics. Enlargement of the train set also decreases the variance of the OOB 
MSE to a reasonable span. It is well known that the OOB error has a conservative bias in the estimation of the 
true prediction error52. Especially for “small n, large p” situations, it was shown that the OOB error overestimates 
the true error depending on the scheme of sampling the variables and the mtry value51. In the case of the current 
problem, Fig. 5d shows that this overestimation occurs at all values of mtry, but the accuracy of a model built 
from all data seems to be less sensitive to mtry values larger than 50. An mtry value of 50 or 100 seems to be a 
reasonable choice regarding the accuracy of models and keeping the fact in mind that larger values of mtry result 
in more correlated trees and weaken the benefits of consensus in reducing the variance53.

Ranking of receptors via RF feature importance.  The RF model built on the whole set of features 
seems to be able to reach an average accuracy of 1 kcal/mol in the prediction of binding free energies, but here, 
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the other mission of machine learning is the selection of the most important CDK2 structures for RF-based 
rescored ensemble docking. The impurity importance that reflects the mean decrease of impurity upon all split-
tings in the forest is known to be biased when the features vary in their scale of measurements or their number 
of categories54. Some approaches have been suggested to remove this bias, especially in clustering forests55. As 
a result, the permutation importance that reflects the mean decrease in accuracy has been preferred in most 
feature selection tasks, although it suffers from intensive computational cost for high-dimensional data54. Both 
measures of importance were calculated in this study, and their sensitivity to mtry was compared in Fig. S4 for 
the first 20 important features. Again, the calculations were repeated 500 times to obtain the extent of distributed 
importance values resulting from the intrinsic randomness of the method. The average permutation importance 
of all 512 features is plotted in Fig. 6a for mtry = 100. Similar results for impurity importance can be found in 
Fig. S5a. Both importance curves fall rapidly for the first few features, after which the relative preference of suc-
cessive features becomes less significant regarding the overlap of corresponding box plots (see Figs. S4 and S6c). 
The magnitude of importance values is sensitive to mtry, and especially in the case of impurity importance, an 
increase in this parameter strengthens the first few important features and weakens the discrimination of fea-
tures of intermediate importance (see Fig. S4). This can be explained by the fact that by increasing mtry, strongly 
predictive features that are selected in most bootstrap samples have a greater chance of being included in more 
trees and thus push the measured impurity importance of intermediate features down to the less important ones. 
However, there is a considerable overlap between the first high ranked features obtained at different mtry values 
or between the impurity and permutation rankings at a specific mtry. For both measures, there is 80% overlap 
between the first 20 important features obtained at four different mtry values reported in Fig. S4. At a mtry value 
of 100, which was chosen for subsequent steps of the current work, there is 100%, 80%, 70% and 66% overlap 
between the impurity and permutation results of the most important 3, 10, 20 and 50 features, respectively. A 
Spearman’s rank correlation coefficient of 0.76 was found over the whole set of features between impurity and 
permutation rankings. This increases to approximately 0.9 in the first 20 most important features.

A comparison of the relative importance of different energetic contributions shows that the electrostatic 
interaction energy (ELC) and the torsional loss of entropy (TOR) are the most and the least important features, 
respectively (see Figs. 6b and S6b). Both impurity and permutation measures are in agreement on the general 
importance order of docking contributions: ELC >  > VHD > INT >  > TOR. They are also in agreement about the 
most important molecular features, the molecular weight (MW) and the number of nonhydrogen atoms (NNH), 
that are highly correlated representations of nearly the same thing. The least important molecular feature, the 
number of rotatable bonds (NRB), is consistent with the low importance of torsional loss of entropy (TOR) if one 
considers the way that the AutoDock force field estimates the latter from the former9. Now, the main question is 
how to rank receptor chains based on feature importance values. Figure 6d shows how fast the number of selected 
chains can increase when one selects more features in order of their importance. Actually, the relative importance 
of different physical contributions (Fig. 6b) is such that above a specific cutoff on feature importance, many chains 

Figure 5.   (a,b) OOB and Test MSE over a grid of different mtry and maxnode values while the number of trees 
is fixed at 500 and the data is split to 80% train and 20% test. (c) The effect of inclusion of molecular features on 
distribution of OOB and Test MSE obtained upon many random splits of data to 80% train and 20% test. (d) 
Trends of OOB and Test MSE as enlarging the test set from 30 to 100% of data and their dependence on mtry 
values.
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should be selected due to the dominant role played by their ELC or VHD contributions. In practice, the sum of 
all feature importance values corresponding to a receptor was used to rank all receptors (see Tables S4 and S5).

Ensemble learning from ensemble docking.  We compare the results of RF models built from docking 
features of the 3 and 10 most important receptors, denoted as 3ChainRF(+ M) and 10ChainRF(+ M) models, 
respectively, where “ + M” indicates the augmentation of docking features with molecular features. A more deter-
ministic estimate of the model performance was obtained via the calculation of leave-one-out (LOO) errors. 
This also provides a comparison of per ligand errors between RF models and the single receptor or ensemble 
docking models discussed above. Single receptor docking, ensemble docking and ensemble learning from dock-
ing models were compared with respect to different metrics in Table 1. Figure 7a compares the OOB MSE of all 
202 forests that were built for any of the 3ChainRF, 10ChainRF, 3ChainRF + M and 10ChainRF + M models, 
which have LOO MSE values of 1.30, 1.20, 1.18 and 1.15, respectively. Some ligands, such as L38 and L162, are 
commonly difficult to predict in all of these models, and their exclusion reduces the OOB MSE considerably. 
All different types of MSE and correlation metrics reported thus far measure the performance of models on the 
complete data. To obtain a sense of performance regarding the early detection problems, the enrichment factor 
defined in Eq. (6) is plotted in Fig. 7b for the RF models and the best and worst docking results. While the best 
docking results cannot perform much better than random, the 10ChainRF + M model can enrich 65% of the top 
20% of ranked ligands. Other RF models perform reasonably well, and the existence of simple molecular features 
(“ + M” models) enhances early enrichment, especially when one uses only the three most important receptors 
in ensemble docking. Finally, the distribution of prediction errors was compared between the best docking 
model (1ChainBestMSE) and the best RF model (10ChainRF + M), as shown in Fig. 7c. Similar distributions 
are depicted in Fig. 7d for some of the other models. After docking to the RF selected receptors, RF rescoring 
not only improves the MSE and correlation but also removes the negative skewness of error distributions, which 
is a result of false positive predictions in different docking scenarios. Although the main emphasis of the cur-
rent study was on the RF models, we provided a rough comparison of RF and BRT without any hyperparameter 
tuning. Figure S6a shows that the BRT model Test MSE decreases with the enlargement of the training data, and 
Figure S6b compares the LOO errors of the RF and BRT models built on the whole dataset. The performance 
of both methods seems to be similar, but it is well known that a fine-tuned BRT model can outperform an RF 
model. On the other hand, such tuning can result in overfitting in the case of noisy data, and we find it safer to 
prefer RF models regarding the size of available data.

Figure 6.   (a) Permutation importance of all 512 docking and molecular features averaged over repeats with 
different random seeds. (b) Distribution of average permutation importance of different physical contributions 
of docking features obtained by aggregating contributions from all receptors. The vertical lines correspond to the 
average importance of simple molecular features. (c) Distribution of permutation importance values of 20 most 
important features. (d) Enumeration rate of receptor chains against features sorted by permutation importance.
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Table 1.   Different models and their performance measures. In the case of single receptor and ensemble 
docking models, metrics were obtained from docking predictions, and in the case of RF models, leave-one-
out prediction errors were used. EFx% corresponds to the percentage of the top x% of experimentally ranked 
ligands that correctly predicted in the top x% of computationally ranked ligands.

Models MSE MAE Rp EF5% EF20% EF50% Receptors

One receptor docking

1ChainBestMSE 2.59 1.27 0.26 0% 20% 56% 3QRTA​

1ChainBestRank 2.83 1.36 0.34 0% 27% 60% 3R7IA

1ChainWorstMSE 9.03 3.67 0.23 0% 20% 58% 3PY1A

1ChainWorstRank 5.98 2.02 0.08 0% 12% 48% 3R8UA

Cluster representatives docking

1ChainCluster 3.61 1.55 0.22 0% 12% 57% 2VTRA​

2ChainClusterMin 5.01 1.79 0.21 0% 22% 54% 1HCKA, 4EORC

4ChainClusterMin 5.90 1.97 0.19 0% 20% 51% 1HCKA, 3RK9A, 4EORC, 3F5XC

10ChainClusterMin 7.09 2.19 0.24 0% 22% 57% 1HCKA, 3QZHA, 1KE7A, 3RK9A, 3PXFA, 4EOSC, 4EORC, 
1VYWC, 1P5EA, 1GY3C

2ChainClusterMean 4.01 1.62 0.24 0% 20% 54% 2VTRA​

4ChainClusterMean 4.15 1.66 0.23 0% 22% 53% 1HCKA, 4EORC

10ChainClusterMean 4.11 1.65 0.25 0% 22% 56% 1HCKA, 3RK9A, 4EORC, 3F5XC

Random forest models

3ChainRF 1.31 0.95 0.56 20% 53% 72% 5ANEA, 3RZBA, 4ERWA​

10ChainRF 1.20 0.89 0.61 30% 53% 72% 5ANEA, 3RZBA, 4ERWA, 3QX4A, 5JQ8A, 3R8UA, 5A14A, 
3R9DA, 1GY3C, 3TIZA

3ChainRF + M 1.19 0.90 0.61 20% 55% 71% 5ANEA, 3RZBA, 4ERWA​

10ChainRF + M 1.15 0.88 0.63 20% 58% 71% 5ANEA, 3RZBA, 4ERWA, 3QX4A, 5JQ8A, 3R8UA, 5A14A, 
3R9DA, 1GY3C, 3TIZA

Figure 7.   (a) OOB MSE for each of the leave-one-out models corresponding to forests created from docking 
features of 3 and 10 most important receptors with or without 8 molecular features. The most difficult ligands 
to predict are labeled. (b) The enrichment rate of RF models compared to the most and the least accurate 
docking strategies. (c) Distribution of prediction errors of the most accurate RF model in comparison with 
the most accurate docking without learning strategy. (d) Distribution of prediction errors compared for some 
representative models and their MSE and Pearson’s correlation coefficient between predicted and experimental 
values.
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Conclusions
Promising success of machine learning approaches in protein–ligand binding affinity predictions is changing the 
routines of molecular docking. However, the incorporation of protein flexibility in pipelines of structure-based 
drug design remains a challenge and makes ensemble docking strategies increasingly popular. On the other 
hand, the large size of the receptor ensemble affects the performance of the procedure; hence, the optimal size 
of the receptor ensemble is an open question from both the computational cost and accuracy points of view. In 
the case of CDK2 and its corresponding available data, we showed that the only meaningful flavor of ensemble 
docking is its combination with ensemble learning. This outperforms the docking without learning strategies 
not only with respect to the accuracy, correlation and enrichment metrics but also with regard to efficiency and 
computational cost concerns. The present results can be seen as a proof of concept for ML-based selection of 
receptors for subsequent applications in an ensemble docking strategy that should be leveraged by ensemble 
learning. Four main steps can be suggested: (i) Redundancy removal from an initial set of receptors. (ii) ML-
based ranking of receptors over a small but diverse set of ligands. (iii) Ensemble learning from docking to a 
larger set of ligands. (iv) Application of resulting models to screen large libraries of compounds. This protocol 
can be extended and improved in different ways. The initial set of receptors can be obtained from computational 
conformational sampling methods such as different MD-based approaches, especially in the case of proteins 
whose ligand binding space is not characterized diversely. In cases in which larger sets of protein–ligand binding 
affinity data are available, other base learners can be tested in the ensemble learning stage, and more sophisticated 
feature selection strategies can be tuned for selection of the optimum receptor ensemble. Interestingly, we note 
that while this manuscript was under review a related work was published56. That work considers similar idea 
of combining machine learning and ensemble docking to design receptor-specific binary classifiers to identify 
active molecules from inactive ones. Promising results have been found over four different proteins that indicates 
machine learning classifiers significantly outperform traditional consensus strategies. As such, the results of both 
papers are complementary and highlight new avenues of research.

Methods
Initial and curated receptor ensembles.  All available 376 X-ray structures containing at least a CDK2 
chain (with UniProt ID P24941 or GenBank ID 30,583,821) were downloaded from the RCSB database. Theses 
PDB files include 481 CDK2 chains. The main emphasis in the current study is on two major conformational 
states of CDK2: its free form (266 chains) and its complex with cyclin (203 chains). Accordingly, 12 CDK2 
chains that are in complex with other proteins were dropped, and our “initial receptor ensemble” includes 469 
conformations of CDK2.

In general, the ATP binding site is the main target of most inhibition studies, and 34 chains contain an ATP 
or ADP molecule at this site. An extended binding region was defined to cover all residues that might affect 
ligand binding. The “SITE” and “REMARK 800” records in PDB files were used to extract those residues that 
are in contact with ATP or ADP. This initial binding pocket (27 residues) was then extended to 41 residues by 
inspecting protein contacts with any valid ligand in all other chains. Chains without any ligand in this extended 
region were removed from the initial receptor ensemble. Some other chains were also ignored due to missing 
residues or mutations in the extended binding site. At this stage, the “curated receptor ensemble” included 315 
CDK2 chains, as listed in Table S1. Members of the receptor ensembles will be denoted by their PDB and chain 
IDs (e.g., 1FINA for PDB ID = “1FIN” and chain ID = “A”). Residues in the defined extended binding region are 
listed in Table S2.

Receptor refinements and docking box definition.  The pattern of missing residues corresponding 
to disordered segments of the sequence was analyzed, and all missing residues were reconstructed by the loop 
modeling module in MODELLER57. Hydrogen atoms were added to X-ray structures by the Reduce program58. 
Missing atoms were repaired by the psfgen package in VMD 1.959. NAMD 2.1060 in conjunction with the 
CHARMM 27 force field61 was used for 20,000 steps of conjugated gradient minimization while restraining 
all experimentally determined atom positions. All receptors were superimposed from their backbone atoms 
to provide a common frame for analysis of ligand positions and defining a unique set of coordinates for ligand 
docking. Before the docking step and to reduce false positive pose predictions, the experimental position of all 
ligands and their coordinate bounding boxes were analyzed collectively and via a principal component analysis 
on the centers of geometry of ligands. Accordingly, a docking box size of 22 × 20 × 21 Å3 was chosen in a center 
that provides enough space for pose search in ATP binding site and its nearby but prevents from posing ligands 
in an allosteric center behind this site.

Receptor clustering and redundancy removal.  With respect to the geometry of residues in the 
extended binding site, some structures in the curated receptor ensemble are nearly identical. Moreover, the size 
of this ensemble (315 conformers) is larger than to be practically suitable for an ensemble docking strategy. To 
analyze the redundancy or proximity of receptors, a dissimilarity tensor D with dimensions of 315 × 315 × 41 was 
defined as

where rik and rjk are vectors of nonhydrogen atom positions of kth -residue in ith and jth receptors and RMSD 
stands for root mean squared deviation. Instead of the common task of calculating RMSD for all 41 binding 
site residues at once, this definition makes it possible to care about different geometries of every single residue 

(1)Dijk = RMSD(rik , rjk)
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when comparing a pair of receptors. The dissimilarity tensor D was then converted to a total RMSD proximity 
measure T defined as follows:

Each element of T adds up all pairwise RMSD values of all binding site residues between two receptors. 
This accumulation of per residue RMSD values provides a better signal-to-noise ratio in comparison with the 
calculation of RMSD values of all residues at once. Another proximity measure N  was also defined as follows:

where � is the Heaviside step function. Accordingly, Nij is the number of residues that have an RMSD value larger 
than 2 Å between the ith and jth receptors. In this manner, single residue conformational differences between 
receptors were counted through a cutoff. Using both T and N  as dissimilarity matrices, members of the curated 
receptor ensemble were clustered via a hierarchical agglomerative algorithm with Ward linkage to assess different 
ways of ensemble shrinking and redundancy removal. In this work, a receptor redundancy criterion was defined 
as Nij = 0 . In other words, two receptors are assumed to be identical if none of the 41 residues in the extended 
binding site have RMSD values larger than 2 Å between them. A graph-based redundancy removal method was 
suggested and applied that provides better ensemble shrinkage in a less subjective and more robust design. The 
proximity measure N  was converted to an adjacency matrix A as follows:

where δij is the Kronecker delta that keeps A traceless. On the corresponding graph, each node represents a 
receptor, and each edge between nodes means that those receptors are identical ( Nij = 0) . An iterative proce-
dure selects the node with a maximum degree as a representative nonredundant receptor and deletes its closed 
neighborhood from the graph. The iteration stops when no edges remain and the remaining nodes are added 
to the set of nonredundant receptors. In this manner, 126 CDK2 chains were selected that will be denoted as 
“nonredundant receptor ensemble” (see Table S1).

Ensemble docking.  A set of 630 ligands with available CDK2 inhibition constants ( ki ) were obtained from 
the ChEMBL database62. Among them, only those records with an equality relation for ki values (not inequalities 
or ranges) were kept. This set was also filtered based on the availability of atom types in the scoring function of 
the selected docking tool, no rule of five violations, number of rotatable bonds less than 12 and availability of 
3D structures in the ZINC database63. After all, 202 ligands were selected for docking to all 126 members of the 
nonredundant receptor ensemble. In the case of different protonation states in the ZINC database, the structure 
corresponding to pH = 7 was selected. A list of these ligands can be found in Table S3. In a recent study, we 
compared AutoDock49 and AutoDock Vina10 docking tools regarding their pose prediction accuracy based on 
available X-ray structures of ligand-CDK2 complexes64. It was shown that for the top-ranked predicted pose, i.e., 
the best scored docking geometry, AutoDock4 reproduced 62% of binding geometries with an RMSD less than 
2 Å from the experimental geometry, while this value was 37% for AutoDock Vina. Accordingly, AutoDock4 
was used in the current study since better pose prediction in the ensemble docking stage can enhance the sub-
sequent ensemble learning results. The docking parameters were chosen to be the same as those used in a previ-
ous study64. A Lamarckian genetic algorithm with an initial population of 500 was repeated 200 times for each 
ligand-receptor complex, and the best scored binding mode was selected for subsequent machine learning steps. 
AutoDock4 scores complexes according to the following equation:

which is an estimation of binding free energy ( �G ) based on a linear combination of physically interpretable 
terms65,66. �Gvdw , �Ghbond and �Gelec are van der Waals dispersion/repulsion, hydrogen bonding, and electro-
static interactions, respectively. �Gdesolv is the desolvation potential, and �Gtor is an estimate of conformational 
entropy lost upon binding. Values of these terms for selected complexes were used as features in ensemble learn-
ing. However, before ensemble learning, the performance of different ensemble docking scenarios was assessed, 
including i) any of 126 nonredundant receptors, ii) all possible 7875 receptor pairs, and iii) different numbers 
of representative receptors obtained from clustering of Nij or Tij . In all cases, comparisons were also made with 
the same number of receptors randomly selected.

Ensemble learning.  For each ligand and each receptor, four features were extracted from the energetics of 
their complex reported by AutoDock: 1) VHD is the sum of intermolecular contributions from �Gvdw , �Ghbond 
and �Gdesolv 2) ELC is the intermolecular contribution from �Gelec 3) TOR is �Gtor 4) INT is the ligand internal 
energy in the bound state. Since the same conformation was assumed for the bound and unbound states of the 
ligand, this contribution cancels out from the total free energy but differs between 126 complexes of the same 
ligand; thus, we kept it in the machine learning step as a feature of ligand binding geometry. Accordingly, for 
each ligand, we have 504 (4 × 126) receptor-dependent features that will be denoted by combining the recep-
tor ID and the feature symbols, e.g., 5ANEA_VHD and 5ANEA_ELC. This set was augmented by eight simple 
receptor-independent features of the ligands reported in the ChEMBL database, including molecular weight 

(2)Tij =

41
∑

k=1

Dijk

(3)Nij =

41
∑

k=1

�(Dijk − 2)

(4)Aij = (1−�(Nij))δij

(5)�G ≈ �Gvdw +�Ghbond +�Gelec +�Gdesolv +�Gtor
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(MW), AlogP estimation of lipophilicity (ALP), polar surface area (PSA), number of hydrogen bond acceptors 
(NHA), number of hydrogen bond donors (NHD), number of rotatable bonds (NRB), number of aromatic rings 
(NAR) and number of nonhydrogen (heavy) atoms (NNH).

Using these features, ensemble learning was utilized to predict experimental binding free energies and to 
shrink nonredundant receptor ensemble, simultaneously. The random forest (RF) as a bagging approach and the 
boosted regression trees (BRT) as a boosting approach were used via random forest67,68 and gbm69,70 R packages, 
respectively. In RF models, the number of decision trees in the ensemble (ntree), the number of features randomly 
sampled at each split (mtry) from which the best splitting criterion is selected and the maximum number of 
terminal nodes that trees in the forest can have (maxnode) were dealt as hyperparameters, and their effect on the 
performance of models was analyzed extensively. Occasionally, the trends of errors were assessed by splitting the 
data to train/test sets of different sizes. The performance of the models was measured by the out-of-bag mean 
squared error (OOB MES) or the test set mean squared error (test MSE). Pearson’s correlation coefficient ( ρp ), 
Spearman’s rank correlation coefficient ( ρs ) and the leave-one-out (LOO) error were used as other evaluation 
metrics to compare models. For trend finding and comparative purposes, the inherent random nature of data 
splitting and model learning were treated by repeating corresponding procedures up to 1000 times to obtain a 
reliable distribution of considered measures. As a metric for the performance of models in the early recognition 
of more active fractions of experimentally ranked ligands, an enrichment factor was defined as

where Lexpx%  or Lcalcx%  are the subsets of the top x% ligands sorted by their experimental or calculated affinities, 
respectively. Accordingly, EF20% is the percentage of the top 20% of experimentally ranked ligands that are in 
the top 20% of computationally ranked ligands.

Feature importance and receptor ensemble shrinkage.  The importance of features in the learning 
process was used to rank CDK2 chains in the nonredundant receptor ensemble and to assess the extent of reduc-
ing the number of structures necessary for ensemble docking while maintaining the accuracy of ensemble learn-
ing at a reasonable level. Decision tree models benefit from being considerably interpretable. Each node (attrib-
ute/feature) in a decision tree is a selected splitting criterion, and attributes at lower tree depths are considered 
more important features. A random forest, on the other hand, is a set of decision trees that is not interpretable 
by relying on the forest structure itself. For this reason, several measures have been introduced to quantify the 
importance of single features in the final RF model based on which a ranking over feature importance in the final 
model can be achieved54,55. One measure, termed “impurity importance”, was defined as the percentage effect of 
a feature on the decrease in node impurity averaged over all trees. However, it has been shown that this measure 
can be strongly biased depending on the underlying distribution of feature values and the size of the data55. Thus, 
we mainly focused on the second measure, termed “permuting importance”, defined as the percentage change in 
prediction error (MSE) when permuting the feature from out-of-bag (OOB) data and averaging over all trees. A 
scaling of this measure through dividing the average by the standard deviation of per-tree values was considered 
since it has been suggested to be beneficial in obtaining more stable importance estimations54. Both impurity and 
permutation measures were calculated by the “importance” function of the randomForest package71.

Data availability
The data underlying this article are available in the article and in its online supplementary materials.
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