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To capture all other solutions: 
Generating 0 in a non-trivial way using 
the columns of the matrix
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Putting everything together, we obtain the general solution

The general approach we followed consisted of the following three steps:

1. Find a particular solution to Ax = b.
2. Find all solutions to Ax = 0.
3. Combine the solutions to obtain the general solution.
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In this way, finding the solutions for a homogeneous equation 
system Ax = 0 would be straightforward:

The key idea for finding the solutions of 
Ax = 0 is to look at the non-pivot columns

𝑥 ∈ ℝ5: 𝑥 = 𝜆1
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, 𝜆1, 𝜆2 ∈ ℝ

We can express them as a (linear) combination of the pivot 
columns. 
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The Minus-1 Trick
A practical trick for reading out the solutions of a homogeneous
system of linear equations

We extend this matrix to an n×n-matrix ሚ𝐴 by adding n − k rows of
the form

Then, the columns of ሚ𝐴 that contain the −1 as pivots are solutions 
of the homogeneous equation system Ax = 0.
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there is no non-trivial solution 
Hence, the vectors x1, x2 and x3

are linearly independent.



Solving Systems of Linear Equations

Checking Linear Independency

A practical way to check the independency is to use Gaussian
elimination to solve a homogeneous system of equation:

 All column vectors are linearly independent if and only if all 
columns are pivot columns. 

 If there is at least one non-pivot column, the columns are 
linearly dependent.



Solving Systems of Linear Equations

Checking Linear Independency

A practical way to check the independency is to use Gaussian
elimination to solve a homogeneous system of equation:

This linear equation system is non-trivially solvable! 
The last column is not a pivot column: x4 = −7x1−15x2−18x3.

 All column vectors are linearly independent if and only if all 
columns are pivot columns. 

 If there is at least one non-pivot column, the columns are 
linearly dependent.
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Solving Systems of Linear Equations

Assume that a solution exists for a system of linear equation Ax=b.
• if A is a square matrix and invertible, the inverse A−1 can be

obtained such that x = A−1b

• If A is a rectangular matrix:

𝐀x = 𝐛

𝐀𝐓𝐀x = 𝐀T𝐛

𝐀𝐓𝐀
−𝟏
𝐀𝐓𝐀x = 𝐀𝐓𝐀

−1
𝐀T𝐛

x = 𝐀𝐓𝐀
−1
𝐀T𝐛

Moore-Penrose pseudo-inverse 
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Symmetric, Positive Definite Matrices

A positive definite matrix is a symmetric matrix with all 

positive eigenvalues.
• Calculating all the eigenvalues and just check to see if 

they’re all positive!

A matrix is positive definite if it’s symmetric and all its 

pivots are positive.
• Just perform elimination and examine the diagonal terms.

Example:

the matrix is not positive definite!

1 2
2 1

elimination 1 2
0 −3R2 – 2R1  R2
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Symmetric, Positive Definite Matrices

A matrix is positive definite xTAx > 0 for any column vector x  0
• Example:
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𝑥𝑇𝐴𝑥

= 2𝑥1
2 − 2𝑥1𝑥2 + 2𝑥2

2 + (𝑥3
2 − 2𝑥2𝑥3)

= 𝑥1 − 𝑥2
2 + 𝑥1

2 + 𝑥2
2 + (𝑥3

2 − 2𝑥2𝑥3)

= 𝑥1 − 𝑥2
2 + 𝑥1

2 + 𝑥2 − 𝑥3
2 > 0

= 𝑥1 𝑥2 𝑥3
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−1
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2
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0
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Symmetric, Positive Definite Matrices

A matrix A is positive definite if and only if it can be written as

A = RTR,

where R is a matrix, possibly rectangular, with independent

columns.

1 0
2 1
3 2

14 8
8 5

=
1 2 3
0 1 2

𝐱T𝐀x

If the columns of R are linearly independent then Rx  0 if x0,
and so xTAx> 0.

= 𝐱T𝐑T𝐑𝐱 = 𝐑𝐱 T 𝐑𝐱 = 𝐑𝐱 2



Symmetric, Positive Definite Matrices

Any Question?


