Computational Data Mining

 Part 4: Linear Algebra Linear SystemsInstructor: Zahra Narimani

\square
Department of Computer Science and Information Technology, Institute for Advanced Studies in Basic Sciences, Zanjan, Iran

Solving Systems of Linear Equations

We will focus on solving systems of linear equations and provide an algorithm for finding the inverse of a matrix.

Solving Systems of Linear Equations

We will focus on solving systems of linear equations and provide an algorithm for finding the inverse of a matrix.
Consider the system of equations
$\left[\begin{array}{llll}1 & 0 & 8 & -4 \\ 0 & 1 & 2 & 12\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{c}42 \\ 8\end{array}\right]$

Solving Systems of Linear Equations

We will focus on solving systems of linear equations and provide an algorithm for finding the inverse of a matrix.
Consider the system of equations
\(\left[$$
\begin{array}{llll}1 & 0 & 8 & -4 \\
0 & 1 & 2 & 12\end{array}
$$\right]\left[$$
\begin{array}{l}x_{1} \\
x_{2} \\
x_{3} \\
x_{4}\end{array}
$$\right]=\left[\begin{array}{c}42

8\end{array}\right]\)| $\begin{array}{l}\text { Two equations and four unknowns, } \\ \text { Therefore, in general we would expect } \\ \text { infinitely many solutions. }\end{array}$ |
| :--- |

Solving Systems of Linear Equations

We will focus on solving systems of linear equations and provide an algorithm for finding the inverse of a matrix.
Consider the system of equations
\(\left[$$
\begin{array}{llll}1 & 0 & 8 & -4 \\
0 & 1 & 2 & 12\end{array}
$$\right]\left[$$
\begin{array}{l}x_{1} \\
x_{2} \\
x_{3} \\
x_{4}\end{array}
$$\right]=\left[\begin{array}{c}42

8\end{array}\right]\)| $\begin{array}{l}\text { Two equations and four unknowns, } \\ \text { Therefore, in general we would expect } \\ \text { infinitely many solutions. }\end{array}$ |
| :--- |

A straightforward solution is:
$\left[\begin{array}{llll}42 & 8 & 0 & 0\end{array}\right]^{T}$
particular solution or special solution

Solving Systems of Linear Equations

We will focus on solving systems of linear equations and provide an algorithm for finding the inverse of a matrix.
Consider the system of equations
\(\left[$$
\begin{array}{cccc}1 & 0 & 8 & -4 \\
0 & 1 & 2 & 12\end{array}
$$\right]\left[$$
\begin{array}{l}x_{1} \\
x_{2} \\
x_{3} \\
x_{4}\end{array}
$$\right]=\left[\begin{array}{c}42

8\end{array}\right] \quad\)| $\begin{array}{l}\text { Two equations and four unknowns, } \\ \text { Therefore, in general we would expect } \\ \text { infinitely many solutions. }\end{array}$ |
| :--- |

A straightforward solution is: $\left.\begin{array}{llll}{\left[\begin{array}{ccc}42 & 8 & 0\end{array}\right.} & 0\end{array}\right]^{T}$
$\left[\begin{array}{cccc}1 & 0 & 8 & -4 \\ 0 & 1 & 2 & 12\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3} \\ c_{4}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
To capture all other solutions:
Generating 0 in a non-trivial way using the columns of the matrix

Solving Systems of Linear Equations

$\left[\begin{array}{cccc}1 & 0 & 8 & -4 \\ 0 & 1 & 2 & 12\end{array}\right]\left(\lambda_{1}\left[\begin{array}{c}8 \\ 2 \\ -1 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}0 \\ 0\end{array}\right]$

Solving Systems of Linear Equations

$\left[\begin{array}{cccc}1 & 0 & 8 & -4 \\ 0 & 1 & 2 & 12\end{array}\right]\left(\lambda_{1}\left[\begin{array}{c}8 \\ 2 \\ -1 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}0 \\ 0\end{array}\right] \quad\left[\begin{array}{cccc}1 & 0 & 8 & -4 \\ 0 & 1 & 2 & 12\end{array}\right]\left(\lambda_{2}\left[\begin{array}{c}-4 \\ 12 \\ 0 \\ -1\end{array}\right]\right)=\left[\begin{array}{l}0 \\ 0\end{array}\right]$

Solving Systems of Linear Equations

$\left[\begin{array}{cccc}1 & 0 & 8 & -4 \\ 0 & 1 & 2 & 12\end{array}\right]\left(\lambda_{1}\left[\begin{array}{c}8 \\ 2 \\ -1 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}0 \\ 0\end{array}\right] \quad\left[\begin{array}{cccc}1 & 0 & 8 & -4 \\ 0 & 1 & 2 & 12\end{array}\right]\left(\begin{array}{c}\left.\lambda_{2}\left[\begin{array}{c}-4 \\ 12 \\ 0 \\ -1\end{array}\right]\right)=\left[\begin{array}{l}0 \\ 0\end{array}\right], ~(1) ~\end{array}\right.$
Putting everything together, we obtain the general solution

$$
\left\{x \in \mathbb{R}^{4}: x=\left[\begin{array}{c}
42 \\
8 \\
0 \\
0
\end{array}\right]+\lambda_{1}\left[\begin{array}{c}
8 \\
2 \\
-1 \\
0
\end{array}\right]+\lambda_{2}\left[\begin{array}{c}
-4 \\
12 \\
0 \\
-1
\end{array}\right], \quad \lambda_{1}, \lambda_{2} \in \mathbb{R}\right\}
$$

Solving Systems of Linear Equations

$\left[\begin{array}{cccc}1 & 0 & 8 & -4 \\ 0 & 1 & 2 & 12\end{array}\right]\left(\lambda_{1}\left[\begin{array}{c}8 \\ 2 \\ -1 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}0 \\ 0\end{array}\right] \quad\left[\begin{array}{cccc}1 & 0 & 8 & -4 \\ 0 & 1 & 2 & 12\end{array}\right]\left(\lambda_{2}\left[\begin{array}{c}-4 \\ 12 \\ 0 \\ -1\end{array}\right]\right)=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
Putting everything together, we obtain the general solution

$$
\left\{x \in \mathbb{R}^{4}: x=\left[\begin{array}{c}
42 \\
8 \\
0 \\
0
\end{array}\right]+\lambda_{1}\left[\begin{array}{c}
8 \\
2 \\
-1 \\
0
\end{array}\right]+\lambda_{2}\left[\begin{array}{c}
-4 \\
12 \\
0 \\
-1
\end{array}\right], \quad \lambda_{1}, \lambda_{2} \in \mathbb{R}\right\}
$$

The general approach we followed consisted of the following three steps:

1. Find a particular solution to $\mathbf{A x}=\mathbf{b}$.
2. Find all solutions to $\mathbf{A x}=\mathbf{0}$.
3. Combine the solutions to obtain the general solution.

Solving Systems of Linear Equations

In this way, finding the solutions for a homogeneous equation system $\mathbf{A x}=\mathbf{0}$ would be straightforward:

Solving Systems of Linear Equations

In this way, finding the solutions for a homogeneous equation system $\mathbf{A x}=\mathbf{0}$ would be straightforward:
$\boldsymbol{A}=\left[\begin{array}{ccccc}\mathbf{1} & 3 & 0 & 0 & 3 \\ 0 & 0 & \mathbf{1} & 0 & 9 \\ 0 & 0 & 0 & \mathbf{1} & -4\end{array}\right]$
The key idea for finding the solutions of $\mathbf{A x}=\mathbf{0}$ is to look at the non-pivot columns

Solving Systems of Linear Equations

In this way, finding the solutions for a homogeneous equation system $\mathbf{A x}=\mathbf{0}$ would be straightforward:

$$
\boldsymbol{A}=\left[\begin{array}{ccccc}
\mathbf{1} & 3 & 0 & 0 & 3 \\
0 & 0 & \mathbf{1} & 0 & 9 \\
0 & 0 & 0 & \mathbf{1} & -4
\end{array}\right]
$$

The key idea for finding the solutions of $\mathbf{A x}=\mathbf{0}$ is to look at the non-pivot columns

We can express them as a (linear) combination of the pivot columns.

$$
\left\{x \in \mathbb{R}^{5}: x=\lambda_{1}\left[\begin{array}{c}
3 \\
-1 \\
0 \\
0 \\
0
\end{array}\right]+\lambda_{2}\left[\begin{array}{c}
3 \\
0 \\
9 \\
-4 \\
-1
\end{array}\right], \quad \lambda_{1}, \lambda_{2} \in \mathbb{R}\right\}
$$

Solving Systems of Linear Equations

The Minus-1 Trick
A practical trick for reading out the solutions of a homogeneous system of linear equations

Solving Systems of Linear Equations

The Minus-1 Trick

A practical trick for reading out the solutions of a homogeneous system of linear equations

$$
\boldsymbol{A}=\left[\begin{array}{ccccccccccccccc}
0 & \cdots & 0 & \mathbf{1} & * & \cdots & * & 0 & * & \cdots & * & 0 & * & \cdots & * \\
\vdots & & \vdots & 0 & 0 & \cdots & 0 & \mathbf{1} & * & \cdots & * & \vdots & \vdots & & \vdots \\
\vdots & & \vdots & \vdots & \vdots & & \vdots & 0 & \vdots & & \vdots & \vdots & \vdots & & \vdots \\
\vdots & & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots & 0 & \vdots & & \vdots \\
0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & \mathbf{1} & * & \cdots & *
\end{array}\right]
$$

We extend this matrix to an $\mathrm{n} \times \mathrm{n}$-matrix \tilde{A} by adding $\mathrm{n}-\mathrm{k}$ rows of the form

$$
\left[\begin{array}{lllllll}
0 & \cdots & 0 & -1 & 0 & \cdots & 0
\end{array}\right]
$$

Solving Systems of Linear Equations

The Minus-1 Trick

A practical trick for reading out the solutions of a homogeneous system of linear equations

$$
\boldsymbol{A}=\left[\begin{array}{ccccccccccccccc}
0 & \cdots & 0 & \mathbf{1} & * & \cdots & * & 0 & * & \cdots & * & 0 & * & \cdots & * \\
\vdots & & \vdots & 0 & 0 & \cdots & 0 & \mathbf{1} & * & \cdots & * & \vdots & \vdots & & \vdots \\
\vdots & & \vdots & \vdots & \vdots & & \vdots & 0 & \vdots & & \vdots & \vdots & \vdots & & \vdots \\
\vdots & & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots & 0 & \vdots & & \vdots \\
0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & \mathbf{1} & * & \cdots & *
\end{array}\right]
$$

We extend this matrix to an $\mathrm{n} \times \mathrm{n}$-matrix \tilde{A} by adding $\mathrm{n}-\mathrm{k}$ rows of the form

$$
\left[\begin{array}{lllllll}
0 & \cdots & 0 & -1 & 0 & \cdots & 0
\end{array}\right]
$$

Then, the columns of \tilde{A} that contain the -1 as pivots are solutions of the homogeneous equation system $\boldsymbol{A x}=\mathbf{0}$.

Solving Systems of Linear Equations

The Minus-1 Trick
A practical trick for reading out the solutions of a homogeneous system of linear equations

$$
\boldsymbol{A}=\left[\begin{array}{ccccc}
\mathbf{1} & 3 & 0 & 0 & 3 \\
0 & 0 & \mathbf{1} & 0 & 9 \\
0 & 0 & 0 & \mathbf{1} & -4
\end{array}\right]
$$

Solving Systems of Linear Equations

The Minus-1 Trick

A practical trick for reading out the solutions of a homogeneous

$$
\boldsymbol{A}=\left[\begin{array}{ccccc}
\mathbf{1} & 3 & 0 & 0 & 3 \\
0 & 0 & \mathbf{1} & 0 & 9 \\
0 & 0 & 0 & \mathbf{1} & -4
\end{array}\right] \quad \tilde{\boldsymbol{A}}=\left[\begin{array}{ccccc}
1 & 3 & 0 & 0 & 3 \\
0 & -\mathbf{1} & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 9 \\
0 & 0 & 0 & 1 & -4 \\
0 & 0 & 0 & 0 & -\mathbf{1}
\end{array}\right]
$$

Solving Systems of Linear Equations

The Minus-1 Trick

A practical trick for reading out the solutions of a homogeneous system of linear equations

$$
\begin{gathered}
\boldsymbol{A}=\left[\begin{array}{ccccc}
\mathbf{1} & 3 & 0 & 0 & 3 \\
0 & 0 & \mathbf{1} & 0 & 9 \\
0 & 0 & 0 & \mathbf{1} & -4
\end{array}\right] \quad \tilde{\boldsymbol{A}}=\left[\begin{array}{ccccc}
1 & 3 & 0 & 0 & 3 \\
0 & -\mathbf{1} & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 9 \\
0 & 0 & 0 & 1 & -4 \\
0 & 0 & 0 & 0 & -\mathbf{1}
\end{array}\right] \\
\\
\left\{x \in \mathbb{R}^{5}: x=\lambda_{1}\left[\begin{array}{c}
3 \\
-1 \\
0 \\
0 \\
0
\end{array}\right]+\lambda_{2}\left[\begin{array}{c}
3 \\
0 \\
9 \\
-4 \\
-1
\end{array}\right], \quad \lambda_{1}, \lambda_{2} \in \mathbb{R}\right\}
\end{gathered}
$$

Solving Systems of Linear Equations

Checking Linear Independency
A practical way to check the independency is to use Gaussian elimination to solve a homogeneous system of equation:

Solving Systems of Linear Equations

A practical way to check the independency is to use Gaussian elimination to solve a homogeneous system of equation:

- All column vectors are linearly independent if and only if all columns are pivot columns.
- If there is at least one non-pivot column, the columns are linearly dependent.

$$
\boldsymbol{x}_{1}=\left[\begin{array}{c}
1 \\
2 \\
-3 \\
4
\end{array}\right], \quad \boldsymbol{x}_{2}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
2
\end{array}\right], \quad \boldsymbol{x}_{3}=\left[\begin{array}{c}
-1 \\
-2 \\
1 \\
1
\end{array}\right] \quad \lambda_{1}\left[\begin{array}{c}
1 \\
2 \\
-3 \\
4
\end{array}\right]+\lambda_{2}\left[\begin{array}{l}
1 \\
1 \\
0 \\
2
\end{array}\right]+\lambda_{3}\left[\begin{array}{c}
-1 \\
-2 \\
1 \\
1
\end{array}\right]=\mathbf{0}
$$

Checking Linear Independency

Solving Systems of Linear Equations

Checking Linear Independency

A practical way to check the independency is to use Gaussian elimination to solve a homogeneous system of equation:

- All column vectors are linearly independent if and only if all columns are pivot columns.
- If there is at least one non-pivot column, the columns are linearly dependent.

$$
\left[\begin{array}{ccc}
1 & 1 & -1 \\
2 & 1 & -2 \\
-3 & 0 & 1 \\
4 & 2 & 1
\end{array}\right] \rightsquigarrow \cdots \rightsquigarrow\left[\begin{array}{ccc}
1 & 1 & -1 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

there is no non-trivial solution Hence, the vectors $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$ and \boldsymbol{x}_{3} are linearly independent.

Solving Systems of Linear Equations
 Solving Systems of Linear Equations

Checking Linear Independency

A practical way to check the independency is to use Gaussian elimination to solve a homogeneous system of equation:

- All column vectors are linearly independent if and only if all
columns are pivot columns.
- If there is at least one non-pivot column, the columns are
linearly dependent.

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
1 & -4 & 2 & 17 \\
-2 & -2 & 3 & -10 \\
1 & 0 & -1 & 11 \\
-1 & 4 & -3 & 1
\end{array}\right]
$$

OF - ReaR =a Com
elimination solve a homogeneous system of equation:

4
\qquad
 48

 ex $=$

$\rightarrow-\rightarrow-2 \rightarrow-\infty$

I

Solving Systems of Linear Equations

Checking Linear Independency
A practical way to check the independency is to use Gaussian elimination to solve a homogeneous system of equation:

- All column vectors are linearly independent if and only if all columns are pivot columns.
- If there is at least one non-pivot column, the columns are linearly dependent.

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
1 & -4 & 2 & 17 \\
-2 & -2 & 3 & -10 \\
1 & 0 & -1 & 11 \\
-1 & 4 & -3 & 1
\end{array}\right] \longrightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & -7 \\
0 & 1 & 0 & -15 \\
0 & 0 & 1 & -18 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

This linear equation system is non-trivially solvable!
The last column is not a pivot column: $x_{4}=-7 x_{1}-15 x_{2}-18 x_{3}$.

Solving Systems of Linear Equations

Calculating the Inverse
To compute the inverse \boldsymbol{A}^{-1} of $\boldsymbol{A} \in \mathbb{R}^{n \times n}$, we need to find a matrix \boldsymbol{X} that satisfies $\boldsymbol{A X}=\boldsymbol{I}_{n}$.

Solving Systems of Linear Equations

Calculating the Inverse
To compute the inverse \boldsymbol{A}^{-1} of $\boldsymbol{A} \in \mathbb{R}^{n \times n}$, we need to find a matrix \boldsymbol{X} that satisfies $\boldsymbol{A X}=\boldsymbol{I}_{n}$.
use the augmented matrix notation we can write

$$
A X \mid I
$$

Solving Systems of Linear Equations

Calculating the Inverse
To compute the inverse \boldsymbol{A}^{-1} of $\boldsymbol{A} \in \mathbb{R}^{n \times n}$, we need to find a matrix \boldsymbol{X} that satisfies $\boldsymbol{A} \boldsymbol{X}=\boldsymbol{I}_{n}$.
use the augmented matrix notation we can write

$$
\begin{gathered}
A X \mid \boldsymbol{I} \\
E_{1} A X \mid E_{1} I \\
E_{2} E_{1} A X \mid E_{2} E_{1} I
\end{gathered}
$$

0 -

Solving Systems of Linear Equations

Calculating the Inverse
To compute the inverse \boldsymbol{A}^{-1} of $\boldsymbol{A} \in \mathbb{R}^{n \times n}$, we need to find a matrix \boldsymbol{X} that satisfies $\boldsymbol{A X}=\boldsymbol{I}_{n}$.
use the augmented matrix notation we can write

$$
\begin{gathered}
\boldsymbol{A X | I} \\
E_{1} \boldsymbol{A X |} \mid E_{1} \boldsymbol{I} \\
E_{2} E_{1} \boldsymbol{A X | E} E_{2} E_{1} \boldsymbol{I} \\
E_{k} \ldots E_{2} E_{1} \boldsymbol{A X | E} E_{k} \ldots E_{2} E_{2} E_{1} \boldsymbol{I} \\
\boldsymbol{I X |} \mid E_{k} \ldots E_{2} E_{2} E_{1} \boldsymbol{I}
\end{gathered}
$$

Solving Systems of Linear Equations

Calculating the Inverse

$$
A=\left[\begin{array}{llll}
1 & 0 & 2 & 0 \\
1 & 1 & 0 & 0 \\
1 & 2 & 0 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

Solving Systems of Linear Equations

Calculating the Inverse

$$
A=\left[\begin{array}{llll}
1 & 0 & 2 & 0 \\
1 & 1 & 0 & 0 \\
1 & 2 & 0 & 1 \\
1 & 1 & 1 & 1
\end{array}\right] \quad\left[\begin{array}{llll|llll}
1 & 0 & 2 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 2 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

the augmented matrix

Solving Systems of Linear Equations

Calculating the Inverse
$A=\left[\begin{array}{llll}1 & 0 & 2 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 1 \\ 1 & 1 & 1 & 1\end{array}\right] \quad\left[\begin{array}{llll|llll}1 & 0 & 2 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 2 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1\end{array}\right]$
bring it into reduced row-echelon form
$\left[\begin{array}{cccc|cccc}1 & 0 & 0 & 0 & -1 & 2 & -2 & 2 \\ 0 & 1 & 0 & 0 & 1 & -1 & 2 & -2 \\ 0 & 0 & 1 & 0 & 1 & -1 & 1 & -1 \\ 0 & 0 & 0 & 1 & -1 & 0 & -1 & 2\end{array}\right]$

> [-

> the augmented matrix

bring it into reduced row echelon form

$$
5
$$

Solving Systems of Linear Equations

Calculating the Inverse
$A=\left[\begin{array}{llll}1 & 0 & 2 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 1 \\ 1 & 1 & 1 & 1\end{array}\right] \quad\left[\begin{array}{llll|llll}1 & 0 & 2 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 2 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1\end{array}\right]$

$$
\left[\begin{array}{llll|llll}
1 & 0 & 2 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 2 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

bring it into reduced row-echelon form

$$
\left[\begin{array}{cccc|cccc}
1 & 0 & 0 & 0 & -1 & 2 & -2 & 2 \\
0 & 1 & 0 & 0 & 1 & -1 & 2 & -2 \\
0 & 0 & 1 & 0 & 1 & -1 & 1 & -1 \\
0 & 0 & 0 & 1 & -1 & 0 & -1 & 2
\end{array}\right] \quad \boldsymbol{A}^{-1}=\left[\begin{array}{cccc}
-1 & 2 & -2 & 2 \\
1 & -1 & 2 & -2 \\
1 & -1 & 1 & -1 \\
-1 & 0 & -1 & 2
\end{array}\right]
$$

Solving Systems of Linear Equations

Assume that a solution exists for a system of linear equation $\mathbf{A x}=\mathbf{b}$.

- if \mathbf{A} is a square matrix and invertible, the inverse \mathbf{A}^{-1} can be obtained such that $\mathrm{x}=\mathrm{A}^{-1} \mathrm{~b}$

Solving Systems of Linear Equations

Assume that a solution exists for a system of linear equation $\mathbf{A x}=\mathbf{b}$.

- if \mathbf{A} is a square matrix and invertible, the inverse \mathbf{A}^{-1} can be obtained such that $\mathrm{x}=\mathbf{A}^{-1} \mathrm{~b}$
- If A is a rectangular matrix:

$$
\begin{aligned}
\mathbf{A x} & =\mathbf{b} \\
\mathbf{A}^{\mathrm{T}} \mathbf{A x} & =\mathbf{A}^{\mathrm{T}} \mathbf{b}
\end{aligned}
$$

Solving Systems of Linear Equations

Assume that a solution exists for a system of linear equation $\mathbf{A x}=\mathbf{b}$.

- if \mathbf{A} is a square matrix and invertible, the inverse \mathbf{A}^{-1} can be obtained such that $\mathrm{x}=\mathbf{A}^{-1} \mathrm{~b}$
- If A is a rectangular matrix:

$$
\begin{aligned}
\mathbf{A x}= & \mathbf{b} \\
\mathbf{A}^{\mathrm{T}} \mathbf{A x}= & \mathbf{A}^{\mathrm{T}} \mathbf{b} \\
\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{A x}= & \left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{b} \\
\mathrm{x}= & \left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{b} \\
& \text { Moore-Penrose pseudo-inverse }
\end{aligned}
$$

Symmetric, Positive Definite Matrices

A positive definite matrix is a symmetric matrix with all positive eigenvalues.

- Calculating all the eigenvalues and just check to see if they're all positive!

Symmetric, Positive Definite Matrices

A positive definite matrix is a symmetric matrix with all positive eigenvalues.

- Calculating all the eigenvalues and just check to see if they're all positive!

A matrix is positive definite if it's symmetric and all its pivots are positive.

- Just perform elimination and examine the diagonal terms.

. Symmetric, Positive Definite Matrices

A positive definite matrix is a symmetric matrix with all positive eigenvalues.

- Calculating all the eigenvalues and just check to see if they're all positive!

A matrix is positive definite if it's symmetric and all its pivots are positive.

- Just perform elimination and examine the diagonal terms.

Example:

$$
\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]
$$

Symmetric, Positive Definite Matrices

A positive definite matrix is a symmetric matrix with all positive eigenvalues.

- Calculating all the eigenvalues and just check to see if they're all positive!

A matrix is positive definite if it's symmetric and all its pivots are positive.

- Just perform elimination and examine the diagonal terms.

Example:

$$
\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right] \xrightarrow[R_{2}-2 R_{1} \rightarrow R_{2}]{\text { elimination }}\left[\begin{array}{cc}
1 & 2 \\
0 & -3
\end{array}\right]
$$

the matrix is not positive definite!

Symmetric, Positive Definite Matrices

A matrix is positive definite $\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}>0$ for any column vector $\mathrm{x} \neq \overrightarrow{0}$

Symmetric, Positive Definite Matrices

A matrix is positive definite $\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}>0$ for any column vector $\mathrm{x} \neq \overrightarrow{0}$

- Example:

$$
\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right] \quad x^{T} A x=\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right]\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

Symmetric, Positive Definite Matrices

A matrix is positive definite $\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}>0$ for any column vector $\mathrm{x} \neq \overrightarrow{0}$

- Example:

$$
\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right] \quad x^{T} A x=\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right]\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right],
$$

Symmetric, Positive Definite Matrices

A matrix A is positive definite if and only if it can be written as

$$
\mathbf{A}=\mathbf{R}^{\mathrm{T}} \mathbf{R}, \quad\left[\begin{array}{cc}
14 & 8 \\
8 & 5
\end{array}\right]=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
2 & 1 \\
3 & 2
\end{array}\right]
$$

where \mathbf{R} is a matrix, possibly rectangular, with independent columns.

If the columns of \mathbf{R} are linearly independent then $\mathbf{R} \boldsymbol{x} \neq 0$ if $\mathrm{x} \neq 0$, and so $x^{\top} A x>0$.

$$
\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}=\mathbf{x}^{\mathrm{T}} \mathbf{R}^{\mathrm{T}} \mathbf{R} \mathbf{x}=(\mathbf{R} \mathbf{x})^{\mathrm{T}}(\mathbf{R} \mathbf{x})=\|\mathbf{R} \mathbf{x}\|^{2}
$$

Symmetric, Positive Definite Matrices

Any Question?

\qquad .
Zamjan
35 Has
Zany
ABE
Zanjan

\author{

- }
$-$
$$
+
$$
$$
3
$$
\square

\qquad

(

