Computational Data Mining

Part 4: Linear Algebra Linear Systems

Instructor: Zahra Narimani

Department of Computer Science and Information Technology, Institute for Advanced Studies in Basic Sciences, Zanjan, Iran

Solving Systems of Linear Equations

We will focus on solving systems of linear equations and provide an algorithm for finding the inverse of a matrix.

Solving Systems of Linear Equations

We will focus on solving systems of linear equations and provide an algorithm for finding the inverse of a matrix.

Consider the system of equations

$$\begin{bmatrix} 1 & 0 & 8 & -4 \\ 0 & 1 & 2 & 12 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 42 \\ 8 \end{bmatrix}$$

Solving Systems of Linear Equations

We will focus on solving systems of linear equations and provide an algorithm for finding the inverse of a matrix.

Consider the system of equations

$$\begin{bmatrix} 1 & 0 & 8 & -4 \\ 0 & 1 & 2 & 12 \end{bmatrix} \begin{vmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{vmatrix} = \begin{bmatrix} 42 \\ 8 \end{bmatrix}$$

Two equations and four unknowns, Therefore, in general we would expect infinitely many solutions.

Solving Systems of Linear Equations

We will focus on solving systems of linear equations and provide an algorithm for finding the inverse of a matrix.

Consider the system of equations

$$\begin{bmatrix} 1 & 0 & 8 & -4 \\ 0 & 1 & 2 & 12 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 42 \\ 8 \end{bmatrix}$$

Two equations and four unknowns, Therefore, in general we would expect infinitely many solutions.

A straightforward solution is:

 $\begin{bmatrix} 42 & 8 & 0 & 0 \end{bmatrix}^T$ particular solution or special solution

We will focus on solving systems of linear equations and provide an algorithm for finding the inverse of a matrix.

Consider the system of equations

$$\begin{bmatrix} 1 & 0 & 8 & -4 \\ 0 & 1 & 2 & 12 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 42 \\ 8 \end{bmatrix}$$

Two equations and four unknowns, Therefore, in general we would expect infinitely many solutions.

A straightforward solution is:

 $\begin{bmatrix} 42 & 8 & 0 & 0 \end{bmatrix}^T$ particular solution or special solution

$$\begin{bmatrix} 1 & 0 & 8 & -4 \\ 0 & 1 & 2 & 12 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

To capture all other solutions: Generating 0 in a non-trivial way using the columns of the matrix

Solving Systems of Linear Equations

 $\begin{bmatrix} 1 & 0 & 8 & -4 \\ 0 & 1 & 2 & 12 \end{bmatrix} \begin{pmatrix} \lambda_1 \begin{bmatrix} 8 \\ 2 \\ -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Solving Systems of Linear Equations

$$\begin{bmatrix} 1 & 0 & 8 & -4 \\ 0 & 1 & 2 & 12 \end{bmatrix} \begin{pmatrix} \lambda_1 \begin{bmatrix} 8 \\ 2 \\ -1 \\ 0 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 8 & -4 \\ 0 & 1 & 2 & 12 \end{bmatrix} \begin{pmatrix} \lambda_2 \begin{bmatrix} -4 \\ 12 \\ 0 \\ -1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Solving Systems of Linear Equations

$$\begin{bmatrix} 1 & 0 & 8 & -4 \\ 0 & 1 & 2 & 12 \end{bmatrix} \begin{pmatrix} \lambda_1 \begin{bmatrix} 8 \\ 2 \\ -1 \\ 0 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 8 & -4 \\ 0 & 1 & 2 & 12 \end{bmatrix} \begin{pmatrix} \lambda_2 \begin{bmatrix} -4 \\ 12 \\ 0 \\ -1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Putting everything together, we obtain the general solution

$$\begin{cases} x \in \mathbb{R}^4 \colon x = \begin{bmatrix} 42\\8\\0\\0 \end{bmatrix} + \lambda_1 \begin{bmatrix} 8\\2\\-1\\0 \end{bmatrix} + \lambda_2 \begin{bmatrix} -4\\12\\0\\-1 \end{bmatrix}, \quad \lambda_1, \lambda_2 \in \mathbb{R} \end{cases}$$

Solving Systems of Linear Equations

$$\begin{bmatrix} 1 & 0 & 8 & -4 \\ 0 & 1 & 2 & 12 \end{bmatrix} \left(\lambda_1 \begin{bmatrix} 8 \\ 2 \\ -1 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 8 & -4 \\ 0 & 1 & 2 & 12 \end{bmatrix} \left(\lambda_2 \begin{bmatrix} -4 \\ 12 \\ 0 \\ -1 \end{bmatrix} \right) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Putting everything together, we obtain the general solution

$$\left\{ x \in \mathbb{R}^4 \colon x = \begin{bmatrix} 42\\8\\0\\0 \end{bmatrix} + \lambda_1 \begin{bmatrix} 8\\2\\-1\\0 \end{bmatrix} + \lambda_2 \begin{bmatrix} -4\\12\\0\\-1 \end{bmatrix}, \quad \lambda_1, \lambda_2 \in \mathbb{R} \right\}$$

The general approach we followed consisted of the following three steps:

- 1. Find a particular solution to **Ax = b**.
- 2. Find all solutions to **Ax = 0**.
- 3. Combine the solutions to obtain the general solution.

In this way, finding the solutions for a homogeneous equation system **Ax = 0** would be straightforward:

Solving Systems of Linear Equations

In this way, finding the solutions for a homogeneous equation system **Ax = 0** would be straightforward:

$$\boldsymbol{A} = \begin{bmatrix} \mathbf{1} & 3 & 0 & 0 & 3 \\ 0 & 0 & \mathbf{1} & 0 & 9 \\ 0 & 0 & 0 & \mathbf{1} & -4 \end{bmatrix}$$

The key idea for finding the solutions of **Ax = 0** is to look at the **non-pivot columns**

In this way, finding the solutions for a homogeneous equation system **Ax = 0** would be straightforward:

$$\boldsymbol{A} = \begin{bmatrix} \mathbf{1} & 3 & 0 & 0 & 3 \\ 0 & 0 & \mathbf{1} & 0 & 9 \\ 0 & 0 & 0 & \mathbf{1} & -4 \end{bmatrix}$$

The key idea for finding the solutions of **Ax = 0** is to look at the **non-pivot columns**

We can express them as a (linear) combination of the pivot columns.

$$\left\{ x \in \mathbb{R}^{5} \colon x = \lambda_{1} \begin{bmatrix} 3 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \lambda_{2} \begin{bmatrix} 3 \\ 0 \\ 9 \\ -4 \\ -1 \end{bmatrix}, \qquad \lambda_{1}, \lambda_{2} \in \mathbb{R} \right\}$$

Solving Systems of Linear Equations

The Minus-1 Trick

A practical trick for reading out the solutions of a homogeneous system of linear equations

Solving Systems of Linear Equations

The Minus-1 Trick

A practical trick for reading out the solutions of a homogeneous system of linear equations

	0	· 0	1	*		*	0	*	 *	0	* ···	*	1
	: 7		0	0	•••	0	1	*	 *	1	1	÷	
A =	:	:	:	Ξ		÷	0	:	:	:	:	÷	
	÷	:	÷	:		:	:	÷	÷	0	*	:	
	0	· 0	0	0		0	0	0	 0	1	* •••	*	

We extend this matrix to an n×n-matrix \tilde{A} by adding n – k rows of the form $\begin{bmatrix} 0 & \cdots & 0 & -1 & 0 & \cdots & 0 \end{bmatrix}$

Solving Systems of Linear Equations

The Minus-1 Trick

A practical trick for reading out the solutions of a homogeneous system of linear equations

We extend this matrix to an n×n-matrix \tilde{A} by adding n – k rows of the form $\begin{bmatrix} 0 & \cdots & 0 & -1 & 0 & \cdots & 0 \end{bmatrix}$

Then, the columns of \tilde{A} that contain the -1 as pivots are solutions of the homogeneous equation system Ax = 0.

Solving Systems of Linear Equations

The Minus-1 Trick

A practical trick for reading out the solutions of a homogeneous system of linear equations

$$\boldsymbol{A} = \begin{bmatrix} \mathbf{1} & 3 & 0 & 0 & 3 \\ 0 & 0 & \mathbf{1} & 0 & 9 \\ 0 & 0 & 0 & \mathbf{1} & -4 \end{bmatrix}$$

Solving Systems of Linear Equations

The Minus-1 Trick

A practical trick for reading out the solutions of a homogeneous system of linear equations $\Gamma 1 = 3 = 0 = 0 = 3$

$$\boldsymbol{A} = \begin{bmatrix} \mathbf{1} & 3 & 0 & 0 & 3 \\ 0 & 0 & \mathbf{1} & 0 & 9 \\ 0 & 0 & 0 & \mathbf{1} & -4 \end{bmatrix} \qquad \tilde{\boldsymbol{A}} = \begin{bmatrix} \mathbf{0} & -\mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ 0 & 0 & 1 & 0 & 9 \\ 0 & 0 & 0 & 1 & -4 \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & -4 \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & -\mathbf{1} \end{bmatrix}$$

Solving Systems of Linear Equations

The Minus-1 Trick

A practical trick for reading out the solutions of a homogeneous system of linear equations $\Gamma = 1$

$$\boldsymbol{A} = \begin{bmatrix} \mathbf{1} & 3 & 0 & 0 & 3 \\ 0 & 0 & \mathbf{1} & 0 & 9 \\ 0 & 0 & 0 & \mathbf{1} & -4 \end{bmatrix} \qquad \tilde{\boldsymbol{A}} = \begin{bmatrix} \mathbf{0} & -\mathbf{1} & 0 & 0 & 0 \\ 0 & -\mathbf{1} & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 9 \\ 0 & 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 & -\mathbf{1} \end{bmatrix}$$

$$\left\{ x \in \mathbb{R}^5 \colon x = \lambda_1 \begin{bmatrix} 3\\ -1\\ 0\\ 0\\ 0\\ 0 \end{bmatrix} + \lambda_2 \begin{bmatrix} 3\\ 0\\ 9\\ -4\\ -1 \end{bmatrix}, \quad \lambda_1, \lambda_2 \in \mathbb{R} \right\}$$

Checking Linear Independency

Checking Linear Independency

- All column vectors are linearly independent if and only if all columns are pivot columns.
- If there is at least one non-pivot column, the columns are linearly dependent.

$$\boldsymbol{x}_{1} = \begin{bmatrix} 1\\2\\-3\\4 \end{bmatrix}, \quad \boldsymbol{x}_{2} = \begin{bmatrix} 1\\1\\0\\2 \end{bmatrix}, \quad \boldsymbol{x}_{3} = \begin{bmatrix} -1\\-2\\1\\1\\1 \end{bmatrix} \qquad \lambda_{1} \begin{bmatrix} 1\\2\\-3\\4 \end{bmatrix} + \lambda_{2} \begin{bmatrix} 1\\1\\0\\2 \end{bmatrix} + \lambda_{3} \begin{bmatrix} -1\\-2\\1\\1\\1 \end{bmatrix} = \boldsymbol{0}$$

Checking Linear Independency

- All column vectors are linearly independent if and only if all columns are pivot columns.
- If there is at least one non-pivot column, the columns are linearly dependent.

Checking Linear Independency

- All column vectors are linearly independent if and only if all columns are pivot columns.
- If there is at least one non-pivot column, the columns are linearly dependent.

$$\boldsymbol{A} = \begin{bmatrix} 1 & -4 & 2 & 17 \\ -2 & -2 & 3 & -10 \\ 1 & 0 & -1 & 11 \\ -1 & 4 & -3 & 1 \end{bmatrix}$$

Checking Linear Independency

A practical way to check the independency is to use Gaussian elimination to solve a homogeneous system of equation:

- All column vectors are linearly independent if and only if all columns are pivot columns.
- If there is at least one non-pivot column, the columns are linearly dependent.

 $\boldsymbol{A} = \begin{bmatrix} 1 & -4 & 2 & 17 \\ -2 & -2 & 3 & -10 \\ 1 & 0 & -1 & 11 \\ -1 & 4 & -3 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & -7 \\ 0 & 1 & 0 & -15 \\ 0 & 0 & 1 & -18 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

This linear equation system is non-trivially solvable! The last column is not a pivot column: $x_4 = -7x_1 - 15x_2 - 18x_3$.

Solving Systems of Linear Equations

Calculating the Inverse

To compute the inverse A^{-1} of $A \in \mathbb{R}^{n \times n}$, we need to find a matrix **X** that satisfies $AX = I_n$.

Calculating the Inverse

To compute the inverse A^{-1} of $A \in \mathbb{R}^{n \times n}$, we need to find a matrix **X** that satisfies $AX = I_n$.

use the augmented matrix notation we can write

AX I

Calculating the Inverse

To compute the inverse A^{-1} of $A \in \mathbb{R}^{n \times n}$, we need to find a matrix **X** that satisfies $AX = I_n$.

use the augmented matrix notation we can write

AX|I $E_1AX|E_1I$ $E_2E_1AX|E_2E_1I$

Calculating the Inverse

To compute the inverse A^{-1} of $A \in \mathbb{R}^{n \times n}$, we need to find a matrix **X** that satisfies $AX = I_n$.

use the augmented matrix notation we can write

AX|I $E_1AX|E_1I$ $E_2E_1AX|E_2E_1I$ $E_k...E_2E_1AX|E_k...E_2E_2E_1I$ $IX|E_k...E_2E_2E_1I$

Solving Systems of Linear Equations

Calculating the Inverse

$$A = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

Solving Systems of Linear Equations

Calculating the Inverse

the augmented matrix

	1	0	2	0]	[1	0	2	0	1	0 0 1 0 0 1 0 0	0
A =	1	1	0	0	1	1	0	0	0	1 0	0
	1	2	0	1	1	2	0	1	0	0 1	0
			1		[1	1	1	1	0	0 0	1

Solving Systems of Linear Equations

Calculating the Inverse

the augmented matrix

	1	0	2	0]		[1	0	2	0	1	0 1 0 0	0	0]	
						1	1	0	0	0	1	0	0	
A =	1	2	0	1		1	2	0	1	0	0	1	0	
	1	1	1	1		1	1	1	1	0	0	0	1	

bring it into reduced row-echelon form

$$\begin{bmatrix} 1 & 0 & 0 & 0 & | -1 & 2 & -2 & 2 \\ 0 & 1 & 0 & 0 & | 1 & -1 & 2 & -2 \\ 0 & 0 & 1 & 0 & | 1 & -1 & 1 & -1 \\ 0 & 0 & 0 & 1 & | -1 & 0 & -1 & 2 \end{bmatrix}$$

Solving Systems of Linear Equations

Calculating the Inverse

the augmented matrix

	1	0	2	0]	[1 1 1 1	0	2	0	1	0	0	0]	
A =	1	1	0	0	1	1	0	0	0	1	0	0	
	1	2	0	1	1	2	0	1	0	0	1	0	
			1		[1	1	1	1	0	0	0	1	

bring it into reduced row-echelon form

[1 0	0	0 -1	2	-2	2]			2		
0 1	0	0 1	-1	2	-2	$A^{-1} =$	1	-1	2	-2
0 0	1	0 1	-1	1	-1	A –	1	-1	1	-1
0 0	0	1 –1	0	-1	2		-1	0	-1	2

Solving Systems of Linear Equations

Assume that a solution exists for a system of linear equation **Ax=b**.

 if A is a square matrix and invertible, the inverse A⁻¹ can be obtained such that x = A⁻¹b

Solving Systems of Linear Equations

Assume that a solution exists for a system of linear equation **Ax=b**.

- if A is a square matrix and invertible, the inverse A⁻¹ can be obtained such that x = A⁻¹b
- If A is a rectangular matrix:

 $\mathbf{A}\mathbf{x} = \mathbf{b}$ $\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x} = \mathbf{A}^{\mathsf{T}}\mathbf{b}$

Solving Systems of Linear Equations

Assume that a solution exists for a system of linear equation **Ax=b**.

- if A is a square matrix and invertible, the inverse A⁻¹ can be obtained such that x = A⁻¹b
- If A is a rectangular matrix:

Ax = b $A^{T}Ax = A^{T}b$ $(A^{T}A)^{-1}A^{T}Ax = (A^{T}A)^{-1}A^{T}b$ $x = (A^{T}A)^{-1}A^{T}b$

Moore-Penrose pseudo-inverse

A positive definite matrix is a symmetric matrix with all positive eigenvalues.

• Calculating all the eigenvalues and just check to see if they're all positive!

A positive definite matrix is a symmetric matrix with all positive eigenvalues.

• Calculating all the eigenvalues and just check to see if they're all positive!

A matrix is positive definite if it's symmetric and all its pivots are positive.

Just perform elimination and examine the diagonal terms.

A positive definite matrix is a symmetric matrix with all positive eigenvalues.

• Calculating all the eigenvalues and just check to see if they're all positive!

A matrix is positive definite if it's symmetric and all its pivots are positive.

Just perform elimination and examine the diagonal terms.

Example:

A positive definite matrix is a symmetric matrix with all positive eigenvalues.

• Calculating all the eigenvalues and just check to see if they're all positive!

A matrix is positive definite if it's symmetric and all its pivots are positive.

Just perform elimination and examine the diagonal terms.

Example: $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \xrightarrow{\text{elimination}} \begin{bmatrix} 1 & 2 \\ 0 & -3 \end{bmatrix}$

the matrix is not positive definite!

Symmetric, Positive Definite Matrices

A matrix is positive definite $\mathbf{x}^{\mathrm{T}}\mathbf{A}\mathbf{x} > 0$ for any column vector $\mathbf{x} \neq \vec{\mathbf{0}}$

- A matrix is positive definite $\mathbf{x}^{T}\mathbf{A}\mathbf{x} > 0$ for any column vector $\mathbf{x} \neq \vec{0}$ • Example:
- $x^{T}Ax = \begin{bmatrix} x_{1} & x_{2} & x_{3} \end{bmatrix} \begin{vmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{vmatrix} \begin{vmatrix} x_{2} \\ x_{3} \end{vmatrix}$

A matrix is positive definite $\mathbf{x}^{\mathrm{T}}\mathbf{A}\mathbf{x} > 0$ for any column vector $\mathbf{x} \neq \vec{0}$ • Example:

 $\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix} \quad x^{T}Ax = \begin{bmatrix} x_{1} & x_{2} & x_{3} \end{bmatrix} \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}$ $= (2x_{1}^{2} - 2x_{1}x_{2} + 2x_{2}^{2}) + (x_{3}^{2} - 2x_{2}x_{3})$ $= (x_{1} - x_{2})^{2} + x_{1}^{2} + x_{2}^{2} + (x_{3}^{2} - 2x_{2}x_{3})$ $= (x_{1} - x_{2})^{2} + x_{1}^{2} + (x_{2} - x_{3})^{2} > 0$

A matrix A is positive definite if and only if it can be written as

$\mathbf{A} = \mathbf{R}^{\mathrm{T}}\mathbf{R}, \qquad \begin{bmatrix} 14 & 8 \\ 8 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 3 & 2 \end{bmatrix}$

where \mathbf{R} is a matrix, possibly rectangular, with independent columns.

If the columns of **R** are linearly independent then $\mathbf{R}x \neq 0$ if $x\neq 0$, and so $x^T\mathbf{A}x > 0$.

 $\mathbf{x}^{\mathrm{T}}\mathbf{A}\mathbf{x} = \mathbf{x}^{\mathrm{T}}\mathbf{R}^{\mathrm{T}}\mathbf{R}\mathbf{x} = (\mathbf{R}\mathbf{x})^{\mathrm{T}}(\mathbf{R}\mathbf{x}) = \|\mathbf{R}\mathbf{x}\|^{2}$

