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Abstract

A fullerene graph is a 3 regular planar simple finite graph with pen-

tagon or hexagon faces. In these graphs the number of pentagon faces

is 12. Therefore, any fullerene graph can be characterized by number

of its hexagon faces. In this note, for any h > 1, we will construct

a fullerene graph with h hexagon faces. Then, using the leapfrogging

process we will construct stable fullerenes with 20 + 3h hexagon faces,

for any h > 1.
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1 Introduction

A fullerene is a molecule consisting entirely of carbon atoms. Each carbon
is three-connected to other carbon atoms by one double bond and two single
bonds. These molecules are of great importance in chemistry: ”Buckyball”,
one of famous fullerenes was named ”Molecule of the Year” for 1991 by Science
magazine. In the December 20, 1991, issue of Science, the Editors made the
following observations: ”Fullerene science exhibits the classic profile of a major
scientific breakthrough. [6].

Since 1991, the pace of discovery in fullerene science has continued to accel-
erate. Researchers around the world are exploring both the basic science and
potential applications of fullerenes. And the field has spawned important new
areas of exploration, including carbon nanotubes and nanowires. In 1996, the
Nobel Prize in Chemistry was awarded to the co-discoverers, Richard Smalley,
Robert Curl and Harry Kroto, for their discovery of fullerenes. [9].

In this paper, we revisit the graph-theoretical formulation of fullerenes
and their construction. A fullerene graph is a cubic planar graph with all
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faces 5-cycles or 6-cycles. Let the number of 5-cycles (pentagons) in a given
fullerene F is p and number of 6-cycles (hexagons) is h. Since each vertex lies
in exactly 3 faces and each edge lies in 2 faces, then the number of vertices is
v = (5p+6h)/3, the number of edges is e = (5p+6h)/2 = 3

2
v, and the number

of faces is f = p + h. By the Euler’s formula v − e + f = 2, one can deduce
that

5p + 6h

3
−

5p + 6h

2
+ p + h = 2,

and therefore

p = 12, v = 2h + 20, e = 3h + 30.

Example 1. For h = 0, the unique fullerene is dodecahedron with v =
20, e = 30.

Figure 1: Fullerene h = 0

2 Constructing fullerenes

A question can be posed: for a given natural number h, is there a fullerene
graph with exactly h hexagons? In this section we will see that for any h > 1,
there is at least one fullerene graph including exactly h hexagons.

First step: constructing small fullerenes. In this step, we introduce six
fullerene graphs with 2,3,4,5,6 and 7 hexagons. For h = 0 the fullerene graph
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is the above dodecahedron, and there is no fullerene graph with h = 1.

Figure 2: Fullerenes h = 2, 3, 4, 5, 6, 7.

In the above fullerenes, there is a common property (except in h = 6):
there is a hexagon (the outer one) which it’s neighbors are all pentagons. Such
fullerenes can be extended by an extending process in below.
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Extending process. Let F be a fullerene with a hexagon face neighbored
by pentagons only, as the above h = 2, 3, 4, 5, 7. We may add a vertex to each
edge of the hexagon to make all 6 neighboring pentagons, hexagon, and add an
edge to each new vertex and finally join the ends of new edges to make a new
hexagon. With this process, we get a new fullerene with 6 more hexagons. The
new fullerene has the same property and we may do the process again to get
new fullerenes. So, we can construct fullerenes with h = i + 6k hexagons, for
i = 2, 3, 4, 5, 7 and k = 1, 2, 3, . . .. These numbers cover all natural numbers
except multiples of 6. But, the same process which is done for h = 5 to get
h = 6 in Figure 2, can be done for any fullerene with h = 6k − 1 hexagons to
get a fullerene with h = 6k hexagons.

Example 2.The extending process on h = 2 to get h = 8 is shown in
Figure 3.

Figure 3: Extending h = 2 to h = 8

Theorem 2.1 For any natural number h 6= 1, there is a fullerene with
exactly h hexagons.

Stable fullerenes

There are some evidences that chemists believe that necessary conditions for
physical existence of a particular fullerene are first that the pentagons must
be isolated, that is, there are no two pentagons with a common edge; and
second that the graph has exactly half of its eigenvalues positive and half
negative. A fullerene with isolated pentagons is called isolated fullerene and an
isolated fullerene with half eigenvalues positive and half negative is called stable
fullerene. In this section, we will construct stable fullerenes by leapfrogging
process.
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Leapfrogging process. [3] Let F be a simple planar graph. Note that the
outer cycle is also a face. We construct a new graph L(F ) whose vertices are
(e, f), where e is an edge of F and f is a face of F containing e. The ver-
tices (e1, f1) and (e2, f2) are adjacent in L(F ) if one of the following conditions
holds.
1) e1 = e2 and f1 and f2 both contain e1,
2) f1 = f2 and e1 has a common vertex with e2 in F .
We say that L(F ) is obtained from F by leapfrogging process. It is clear that
if F is a fullerene graph, then L(P ) is an isolated fullerene graph.

Example 3. By the leapfrogging process on the dodecahedron (Example
1), we get the Buckminsterfullerene.

In other hand, by the following theorem, the fullerenes adopted by the
leapfrogging process are stable.

Theorem 2.2 Let F be a fullerene graph, then it’s leapfrog graph L(F ) is
stable. [3, Theorem 9.9.2]

If F is a fullerene graph with h hexagons, then it has v = 2h + 20 vertices
and e = 3h + 30 edges. Therefore, L(F ) has 6h + 60 vertices, 9h + 90 edges
and 3h + 20 hexagons. We have proved following theorem.

Theorem 2.3 For any h = 0, 2, 3, 4, . . ., there is a stable fullerene graph
with exactly 3h + 20 hexagons.

For instance, if h = 0, we get the C60 (Example 3), and for h = 2 we adopt
C72, and etc.
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