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Abstract

This paper revisits the notion of perfect matching and its defining sets in
a graph from view point of computational algebraic geometry. For a graph
G, an ideal in a polynomial ring is corresponded, such that, any common
root of all polynomials in the ideal can be identified with a perfect matching
in G. This ideal is zero-dimensional and its zero set can be computed easily.
Some facts are proved for computing the number of perfect matchings in
a graph and checking that whether or not a subset of a perfect matching
is a defining set.
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The notions of matching, perfect matching and its defining sets or forcing

sets have arisen in the study of several subjects as graph coloring ([9]), block

designs ([4]), and resonance structures of a given molecule in chemistry ([6]). In

this paper, we apply some computational methods in algebraic geometry and

commutative algebra to these notions. Throughout this paper, we only deal with

finite simple graphs with no loops or multiple edges.

Definition 1. Let G be a graph. A matching M in G is a set of independent

edges of G, i.e., a set of edges in which no pair shares a vertex. A matching M

in G is called perfect if it covers all vertices of G.

Let G be a graph with m vertices and n edges. Let K be a field, R(G) =

K[x1, . . . , xn] the polynomial ring on indeterminates x1, . . . , xn corresponding to
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the edges of G. A matching M in G can be identified by a labeling of edges of G

with 1 (belonging to M), and 0 (not belonging to M). Thus, to any matching in

G it corresponds a n-tuple of 0’s and 1’s in Kn.

Let I1(G) be the ideal in R(G) generated by polynomials x2
i − xi, for i =

1, . . . , n, and monomials xixj, provided that edges corresponding to xi and xj

have a common vertex in G. Note that any member of Kn with zero-one coor-

dinates identifies a labeling of edges of G where the i-th coordinate labels the

edge corresponding to xi. In this manner, any zero of I1(G) (common root of all

members of I(G)) is a matching in G. Therefore, V (I1(G)), the zero set of I1(G),

can be assumed as the set of all matchings in G.

Let I(G) be the ideal in R(G) generated by generators of I1(G) and the linear

polynomials xj1+· · ·+xjr−1, (j = 1, . . . , m), where xj1 , . . . , xjr are corresponding

all edges sharing in some j-th vertex of G. It is easy to check that for any

i = 1, . . . , n, we can omit x2
i − xi from the list of generators of I(G), because it

can be generated by other two types of generators. Let p = (a1, . . . , an) ∈ Kn

be a zero of the ideal I(G). As a labeling of G, the monomials xixj in I(G)

guarantee that, there is no pair of edges sharing a vertex and having nonzero

labels simultaneously. The linear generators in I(G) indicate that, there is exactly

one edge with label 1 among all edges containing a vertex of G.

The ideal I(G) has finite number of zeros and hence it is zero-dimensional.

Theorem 3.7.19 in [7] indicates that if K be a perfect field, the number of zeros

of I(G) in K
n

is equal to the dimension of R(G)/rad(I(G)) as a vector space

over K, where K is the algebraic closure of K. But, since all components of any

zero of I(G) are 0 or 1, the zero set of I(G) in Kn and K
n

are equal. We may

summarize the above discussions in the following theorem.

Theorem 1. The zero sets of ideals I1(G) and I(G) are precisely the sets of all

matchings and perfect matchings in G, respectively. The number of all matchings

and number of all perfect matchings in G are equal to vector space dimensions

of R(G)/rad(I1(G)) and R(G)/rad(I(G)) over K, respectively.

To deal with computations of zeros of I(G), we may choose a suitable gener-

ating set for this ideal. In particular, we may consider a Gröbner basis of I(G).

Macaulay’s theorem [8] states that, for any ideal I in R(G),

dimK(R(G)/I) = dimK(R(G)/init(I)),
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where init(I) is a monomial ideal generated by initials of the elements of I with

respect to some term ordering. A generating set for the ideal init(I) is precisely

the set of initials of elements of a Gröbner basis of I (which is of course a finite

set).

To compute Gröbner basis, radical of an ideal, and zero set of a zero-dimensional

ideal, we may use the computer algebra systems Macaulay2 or CoCoA.

Fix the lexicographic term ordering in R(G) with the decreasing order on

variables:

x1 > x2 > · · · > xn.

The ideal I(G) is zero dimensional, therefore, the reduced Gröbner basis of I(G)

will contain polynomials f1, . . . , fn such that f1 is a polynomial on xn, f2 is a

polynomial on xn and xn−1 and so on ([1], Corollary 2.2.1). Since the components

of roots of fi must be 0 or 1, we get a simple recursive method to find the zero

set of the ideal I(G) by solving a one-variable polynomial with roots 0 ore 1.

Example 1. Let G be the graph:

s s s s

s s s s

s s s s

s s s s
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Computing the reduced Gröbner basis of I(G) with CoCoA, reveals that:

ReducedGBasis (I(G)) =

(x2
24 − x24, x

2
23 − x23, x23x24 − x23, x

2
22 − x22, x22x23 − x22x24, x21 − x22 + x23 − x24,

x2
20 − x20, x20x23 − x20x24, x

2
19 − x19, x19x20 + x19x24 − x19, x19x22 − x20x22, x19x23,

x2
18 − x18, x18x19 − x18x20 − x19x24, x18x23 − x18x24 + x19x24, x18x22,

x17 − x18 + x19 − x20, x
2
16 − x16, x16x19 − x19x24, x16x20, x

2
15 − x15, x15x16 − x15,

x15x18 − x16x18 + x19x24, x15x19, x15x20, x
2
14 − x14, x14x15 − x14x16, x14x18,

x14x19 − x14x20, x13 − x14 + x15 − x16, x12 + x24 − 1, x11 + x23 − x24,

x10 + x22 − x23 + x24 − 1, x9 + x20 + x24 − 1, x8 + x19 − x20 + x23 − x24,

x7 + x18 − x19 + x20 + x22 − x23 + x24 − 1, x6 + x16 + x20 − 1,

x5 + x15 − x16 + x19 − x20, x4 + x14 − x15 + x16 + x18 − x19 + x20 − 1,

x3 + x16 − 1, x2 + x15 − x16, x1 + x14 − x15 + x16 − 1).
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It is a simple observation that the dimension of the vector space R(G)/init(I(G))

over Q is 36. Therefore, there are exactly 36 perfect matchings in G. We can

easily find a zero of the ideal by usual method of back substitution, i.e., solving

the first equation in x24 alone, then using this to solve any equation in x24 and

x23 and so forth. For instance, one of the zeros of the above ideal is:

(0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1)

which corresponds to the perfect matching:

s s s s

s s s s

s s s s

s s s s

It is worthwhile to mention that there are more effective methods in CoCoA

to find the zero set of a zero-dimensional ideal [3].

Definition 2. Let M be a perfect matching in a graph G. A defining set for

M , is a subset of M such that, M is the unique perfect matching in G containing

it.

We interest to check algebraically, whether or not a given subset M1 of M

is a defining set. Let G/M1 be the graph obtained by omitting all edges of G

which belong to M1, or, are adjacent to an edge in M1, and finally deleting single

vertices (with no edges).

Theorem 2. Let M be a perfect matching in a graph G, and M1 a subset of

M . Then, M1 is a defining set for M if and only if the ideal rad(I(G/M1)) is

maximal ideal in R(G/M1).

proof. Observe that M1 is a defining set for M if and only if there is a unique

perfect matching in G/M1. This means that, there is a unique zero for the ideal

I(G/M1), which is the case by Hilbert Nullstellensatz, if and only if the ideal

rad(I(G/M1)) is a maximal ideal in R(G/M1).
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Example 2. Let G be the graph of Example 1 and M be the perfect matching

there. Let M1 be the set of edges consisting of the edges 2 and 19. That is,

consider x2 = 1, x19 = 1. Then G/M1 is the graph:

s s

s s s

s s s

s s s s

CoCoA computes the reduced Gröbner basis:

ReducedGBasis(rad(I(G/M1)))=

(x24 − 1, x22, x21 − 1, x20, x18 − 1, x17, x16 − 1, x13 − 1, x12, x11 − 1, x10, x7, x4),

which is obviously a maximal ideal in the polynomial ring R(G/M1), and its

single zero is:

x4 = 0, x7 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 1, x16 = 1,

x17 = 0, x18 = 1, x20 = 0, x21 = 1, x22 = 0, x24 = 1.
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